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SPATIO-TEMPORAL PATTERNS OF A PLASTIC NETWORK SYSTEM
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ABSTRACT

Spatio-temporal patterns of two-dimensional plastic networks
have been studied numerically. Each constituent element
evolves following a threshold dynamics and the interactions
between elements are temporally changed according to the
current states of elements, Such. a network system is highly
adaptive and thus it is expected to be useful for a model to
describe central nervous systems. The evolution of the
system from disordered states yields cyclic motions
spatially separated. These phenomena may give an example of
temporal order.

1. INTRODUCTION

Non-equiliblium statistical physics has made a great progress
and fields covered by it have been spreading very rapidly up to living
systems.

Neural networks are quite interesting systems to be studied from
a viewpoint of non—equilibriumkstatistical physics., In the
traditional physics, interactions are assumed to be time-independent.
In order to study cooperative phenomena of living systems, it is

"

essential to introduce " time-dependent " interactions among elements
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in living systems, as was emphasized by one of the present authors in
a specific model.l) Such time-dependent interactions may be called to
be "plastic". |

In the present paper, we introduce a typical " plastic cellular
automata(CA) " as a model of neural systemsjﬁ Usually, in modeling
central nervous systems (CNS), information put into the relevant
system is symbolized using spatio-temporal patterns of neural firing.
That is, spatial locations of neurons in active states and temporal
behaviors of neurons (firing rate of neurons ) would play a role of
carriers of information in the system., However, there have been
reported very few studies concerning its firing spatial patterns and
most of previous works have been performed on its statistical
properties (such as the number of firing neuronsLS)’A)
We study here especially on its dynamical patterns. A real CNS

5) constantly tuned by

is characterized by its plastic structure
external and internal signals. The purpose of the present paper is to
study such a network consisting of modifiable wires(synapses) and
elements(neurons). Such a plastic structure is a necessary factor for
the system to possess an adaptability to its surroundingsf»

To clarify and embody the word "plastic", some basic terms are
introduced in Section 2, In Section 3, simulations of a plastic
network are presented. In Section 4 and Section 5, we analyze the
mechanism which causes a cyclic motion, We report here several typical

spatial patterns which give a long cyclic mode mostly independent of

network parameters.

‘%) Submitted to Prog. Theor. Phys.(Japan)
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2. BASIC MODELING OF NEURAL NETWORK

States of Neural Network .* A central nervous system (CNS) is

a network of interconnected neurons. Connections betweéen neurons are
called "synapses", and neurons are interacting with .each other by
sending signals in electrical and chemical forms through these
synapses.

Several assumptions have been proposed for constructing models
for CNS,2)+0)»7) "A1l or none principle" is the first assumption.
The principle is as follows: at é given time t, each neﬂron is either
in a firing state or a non-firing state and no intermediate state
exists., A "firing sﬁate" is an active state in which a neuron can
transmit signals to coupled neurons. Analogously to the Ising spiﬁ
system, we assign to each neuron (at time t) following two-valued
state-variables | |

] ( firing state )

SICU - - (2.1)

( non-firing state )

A signal is transmitted from "j-th neuron" to "i-th neuron" in
forms of electrical pulses and chemical substances through synaptic

connections which are expressed as
L .CS5 1)
%J;«c; Sa‘ /2 (2.2)

in our models where J-@j represents the strength of coupling. J

i can

i€j
be either positive or negative corresponding to excitatory or
inhibitory signal, respectively. An excitatory signal is poéitively

integrated and thus works as a factor. to fire the neuron which



68

receives it, whereas an inhibitory signal has an opposite role.
State of a network at time t is described by two qualitatively

different types of variables as below:

P =( g«(’&; Sﬁ:})- o SNLt>> (2.3)

W= ( T0,T 0, -, T &) @9

The first one is binary sequences of neural states and the
second one is the set of strength of synépses.

In dealing with CNS as a deterministic dynamical system of a
discrete time, a relevant mapping from éié(t) and'ﬂlf(t)into€i§(t+l)
and'iET(t+1), respectiveiy, is introduced. This is one of the finest
form to describe an evolutional way of the network. Hefeafter we
restrict ourselves to a discrete time (t-?n) and discrete space
dynamics.

Here we introduce the following two further assumptions peculiar
to our model, We neglect here which signal is positive or negative
and only treat its integrated value which determines the state of
relevant neuron at the succeeding time- step. If the integrated value
exceeds the threshold, a neuron which receives signal fires (transmit
the signal to coupled neurons). Otherwise, it is eliminated,

For the simplicity, the threshold value H, is taken to be
proportional to its synaptic strength,

i) J

=J J only depends on site x.

X ! X4y
ii) H=V-J

xX€y
x 3 the threshold value is proportional to J,.
By these assumptions, synapses become site-random fields and

(2.4) is reduced to (2.5) as the next page:

4
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@(n) <J_Cn) I nd, " (n)) (2.5)

It should be noted that the asymmetrical condition (Jy % Jy )

is still kept in (2.5).

Dynamics of States Each firing decision of a neuron is

determined by a threshold mechanism, These neurons are able to change
their states synchronously, spontaneously, or in other ways. We
express these "scanning" methods by introducing the following

"scanning operator" T;(i=1,2,..,n)where T; operates on ith site:

S)CCH.—M)?’ECSX‘CMD (2.6)

Generally, Tx's are non-commuting operators( Tszqq? 9—? T2T1 3‘; ).

More explicitly, T, in (2.6) is defined as follows:

z S(\m >V S (n+1)= §gn T(")(z N
otherw1se $ (n+1)= Sgn (n))

with

(2.8)

1 (xy0)
N(xX)=
Sg ( -1 (x£0)

- Where m=n+1 if Ty operates before Ty and m=n otherwise. The symbol}Z
denotes the summation over all neurons coupled to x and V is a
threshold value at the site x.

By such a mean-field-assumption, a neuron who receives signals
from coupled neurons will follow the induced mean—fieldu{sgn(JxOﬂ)},

if the number of coupled neurons in an active state exceeds the

5
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threshold value V.

Typical three scanning methods are listed below:

TYPE 1 (Synchronized way); TY operate simultaneously on all the sites,
TYPE 2 (Spontaneous way);'TTjTj=TNT2T5T7T1T23..... etc

Operating orders are chosen randomly,
TYPE 3 (Regular way); TTjTj=TNTN-1TN—2""T2T1

Ty operate in prder from 1st site to Nth site.

A mapping of network state 43? 00, namely an evolutional way of
distribution form of synapses, should be carefully determined. One of
the most fundamental forms comes from Hebb's hypothesis.lo) His
original idea of the hypothesis is that the coupling coefficient
Jxé-y(n+1) between two neurons (x and y) is increased when Sx(n+1)=1
and Sy(n)=1.

Here the Hebb hypothesis is modified and is extended to a more
symmetrical form. That is, if Sx(nf§;$;0@=1 then Jx(n) is increased
and, it is otherwise decreased. A momentary pre-postsynaptic
correlation (Sx(n)zz Sy(n)) determines the tuning mechanism of the
strength of synapses iﬁ a synchronous scanning type. By using the

scanning method defined previously, J,(n) is mapped into J (n+l) as

follows:

_j;(nM) = Tx/ J .y (2.9)

For the numerical calculation, the following functional form

is used in the present paper. This is a natural extension of so-

called Cooper—construction:ll)



71

T)Z j;c(”) =F (:)_XCM)-\— Gr ({§}> (2.10)
FH=01-v)T

3

GUEH =S -G ,)

(2.11)
with some constants 7§ , O(,! and O(’)_’
17 Sl S
- — nd (n
where <SP S{) N X < " Y >
( Average value of a correlation at time n)

3. SIMULATIONS

Attractors A neural network has its neurons in a rigid

spatial site. Indeed, in a cerebral cortex of a mammalian, neurons
are not randomly distributed but they organize a regular network
structure.5L7) We use here a squa?e.lattice network of 100 sites with
a periodic boundary condition in which each neuron is assigned inka
two-dimensional plane and couples to its four nearest neighbors., In
this square lattice network, a threshold value V=3 would be a value
favorable to causing a cytlic motion as is shown in the next
subsection.

The asymptotic behavior of this network cén be classified
roughly into three categories from its spatio-temporal patterns,
essentially in the same way as Wolfram classified in cellular
automata:z)'lz)'IB)(See Fig.l)

1) the same firing pattern is repeated for4a11 time steps,
2) finite numbers( 2;2) of Q§(n) and ﬂI?(n) are repeated,

i) Spatially localized periodic structure corresponding

7
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1) Fixed point like attractor; No eligible neurons exist.
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2) i)Spatially localized oscillating areas coexist (K=84).
(Right figure)
ii)Catastrophic structure; Amost all the oscillating areas are
connected(K=2)., (Left figure)
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3) Neighboring epileptic or dead neurons of eligible one (left figure)

become eligible after 1000 time steps (right figure),
Fig.l Phenomenological classification of network behaviors in an
attractor region, except for 3) which is assumed to be in a long
transient region. Each site with eligible, epileptic and dead neurons
is represented by black point, white point and blanks, respectively.
The temporal evolution of these networks are defined by
Eqs.(2.6),(2.9) and (2.10). A simulation is performed on a square
lattice of 100 sites. The initial strength of synapse at each site is
taken to be random, namely, takes an independent value from[—l,l]
with equal probability, The initial state of a neuron at each site
is taken as Sx(0)=—sgn(Jx(O)) (e.g. values 1 or ~1 independently).
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to fixed points,
ii) Catastrophic structure... periodic but not spatially
locarized,
3) A localized aperiodic structure survives, or such an aperiodic
region intrudes into other neighboring regions.

It should be noted that the recurrence of the same firing
patterns does not necessarily mean no more that the system enters into
cyclic modes for a plastic network.

We identify the occurrence of a cyclic mode K when the next
conditions are satisfied: |

S, (n+k)- S, (M=0

" | Tx(n+k) =T, m| <8 (~0.001) oD

for all sites x

Here the step numbef K is a minimal length of the recurrence of
the same state @ (n) and ly(n). We identify Kwith a
cyclic mode of attractor and will be called either a reducible or
irreducible cycle. A reducible cycle is defined as a superposition of
subcycles (K;,Ky,Kg,...). In such a case, K=L.C.M. of (K;,K,K3). On
the other hand, an irreducible cycle can not be decomposed into
subcycles.(See the next section.)
Each neuron is also categorized into the following three types
according to its behaviors as Clark et al, 5)discussed in their paper:
1) dead neuron ....neuron which never fires,
k2) epileptic neuron ....neuron which always fires, (shows

cyclic behavior, but its cyclic mode is the same as in the unit
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of discrete time steps)
3) eligible neuron ....neuron which is not locked into either

extreme behavior,

Firing Loops The purpose of this simulation is to find the

linked stable firing loop of eligible neurons for varying the relevant
parameters and initial conditions. A definition of loop is that each
eligible neuron couples to at least one eligible neuron in its nearest
neighbors,

It is widely believed that there are two different kinds of
mechanism that correspond to a short term and a long term memory.6)"9)
The first idea is to relate those loops to memory carriers, It is a
natural and fascinating idea to imagine some relations between
"associative memories" or "thought" and "loop" or "loop-loop
coupling”.

A computer simulation has shown the existence of firing loops
but with a fairy different mechanism in comparison with a static
network system (a system of fixed values of synapses). In most cases,
the attained attractors shows a cyclic motion (namely class 2 behavior
by the previous definition). This turns that a cyclic mode k of the
network is L.C.M. of each mode of these localized periodic structures.

The total cyclic mode K will be decomposed into
1) QD (simple subcycles)
and
2) (simple subcycles) Qg)(rich subcycles) (See Table.I).
where the éymbolcgg means a direct product.

A simple subcycle is always a simple irreducible one which only

[0



75

one eligible neuron participates in the cyclic mode.(This is not a
loop by definition)., A spatially localized pattern of a simple
subcycle is an eligible neuron surrounded by three epileptic neurons

and one dead one. In such a case, a possible cyclic mode of simple

Table.I Examples of cyclic modes. Each cycle is decomposed into
simple and rich subcycles. Upper suffix denotes the number of the
same pattern and mode. Whereas lower one denotes the number of
eligible neuron constructing the cyclic motion. Spatial patterns of
rich subcycles are also depicted.

Scanning type 3 (Sequential)

Number of
Period Decomposition into subcycles eligible
neurons
12 , 6% x 47 x 19 7

33

T T
18 9, ¢ ) x 9}
66 ssé( r'I ) x 6‘1l x 139 9

84 12

288 32

Scanning type ! (Parallel)

12 121¢ T & s‘f x 129 9
66 661 "i ) x 67 x 129 1
462 771 ¢ ! o« 730 T )« 6> x 131 13

11
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subcycle is 2, 4 and 6.

On the other hand, the mode of K which is larger than 12
(=L.C.M. of (6,4,2)) should contain rich subcycles. Rich subcycles

which contain more than two eligible neurons are composed of minimum
firing loops by definition.

For random initial conditions, well observed spatially localized
patterns are listed up in Fig 2, Although the cyclic mode they carry

depends on the network parameters ( Z{ ,(XQ,CYZ), and aiso on the

SRS SIS

1) Geometrical patterns of most probable rich sub—cycles.

S
SR

2) Rare but observed patternS,

g

3) Patterns generated from a special initial state.

Fig.2 The total cyclic mode K will be decomposed into p?ogucts of
subcycles. A rich subcycle is defined as a subcycle containing more
than two eligible neurons. Examples of spatial patterns of these rich
subcycles are listed as in 1) ~~ 3).

[
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location of epileptic and dead neurons surrounding the eligible
neurons, these geometrical patterns are scanning-type independent,

As it is depicted in figures 2 and 3, these rich subcycles are .
"twisted strings" which consist of nearly one~dimensional coupled
eligible neurons. In the case of one-dimensionally connected case
(e.g. each neuron in rich subcycles has exactly two coupled eligible
neurons except the edging neuron of a string), we can assign the
numbers from one end of a string to the other.

Such rich subcycles are able to be compared with one-dimensional
CA by writing a spatio-temporal pattern. Although some patterns are

similar to that of one-dimensional cellular automata (1DCA)12L13),

A B

12345 1234

1 HK 1 KK

2 * 2 HotoK . o o o o

3 Hok 3 HoKOK

4 * 4 HKK o ® ©

5 HK 5 XK

6 * . 6 K Q Q o o

; : ;’ kK o o e 0 e e 0 o
* %

9 KK 9 ok ® o o} o

10 Aok 10 A0k

11 Aok 11 Rk o e ° °

12 HoKK 12 KK o o BO 1

13 oK 13 *K

14 * 14 Aok 4 20

15 * 15 *oK ‘ﬁ\ 21 5

16 % 18 KK o ¢ o e o &3

17 %K 17 X K

18 * 18 oK [¢] 1‘—-0-—12 3 o e O o e

138 Aok 19 *K

20 * 20 KKK

21 KK 21 HHOK

22 * 22 *oK

23 3K 23 XK

Fig.,3 Space-time section of rich sub-cycles. After a network is

detected to a cyclic motion, oscillating areas are picked out and the
constituent neurons are numbered and expanded horizontally, The
configurations of successive steps are shown on successive horizontal
lines. Neurons on firing states are represented by stars, and
neurons on a non-firing state are by blanks.

13
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the mechanismsv that cause those patterns are different. In 1IDCA,
particular rules create propagating patterns, on the other hand,
spatial inhomogeneity of synaptic distribution generates such patterns
in our model,

Another important aspect of rich subcycles is that there exist

particular eligible neurons which simultaneously cooperate in more

123456789 9 . 1234567
1 HAHKAHOK
2 KK KK 1 3 5 , g owk
3 *K K Ak
4 KK K KK 4 - é g * Ok Ok X
HK AHKK KK g
g x % 7 6 aK HK
7 Sk ok 7 AAAKAK
8 [ 8 Ak KK
9 Kok Kok lg K
10 AR IR
11 * KK HK K 11 *:*:*
12 - x 12
13 x % % 13 Ak KK
14 ARAAK
14 * AKXk x 5 KK KK
15 * KoKk ok K 1 R
16 * ok ok % if"
o e e
19 x % 19 okx
20 ARAAKANK 20 K
21 AK K K KK 21 HANAK
22 * KoK KK K 22 *:*:*
23 HK KRR gi
K’k x KK
gg x % % 25 * K K K
26 — 26 KK
27 AR Ak 27 oK ::
28 HokK AOKK 28 ot
59 x x 29 K HOK
30 *oK K KK g? Honok
31 Ao KK AN
32 qok K KK 32 * Ok K X
33 x x 33 .
34 Aok AOK 34 ok Aok
35 © ek ok 35 AAAAOK
36 Cwx wk 36 oK HOK
Fig.4 Space~time sections of obtained large local cyclic motion

are depicted. The configurations of succesive steps are shown on
succesive horizontal lines. Neurons on a firing state are represented
by stars, and neurons on non-firing states are by blanks., It shows
that processing signals (firing state) propagate symmetrically
relative to the central neuron.

14-
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than two subcycles. Some of obtained large subcycles can be taken as
linking of smaller size of rich subcycles.

Examples of such large subcycles containing 9 and 7 eligible
neurons are depicted in Fig 4, It has a symmetrical form and the
processing signals( sites of neurons in a firing state) propagate
symmetrically to both the ends of a string. Namely, a central neuron
in these subcycles links two rich subcycles( I—L Yand( ’_i ),
respectively. '

Unfortunately, these large subcycles are rather rare for systems
starting from a random initial state and can be obtained under settihg

special initial conditions.

4, MECHANISM OF SUBCYCLES
Mechanism which produces subcycles are owing to the dynamical
behavior of J,. Basically, the mechanism which causes a cyclic motion
(for a threshold value V =3) is that if one non-active neuron(SX) is
surrounded by three epileptic and one dead neurons, then J, should
gradua;ly change its value towards firing neuron(Sx), Starting with a
randomly distributed initial state, the average value of correlation
<Squ>3 (the third term in Jx)is negligible in the attractor region and
is approximated as a small constant value (E: L
A maximum period of a simple subcycle is K=6 ( Namely, S=1 for 3
steps, S=-~1 for the next three steps, it explains period K=6).(See the
proof in the full paper.) On the contrary, the rich subcycles are
brought about, when the surrounding neurons change their states. 1In
such a case, the situation is not simple enough to analyze its

mechanism,
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The following five different mappings are possible :
TyCat)=(1=¥) Ty + 4 G~ & (4.1)

with C = -4,-2,0,2,4, These correspond to I, Iy, I3, I, Ise - They
differ in the second term which is the summation of states of coﬁpled
neurons,) Temporal evolution of J equals to temporal ordering of
those mappings. (For example, I 2> Iy 3 Ig > I3 I ...).

These orderings are determinéd by the states of the surrounding
neurons.(e.g. the second term C) Inversely, the phase difference of a
neighboring J determines the temporal evolution of neurons.

There seems two types of long cyclic behaviors in a rich
subcycle. One is caused essentially by smallness of E: and the other
is independent of E’. For the former type, even two eligible neurons
can achieve a long periodic behavior by using two mappings in (4.1).
Mapping I3, namely C=0 is dominant, which causes long iteratioﬁ steps
to change the sign of Jxﬁﬂ. As E~ decreases, a longer period should
be attained. The latter type of motion is essentially due to the
multiple spatial connection among neurons. Mappings with C ¥ O are
dominant, and consequently J,(n) changes its sign easily . The
propagation of patterns is observed in this case.( See Fig.3-4)

Rich subcycles are unstable against the noise (anti-
deterministic f1lip of a single neural site). On the other hand,
simple subcycles are not so. This is because a rich subcyclic motion
comes from a subtle phase difference of J s between coupled neurons,

whereas simple one can oscillate by itself.
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5. DISCUSSIONS

In the present paper, we have investigated the spatio-temporal
behavior of plastic network systems in two dimensions from a
phenomenological point of view, Our first aim was to find a long and
stable loop of eligible neurons using plasticity. Cyclic behaviors
obtained are decomposed into rich and simple subcyclic motions and the
former subcycle is indeed a string of eligible neurons.(Which is
called a "loop" here.)

The attained loéps are grouped into typical localized
geometrical patterns. Each loop has its own cyclic mode according to
the spatial location of surrounding epileptic and eligible neurons.
Geometrical patterns of these 1o§ps are twisted strings and some of
themvare one-dimensionally connected. A space-time section of loop
shows a behavior qualitatively similar to the section of_pne—
diménsional CAlz). Especially, breathing patterns are worthnoting to
study., The length of one pitch of breathing motion is determined from
the phase difference of synapses participating in the motion,

In recent years, lots of works have been published on problems
of memory storaging;from the view point of spin glass models
(SG).S)’ll)’14)’15) Attractors of SG are fixed points and cyclic
behaviors are infrequently observed, however, the advantage of SG is
that spatial pattern of attractor can be expressed in terms of the
distribution of synapses. The problem is how to controle the basin
structure of these attractors. (e.g. Most of the initial states go to
"wanted attractors" and the rest of initial states go to "unwanted

attractors".)



In our model, one firing pattern does not only correspond to a
unique spatial distribution of synapses but also correspond to the to
the temporal evolution of strength of synapses. To this point, the
capacity of memory storaging should be much larger than that pf\SG.
However, an algorithm how to construct the initial distribution to get

the "wanted cyclic attractor" is still missing.
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