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ABSTRUCT
A nearly integrable Hamiltonian system with many degrees of
freedom is studied. Espeéially, a numerical method extracting
soliton components is presented. As an application, escape time
in action space is calculated and its relation to system size is

investigated.

§1. INTRODUCTION

Recent researches in dynamical systems has made a remarkable
progress, especially in low-dimensional systems and dissipative

1)

systems. However, Hamiltonian systems with many degrees of
freedom have not been studied extensively. In this paper we

present a numerical study on a hearly integrable mapping, and
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discuss its behavior in action variable épace.

Hamiltonian systems with many degrees of freedom concern two
problems. First, as models in field theory, the stability of
solutions should be discussed (i.e., KAM theory in infinitely
many degrees of freedom). Second,‘as a foundation of classical
statistical mechanics, measurement of Arnol'd diffusion and
establishment of ergodicity are of great interest.

In both problems, it is useful to start with nearly
integrable systems. Here we list three‘types of such systems
with many degrees of freedom. Hereafter the particle number N

will be often referred as the total system size.

"1) weakly coupled local oscillators;

Hamiltonian of the system is, for example,z)

N
H= I lI? + €Ecos( 6.- (1.1)
-1 273 J

ej+1) N

Systems of this type have a property that the connectance among

variables is independent of N.

2) weakly perturbed linear chain;

Hamiltonian of the system is, for example,

N 1 2
H = i 7 PL + 35 (x.-X. 1) + e(xj—x. ) c{1.2)

J I+ j+1
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As the integrable part is linear with respect to action variable,
only one frequency can destroy all the solutions of unperturbed

~ system.

3) weakly perturbed nonlinear integrable systems;

Hamiltonian of the system is, for example,

P§ + exp( Qj- Q

N

j+1

o2
]
[L e B4

) + ercos(wt-pj) .(1.3)
1 ,

Toda map, which will be discussed in this paper, is one of these
systems. Owing to the development of séliton theory, systems of
this type can'be cast into action-angle systems3)( of unperturbed
systems ).

We introduce "Toda map" in §2. Then we show how to
calculate action variables in §3. In §4 , we will see how
perturbed mapping behaves in the space of action variables. Thé
notion of escape time is introduced in §5, where numerical result
is given. The last section is devoted to summary and

discussion.

§2. TODA MAP
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Toda map4) , discrete time equation. of Toda lattice, is a
mapping defined on (1+1)-dimensional discrete spacetime. It
reads as

exp( Q™. o™ - exp( Q" - o™
n n n

n
ooy

m
. ) , (2.1)

= 6%( exp( Q" ,- 0 ")

- exp( Q- ©Q
where 6 is a real constant which corresponds to temporal spacing,
and Qg is a real valued field with integer indices m (time) and n
(space).

Introducing the momentum Pg as

m - m m-1
P =lexplQ -0Q ) -11/8 ' (2.2)
we obtain
m+1 m . .m m m m
P = P +8(exp( Q _4-0Q) -exp( Q-0Q ,)), (2.3)

which , in the limit & -+ 0, reduces to the equation of motion of

the Toda lattice,6)
dPn
g;— = exp( Q _4-Q, ) -exp( Q - Q ) . (2.4)

Toda map (2.2) is a Hamiltonian system ; that is, its time

evolution is a canonical transformation



49

ap™

aQC . (2.5)
Moreover, it is a completely integrable system. Toda map with N
degerees of freedom possesses N independent conserved quantities.

We will see it in a later section.

Similarly to the (continuous-time) Toda lattice, Toda map has

some special solutions. In the infinite chain, 1-soliton

4)

solution of Toda map reads as

o 1 + expl 2[ w(m+1) - p(n-1) 1}
exp( Q ) = r (2.7)
1 + exp{ 2[ wm - pn 11}

with dispersion relation

sinh( w ) = % sinh( p )¢ . (2.8)

And in the case of periodic chain with period N , we have6)

o 90{ glw(m+1) - p(n-1) 1 '}
exp( Q ) = : , (2.9)
60{ glwm - pn ] }
with '
91( g w) =+ 91( gp)S , (2.10)
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and
g = 1/pN ' . (2.11)

See Appendix A for detail.

§3. FLOQUET THEORY

We consider the system with periodic boundary condition. In
order to derive conserved quantities and calculate action
variables, we construct a one parameter function Am(z), which is
called " Floquet discriminant".

First we consider the following recursion relation for

sequence wn:
a® Y® o+ o™ o+ ™ T L = . (3.1)

where the coefficients a, b, and parameter U are defined as

m - m m
a, = expl ( Q, - Qn+1)/2 ] , (3.2a)
m m m
Py - [ expl Qn- Qpeq? *+ 1 16
p" = , (3.2b)
n 1/2

[ (1+82) (1462°1)]



51

z + 1/z2
u = -

, . (3.2¢)
[ (1+62) (1462~ 1)11/2

and the parameter z varies in the following regions;‘

-1 ¢ 2z <-d, 0 <z < 1

14

and z = exp( i¢ ) , 0¢ ¢< 2w, >(3.3)

As eqg.(3.1) is a_linear recursion relation among three W's;
the space of its solution is two dimensional. Hence, given two
independent solutions of-eq. (3.1) , say ¢ and ¢, then any
solution of eq.(3.1) can be expressed as linear combination of ¢
and ¢ . Therefore , for a periodic lattice of N particles,
there exist constants o, B, &, B (which mayvdepend on "time" m

,but does not on "space" n .) such that

Unep(z) = aM(z)ul(z) + 8T(2)0](z) ., (3.4a)
Ve (z) = BUzl(z) + @(2)¥](z) . (3.4Db)

Or, in a matrix form,

wNT1(z) = W1Tz)m T2) , (3.5)

where
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U ED) V7 (z)
Wﬁ(z) = , (3.6a)
m =M
wn+1(z) ¢n+1(Z)
\ J
and
a™(z) B™(z)
M (z) = ) (3.6Db)
8™ (z) a"(z)

Flogquet discriminant A(z) is defined as
A™(z) = trace( M™(z) ) . (3.7)

A remarkable feature of A(z) 1is that it is independent of

"time" m under pure Toda map ;
Am+1(z) = Am(z) for all z , (3.8)
which can easily be shown by a straightforward calculation.

The space-time profile and Floguet spectrum of the above

solution are shown in Fig.1.

Expanding A(z) as
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(left),

Temporal evolution of real space configuration

and zeros of Floquet discriminant

(right). Initial condition is given by 1-soliton

solution

(2.7).

Note the dependence of z on p.
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AM(z) = £ c. A . A= z+l/z , (3.9)

we see that all Cés are constant of motion , i.e., functions of
action variables only. 7

From the Floquet discriminant A, we can calculate action
variables. When |8] << 1 and N >> 1, the action variables of

solitons are approximately written as3)

Ij = zj+ 1/zj . 7 , (3.10)

where zjis a zero of A (z) ;

A‘(zj) =0 o . (3.11)
Note that, because of eq.(3.8), zj‘ itself is invariant fo; any
§, N . »
Making use of these procedures hUmerically, we can poject

perturbed system on "soliton basis".’)

§4. GENERAL FEATURES OF THE PERTURBED SYSTEM

We shall consider the following map :

m+1 m
n n

+8( exp( Q7 ,- 07 ) - exp( Qo- QO ;)

+ acos( wm - gn) ) . (4.1)

-10-
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In the limit 6+ 0 , this system can be derived from Hamiltonian

H = H0+ aH1 ‘ , (4.2a)
H. = Zexp( O -0 .) +1p

0= d S*PLRp T Mpn 2°n , (4.2Db)
H, = —g Q cos( wm - gn) | . (4.2¢c)

An example of time evolution of eq.('4.1 ) is shown in Fig.2,
with a=0.1( rather strong perturbation) , where real space
profile and zeros of Floquet discriminant ( = soliton parameters
) are shown. We can see many solitons emerging from the edge z
= + 1. This phenomenon can be interpreted as'follows. In most
soliton systems, actidn variables fall into two classes; one
corresponds to éxtended modes ( which, in infinite chain, form

continuous spectrum on parameter z ) and the other corresponds to

localized modes ( which, in infinite chain, form discrete

spectrum ). We take the case of Toda lattice;
g dPn dQn = dIi(z)"db(z) + § de dej,(4.3a)
z = exp(id) , , (4.3b)
0 < b < 2m . -« (4.3c)

The time derivative of angle variables vanishes at z = %1, where

-11-
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Fig.2 Temporal‘evolution of real space configuration

(above) and zeros of A (below) for the map (4.1),

with a = 0.1, d = 0.05, N = 50.
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the two modes ( extended ones and localised ones ) coincide.

d_ S _ -1

dt ej : zj Zj p (4.4a)
d . .

Sr 8(exp(ig)) = 2sin(¢) ,  (4.4b)
d | = g—e(ex (io )], . = 0 .(4.4c)
acdy lz=+1 T at p 6=0,T R

Thus, the points z=* 1 are structurally fragile against
perturbation. We point out that emergence and growth of
solitons at the boundary of two modes are the most important

feature in perturbed soliton systems.
§5. ESCAPE TIME IN ACTION SPACE

Recently, Hamiltonian systems with N=1 are extensively
studied.1) Bouﬁdedness of their motion is completely governed
by the existence of KAM torus, which devides the 2-dimensional
phasé space into two disconnectéd regions. So it is important
to examine'wheﬁher KAM torus exist or not, and several criterions

‘have been reported.

-13-
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On the other hand, for N > 1, all the regions except for
invariant sets are connected evenkif KAM torus exists, because
an N-dimensional torus cannot devide the whole 2N ( or 2N-1, if
energy is conserved ) phase space into two regions. Thus, a
general Hamiltonian system with many degrees of freedom is
expected to voyage over the whole phase space, and finally attain
ergodicity. This phenomenon is called "Arnol'd diffusion".s)’g)

It is known that the speed of Arnol'd diffusion is quite
slow102 In order to accomplish thrmal equilibrium, the Speed
should become faster as the degree of freedom increases.
Otherwise we would not observe a thermal equilibrium state, as.
the total volume of phase space gets exponentially large with the
increase of N. |

In order to confirm that most macroscopic Hamiltonian systems
establish thermal equilibrium within a realistic time ( which is
much shorter than Poincare's recurrance time ), we measure the
velocity in the action space, or equivalently, "escape time " in

action space.

We calculate the escape time (defined later) for the mapping

m+1 m m m m m
P, =P  +8(exp(Q ,-Q) -exp(Q -0 ) )
8a cos(wm - pn) R 1 ¢n g Nf '
+
0 , otherwise

(5.1)

where Nf is the number of particles which are subject to external

-14-
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force applied, and N is the total system size. Our interest
lies in the N-dependence of escape time T . We compare T's of
various N's with Nf fixed so that we do not change the external
effect. ( Another possibility is to vary Nf proprotional to N
.)

Escape time is defined as the minimal time steps that a
system get away a fixed amount of distance from the initial point
in action space. In order to make calculation easier, we take
only soliton components among‘all action variables. This
definition is legitimated because main contribution to the
distance is the excitation of solitons from radiations (as
mentined in §4 ) , and action variables of radiation modes are
usually small ( At most 1/N, compared to the action variables of

soliton modes ).

First we define

1]

d (m) (numbers of solitons with negative velocities),

T min(m) such .that d(m) = 2 . (5.2)

Here we take into account only the solitons with negative
velocities because the external force supplies positive momentum,
and we would like to select diffusive component in the behavior
of our system.

The result for N=40 to N=320, N_. =8, a=0.1LO.0125 is shown in

f

Fig.3, where power-law dependence of escape time T on N

-15-
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Here T is defined

for the map (5.1).

10

min (m) such that d (m) >

T =

-16-
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T A %N ., an~no0.6 (5.3)

is explicitly shown.

But, if we define
_ #
d,(m) =E | 1. - 1 | , (5.4)

where # is the number of all solitons at step m , then a
numerical data shows that the escape time increases as N gets

larger.

§6. SUMMARY AND DISCUSSION

We presented a method to study perturbed soliton systems

"soliton basis". As an application, we obtained a

using a
numerical result that , in a case, the escape time decreases as a
power of the total system size. This may be a reflection of the
fact that as tﬁe system size gets large, the resonance structure
becomes finer. If so, some renormalization‘method can be
developed. But the result is not yet definitive , and further
study is necessary. |

Recently, similar power-law behavior has been observed‘in the

11)

coupled standard map. Defining the distance as

‘d(m) = max | I" - I , (6.1)

-17-
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the escape time varies as
T v 1/V/N . (6.2)

This can be interpreted as a diffusion of N independent
variables.

Although we presented only numerical examples, the projection
method may be applied to the analysis of experimental data.

Some questions remain unsolved. Beside "escape time", there
is another interesting quantity, "thermalization time'". It is
defined as the time that a system establishes thermal
equilibrium. We should find a relation between these two
guantities. It is an interesting conjecture that glassy systems
may be characterised as systems with infinite thermalization
time.

For a long time since their discovery, solitons have
attracted ﬁuch attention because of their extreme stability.
However, perturbed soliton systems exihibit more rich behavior
such as creation and énnihilation of solitons. The projection
method on soliton basis, described in this paper, will serve as a
useful method in analysing perturbed soliton systems, thus
contributing to the study of nonlinear systems with infinite

degrees of freedom.
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APPENDIX A. PERIODIC 1-SOLITON SOLUTION

In the equalities (2.9) and (2.10), 60 and 9, are Jacobi's

elliptic functions, which are defined as

eo(u) = 7%—— ﬁ__gxp{ - %[ u-(n+ %) 1 2} ’
= (A.1)
1 . 1, 42
8y(w) = 75— 2 (=1)" expl - I u-(n+ 3) 17 .
n=- ‘ (A.2)
The function 66 has a periodicity
60(u+1) = eo(u) ’ (A.3)

so the constant g is determined as eq.{2.11).

-19-
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