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Dynamics of Large-Scale Eddies in Turbulent Flows
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By  Tomomasa TATSUMI ( Z }\JE)
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Hiroshima Institute of Technology (J.

A model equation based on the equipartition of the turbulent
dissipation is proposed for describing the dynamics of large-
scale eddies in turbulent flows. The equation is reducible
to the équation of motion df an inviscid fluid, so that the
motion of the large-scale eddies can be described in terms

of inviscid fluid dynamics.

l. Introduction

A prominent feature of homogeneous turbulence at large Rey-

nolds numbers is the existence of a dynamical equilibrium state
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which is characterized by the self-similarity of statistical
quantities during their evolution in time.
Figures 1 and 2 depict respectively the evolution of the

energy spectrum E(k,t) and the energy of turbulence,

Ewy = 1 (lux, ]2 = IOE(k,t)dk, (1.1)

where u(k,t) is the fluid Velocity and the angular b:ackets
denofe the’statistical avefage. These figures have been taken
from the numerical result by Tatsumi et al. (1986) based on the
factorized fourth cumulant approximation, but similar results
are also provided by other works using different closure hypo-
theses (see Orszag (1977) and Tatsumi (1980)). The figures
clearly show that thevdynamiCal equiiibrium state is attained
about at the time 71 = Eol/2k03/2 t = 0.8, E, and k, being the
characteristic magnitudesof the energy spectrum and the wave-
number respectively. The numerical value of the critical time
is common to all statistiéal quantities for a realization of

turbulence but changeable according to the initial condition.

The energy spectrum is governed by the equation,
{5% + kazJE(k,t) = T(k,t), (1.2)

where T(k,t) denotes the energy transfer function which satis-

fies the condition,

J T(k,t)dk = 0. ' (1.3)
0 .
The equation (l.2) may be rewritten as

[33 + 2y(k,t)]E(k,t) =0, (1.4)

where
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Y(k,t) = vk* - T(k,t)/2E(k,t) (1.5)

represents the turbulent dissipation rate that is the net effect
of the viscous dissipation and the nonlinear energy transfer in
the wavenumber space.

Generally speaking, the turbulent dissipation rate Y(k,t)
is dependent on the wavenumber k, but'if the energy spectrum
satisfies a similarity law with respect to k, y(k,t) becomes

independent of k,

Yl,t) = yg(e). (1.6

Such an equipartition of the dissipation may clearly be observed
in Fig. 3 which has been taken from the numerical result by
Tatsumi et al. (1986). Initially, yv(k,t) is proportional to k2
according to the inijitial condition T(k,0) = 0, but soon it de-
velops a k-independent form for almost two decades.bfjthe wave-
number roughly corresponding to the energy-containing and the
inertial rangés. The functional form of vy{k,t) beyond the iner-
£ial range is not apparent on Fig. 3, but its asymptotic behav-

iour for very Iarge‘k is known to be y(k,t) =« k (Tatsumi (1980)).
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If we employ the equipartition form of the dissipation

(1.6), the equation (l1.4) is written as

[Ti + ZYO(t)]E(k,t) =0, (1.7)
which leads to the energy equation ,

e(t) = 2vy &(t), | (1.8)
where ,

e(t) = -a&w)y/ae (1.9)

denotes the viscous dissipation of the energy. Hence,

Yo(t) = e(t)/2&(t), (1.10)

which gives the expression of Yo(t) in terms of measurable quan-

tities.

2. Dynamics of large-scale eddies

The balance of energy in homogeneous turbulence at large
Reynolds numbers is conveniently dealt with by dividing the tur-
bulent motion into large and small-scale components which are
usually called "eddies". The large-scale eddies contain almost
ail kinetic energy of turbulence and lose their energy thrdugh
the nonlinear transfer to the small-scale eddies. 1In the wave-
number space, the large-scale eddies correspond to the energy-
containing range where T(k,t) < 0, while the small-scale eddies
correspond t§ the energy-dissipation range T(k,t) > 0. 1If we
denote by k = kl the characteristic wavenumber of the inertial
range T(k,t) = 0, the large and the small-scale eddies may be
characterized by the conditions k < kl and k > kl respectively.

If we define the Fourier transform of the fluid velocity
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u(x,t) by

u(x,t) = jv(k,t)exp(ik.x)dk, (2.1)

where v(k,t) should be understood as a generalized function,
and express the velocity u(x,t) as

u(x,t) = a(x,t) + G(x,t), (2.2)
where lU(x,t) and i(x,t) denote contributions from the large and
the small-scale eddies respecti&ely,'these component velocities

are expressed as

a(x,t) v(k,t)exp(ik.x)dk,

Jlkl<k
1 (2.3)

v (k,t)exp (ik.x)dk.

1

d(x,t)

J}k]>k

In the physical space, such a decomposition can be made by tak-
ing a moving time-average with a period which is larger than the
characteristic time of the small-scale eddies but shorter than

that of the large-scale eddies:

ﬁ(X,t) = <u(xlt)>el (ﬁ(xlt)>e = 0, | (2.4)

where the brackets < >e denote the above-mentioned time-average.
If we substitute (2.2) and the corresponding decomposition
- of the pressure,
p(x,t) = P(x,t) + B(x,t), (2.5)
into the equationskof motion,

3u
ot -

+ (u.grad)u - % grad p + viu, . (2.6)

divu=0, ‘ (2.7)
and take the average ( >e’ we obtain the following equations

for the large-scale eddies:
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+ (U.grad)u

e

1 3 . |
- 5 grad B + (vAu - <(ﬁ.grad)ﬁ>é],(2.8)

div d = 0. (2.9)

The terms in’the braces on the right—hand side of eq. (2.8)
represent the viscous dissipation acting‘en the’large—seale
eddies and the nonlinear dissipative effect of the small-scale
eddies. These terms correspond tokthe terms onethe righchand
eide of eq. (1.5) expressed in therevehumber spaee. Hence, if
we employ the equipartition of dissipation (1.6), theeetterms
are expressed as

val - ((G.grad)8d_ = - v, (£)d. (2.10)

As stated in §1, the eéuipa:ﬁition of diseipatioh (1.6) has a
physical basis on the dynamical equilibrium of turbulence which
is characterized by the self-similarity of statistical quanti-
ties. The equation (2.10), on therother hand, is an approximate
relationship in the sense that‘ﬁhe uniform dissipation is assumed
for the velocity itself instead of the energy spectrum which
depends only upon the magnitude‘of the velocity.

If we take the eqﬁi-dissipatien relation (2.10) as the
working hypothesis’, the equation (2.8) for the large;scale
eddies is written as N

U

N L1 Lo
T (Gd.grad)d = 5 grad P Yol A (2.11)

The equation (2.11) together with eq.(2;9) and the relation
(1.10) for yo(t), provides us with a closed system of equations
which governs the dynamics of the large—scale eddies of turbu-~
lence.. |

The equation for the turbulent’energy'contributed from the
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large~scale eddies is easily derived from eq.(2.11) as

d/1li~12 ~12 "1y~ 12 P\ ~
a2 (31812 = - v,(181%) - oraa[(Fla1? + Ea), (212
where use has been made of eq.(2.9). For homogeneous turbulence,

the last term on the right-hand side wvanishes, so thét eq.(2.12)
is reduced to
S {FlE12Y + 2y (Flal?) = 0. (2.13)

In view of the fact that <]ﬁ}2/2>;: <|u12/2:>==€, this equation
is identical with the exact relation (1.9). This confirms the
consistency of the approximation (2.10) with respect to the
energetics of turbulence.

It may be interesting to note that the equation (2,11) and
(2.9) for the large-scale eddies can be written in an inviscid

form. Under the transformation,

t
a(x,t) = exp[—J Yo(t')dt']ﬁ(x,s),
R t (2.14)
p(x,t) = exp[— ZJ yo(t')dt'Jﬁ(x,s),
and ,
t t!
s = J exp[- J Yo(t")dt"]dt', (2.15)
egs. (2.11) and (2.9) are written as
80 4+ (0.grad)t = - % grad B, (2.16)
div U0 = 0, o (2.17)

respectively, which are nbthing but the Euler equations of
motion for aﬁ‘inviscid fluid. An obvious consequence of this
result is that the evolution of the large-scale eddies in tur-
bulent'flbws is slowed dbwn‘compared with that of the éorre—

sponding motion in an inviscid fluid since always s < t.
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Such a slowing-down effect of the large-scale eddies in turbu-
lent flows may give a physical account for apparently very slow
evolution of various huge-scale vortex structures which are

observed in nature.

3. Large-scale eddies in turbulent shear flows

The treatment of the large-scale eddieé described in §2
can be extended to those in turbulent shear flows. The fluid
velocity is now decomposed into the mean velocity u(x,t) and
the two turbulent wvelocities U(x,t) and 4(x,t) introduced in

§2,

u(x,t) + t(x,t) + 4(x,t), (3.1)
Cutx,£)), {dx,0)) = (4, =0, (3.2)

where the brackets denote the statistical average.

u(x,t)

]

u(x,t)

The equations for the mean motion are derived by substitu-~-
ting the decomposition (3.1) and the corresponding decomposition
of the pressure,

p(x,t) = p(x,t) + B(x,t) + B(x,t), (3.3)
into egs. (2.6) and (2.7) as follows:

E
ot

- % grad p + vAU - <(ﬁ.grad)ﬁ>
- ((t.grad)a), (3.4)

+ (u.grad)u

which are usually called as the Reynolds equations.

The equations for the turbulent velocities are obtained by
subtracting egs. (3.4) and (3.5) from the corresponding equations
(2.6) and (2.7), Taking the average ( >é of the resultant equ-

ations, we obtain the following equations:



225

g% + (W.grad)d + (G.grad)u + (d.grad)d - ((ﬁ.grad)ﬁ)
- - %‘grad B+ |vad - ((G.grad)a)  + ((ﬁ-grad)ﬁ)],
’ : (3.6)
div § = 0. (3.7)

According to the same spirit as thebapproximation (2.10),
the terms in the braces on the right—hand‘side of eq.(3.6) is
approximated‘as

VAl - <‘;(ﬁ.grad)ﬁ>e + <(ﬁ.grad)ﬁ> = - yoﬁ, | (3.8)

where Yo is the turbulent dissipation rate defined by (1.10),
but now it is generally dependent on the coordinates x. Under
the approximation (3.8), the equation (3.6) is written as

%% + (G.grad)d + (d.grad)T + (H.grad)d - ((d.grad)d)

= - % grad p - Yoﬁ. . ' ' (3.9)

Thus, . the equations (3.4),‘(3;5), (3.9) and (3.7)’provide us
with a closed set of equations for the mean velocity u(x,t) and
the large-scale turbulent velocity u(x,t), providea that the
last term on the right-hand side of eq. (3.4) is ignored‘as a
minor-order term.

The equation for the turbulent energy is derived from eq.

(3.9) as follows:

‘ ou,
d/1,.;2 ~ 1 1,.,2 i /n
a{(ﬁllll > + (u.grad)<§-|u[ > + K. uiuj

, J
S1li~12 1.2  Pla
= -2y (315 %) + grad<[§|u1 + B u>
| o
= -g + grad<[%[u|2 + %Ju>, (3.10)

where use has been made of eq.(1.10). The second and the third
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terms on the left-hand side of eq. (3.10) are usually called as
the advection and the production terms respectively, while the
gradient terms on the right-hand side are-called as the diffu-
sion terms. Comparison of eq. (3.10) with the exact equation

derived from eq. (3.6) shows that the diffusion of the work done
by the viscous dissipation is neglected in the present approxi—
mation compared with the diffusion due to the Reynolds stress

and the pressure.

4. Concluding remarks

Recent progress in the flow visualization and the simulation
of the flow field as a whole has made it possible to detect vari-
ous ordered motions and determine their coherent structure hidden
in apparently random fluctuations. Now it is generally recognized
that turbulent flows involve large-scale eddies which have more
or less coherent spatial structure. In turbulent flows bounded
'by solid walls, these qoherent eddies are rather short-lived and
soon transformed into random clusters of smaller eddies. 1In un-
bounded flows, on the other hand, they are more persistent and
remain as clearly observable vortex motions such as the vortex
row in a free shear layer and the Kirmén vortex streets behind
an obstacle in undoubtedly fully-developed turbulent flows.

The statistical methods which are powerful in dealing with the
statistical equilibrium state of small-scale components of tur-
bulence are not adequate for describing such ordered motions,
and any method of deterministic nature seems to be necessary

for this purpose. The present formulation of the dynamics of

- 10 -
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the large-scale eddies in turbulent flows is hoped to be helpful

for such a kind of works.
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