QUASI-ANOSOV DIFFEOMORPHISMS AND PSEUDO-ORBIT TRACING PROPERTY

Kazuhiro SAKAI 都立大·理·酒井一博

Department of Mathematics Tokyo Metropolitan University Tokyo, Japan

ABSTRACT

In this note we announce the result that every quasi-Anosov diffeomorphism with pseudo-orbit tracing property must be an Anosov diffeomorphism.

Let M be a compact boundaryless C^{∞} -manifold, and let $\operatorname{Diff}(M)$ be the space of C^1 -diffeomorphisms of M endowed with the C^1 -topology. An Axiom A diffeomorphism is said to satisfy the strong $\operatorname{transversality}$ condition if for every $x \in M$, $T_x M = T_x W^S(x) + T_x W^U(x)$. For an Axiom A diffeomorphism, the strong transversality is a sufficient condition to be structurally stable (i. e. there is a neighbourhood $\mathcal{U} \subset \operatorname{Diff}(M)$ of f such that for every $g \in \mathcal{U}$, there is a homeomorphism h on M satisfying $f \circ h = h \circ g$). We say that $f \in \operatorname{Diff}(M)$ is $\operatorname{topologically}$ stable if for every $\varepsilon > 0$, there is a neighbourhood $\mathcal{U}_{\varepsilon}$ of f in the set of homeomorphisms of M with the C^0 -topology such that for every $g \in \mathcal{U}_{\varepsilon}$, there is a continuous surjection h on M satisfying $f \circ h = h \circ g$ and $d(h(x), x) < \varepsilon$ for $x \in M$ (here d denotes a metric compatible with the topology of M).

Let $g: X \to X$ be a homeomorphism of a compact metric space (X, d). A sequence of points $\{x_i\}_{i=a}^b (-\infty \le a < b \le \infty)$ in X is called δ -pseudo-orbit of g if $d(g(x_i), x_{i+1}) < \delta$ for $a \le i \le b-1$. A sequence $\{x_i\}$ is called to be ϵ -traced by $x \in X$ if $d(g^i(x), x_i) < \epsilon$ holds for $a \le i \le b$. We say that g has pseudo-orbit tracing property (abbrev. POTP) if for every $\epsilon > 0$ there is $\delta > 0$ such that every δ -pseudo-orbit of g can be ϵ -traced by some point in X. We say that g is expansive if there exists c > 0 such that $d(g^n(x), g^n(y)) \le c$ for every $n \in \mathbb{Z}$ implies x = y. Such a number c is called an expansive constant for g. For the materials of topological dynamics on compact manifolds, see Morimoto [4].

It is well known that every homeomorphism on M with expansivity and POTP is topologically stable, and that every topologically stable homeomorphism on M of dimension ≥ 2 has POTP (see [4]). Every Axiom A diffeomorphism f satisfying the strong transversality condition is topologically stable (thus every Anosov diffeomorphism is topologically stable) and so f has POTP.

We say that $f \in Diff(M)$ is $\underline{quasi-Anosov}$ if for every $0 \neq v \in TM$, the set $\{\|(Tf)^n(v)\| : n \in \mathbb{Z}\}$ is unbounded. A quasi-Anosov diffeomorphism is equivalent to an Axiom A diffeomorphism satisfying $T_xW^S(x) \cap T_xW^U(x) = \{0_x\}$ for every $x \in M$ ([3]). Obviously every Anosov diffeomorphism is quasi-Anosov and its converse is true if dim M = 2 ([3]). But it is known ([1]) that the converse is not true on a 3-dimensional manifold. Mañé proved the following

THEOREM ([3]). For $f \in Diff(M)$ the following conditions are

mutually equivalent;

- (i) f is Anosov,
- (ii) f is quasi-Anosov and satisfies the strong transversality condition,
 - (iii) f is quasi-Anosov and structurally stable.

The aim of this note is to announce the following theorem related to the above results.

 $\underline{\text{THEOREM}}$. Every quasi-Anosov diffeomorphism with POTP must be an Anosov diffeomorphism.

REFERENCES

- [1]. J. Franks and C. Robinson, A quasi-Anosov diffeomorphism that is not Anosov, Trans. Amer. Math. Soc., 203 (1976), 267-278.
- [2]. J. Lewowicz, Lyapunov functions and topological stability, J. Diff. Eqs., 38 (1980), 192-209.
- [3]. R. Mañé, Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc., 229 (1977), 351-376.
- [4]. A. Morimoto, The method of pseudo-orbit tracing property and stability, Tokyo Univ. Seminary Notes 39, 1979. (In Japanese.)