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1. Introduction. Let $K$ denote an algebraic number field of finite degree over the rational field

$Q$ . The ring of integers of $K$ is denoted by $O_{K}$ . If $A$ and $B$ are nonzero ideals of $O_{K}$ , we say

that $A$ is equivalent to $B$ , written $A\sim B$ , if there exist nonzero elements $\alpha$ and $\beta$ of $O_{K}$ such

that $(\alpha)A=(\beta)B$ . It is easy to check $that\sim is$ an equivalence relation and it is a classical result

that the number of equivalence classes is finite. The number of equivalence classes is called the

classnumber of $K$ and is denoted by $h(K)$ .
It is a result going back to Dedekind that $h(K)=1$ if and only if $O_{K}$ is a unique factorization

domain. More recently Carlitz [5] has shown that $h(K)=2$ if and only if $O_{K}$ is not a unique

factorization domain but every factorization of a nonzero, nonunit integer of $K$ contains the

same number of primes. It is thus of interest to determine those algebraic number fields $K$

having $h(K)=1$ or $h(K)=2$ . However this is an extremely difficult problem. Even if $K$ is

restricted to a certain class of fields, such as quadratic fields, the problem is still difficult.

The first results of this type were obtained by Stark [11] in 1967 who showed that there are

exactly nine imaginary quadratic fields $K=Q(\sqrt{d})$ ($d<0,$ $d$ squarefree) with classnumber 1,

namely those for which $d=-1,$ $-2,$ $-3,$ $-7,$ $-11,$ $-19,$ $-43,$ $-67$ or $-163$ . The determination of

all imaginary quadratic fields $K=Q(\sqrt{d})$ ($d<0,d$ squarefree) with $h(K)=2$ was carried out

by Baker [1] and Stark [12] in 1971. They proved that

$h(K)=2\Leftrightarrow d=-5,$ $-6,$ $-10,$ $-15,$ $-22,$ $-35,$ $-37$

$-51,$ $-52,$ $-58,$ $-91,$ $-115,$ $-123$ ,

$-187,$ $-235,$ $-267,$ $-403,$ $-427$ .
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More recently Mestre [9] has shown that $if-d$ is prime then

$h(Q( \sqrt{d}))>\frac{1}{55}\log|d|$ ,

with a similar inequality when $-d$ is composite. These inequalities allow in principle the deter-

nination of all imaginary quadratic fields $K=Q(\sqrt{d})$ ($d<0,d$ squarefree) having $h(K)\leq 100$ .

There are 16 imaginary quadratic fields with $h(K)=3$ and 54 fields with $h(K)=4$. These

results for imaginary quadratic fields contrast sharply with the case when $k=Q(\sqrt{d})$ is a real

quadratic field. It was conjectured by Gauss that there are infinitely many real quadratic fields

$K$ for which $h(K)=1$ but it is still not known whether this is true or false.

In the case of imaginary bicyclic quartic fields $K=Q(\sqrt{d}1, \sqrt{d}2)$ , Brown and Parry [3]

showed in 1974 that $h(K)=1$ if and only if $K$ belongs to a list of 47 fields. In 1977 Buell,

Williams and Williams [4] showed that $h(K)=2$ if and only if $K$ belongs to a list of 160 fields,

provided the known list of imaginary quadratic fields with classnumber 4 is complete. Since

this list is now known to be complete from the work of Mestre mentioned above, the list of 160

imaginary bicyclic quartic fields of classnumber 2 is also complete.

In the case of imaginary cyclic quartic fields $K$ , Uchida [13] showed in 1972 that if the

conductor $f$ of the field satisfies $f\geq 50,000$ then $h(K)>1$ . Later, in 1980, Setzer [10] examined

the imaginary cyclic quartic fields $K$ with $f<50,000$ and determined all those wtih $h(K)=1$ .

He found that

$h(K)=1\Leftrightarrow f=5,13,16,29,37,53,61$ .

Turning next to cyclotomic fields, Masley and Montgomery [8] in 1976 determined all cy-

clotomic fields $K=Q(e^{2\pi i/n})(n\not\equiv 2(mod 4))$ for which $h(K)=1$ . They proved that

$h(K)=1\Leftrightarrow n=3,4,5,7,8,9,11,12,13,15,16,17$,

19, 20, 21, 24, 25, 27, 28, 32, 33, 35,

36, 40, 44, 45, 48, 60, 84.

Also in 1976 Masley [7] determined the cyclotomic fields $K$ for which $2\leq h(K)\leq 10$ .

There are also results for other types of fields. I just mention that Uchida [13] has deter-

mined all those imaginary octic fields $Q(\sqrt{d}1, \sqrt{d}2, \sqrt{d}3)$ with classnumber 1. He showed that

there are just 17 such fields.
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The determination of all imaginary cyclic quartic fields of classnumber 2 does not appear

to have been dealt with in the literature. In this talk I will describe briefly the solution to the

classnumber 2 problem for these fields.

2. Cvclic quartic extensions of O.. It is shown in [6] that every cyclic quartic extension $K$

of $Q$ can be written in the form

(2.1) $K=Q(\sqrt{A(D+B\sqrt{D}))}$ ,

where

(2.2) $\{\begin{array}{l}D=B+C^{f_{2}}issquarefree,B>O,C>OAiuare(A,D)=1\end{array}$

Moreover any field of the form (2.1) satisfying (2.2) is a cyclic quartic extension of $Q$ . Further,

the representation (2.1), (2.2) is unique in the sense that if $K=Q(\sqrt{A_{1}(D_{1}+B_{1}\sqrt{D}1))}$ is

another representation of $K$ satisfying (2.2) then $A=A_{1},$ $B=B_{1},C=C_{1},$ $D=D_{1}$ .
In [6] the discriminant $d(K)$ of the field $K$ is determined in terms of $A,$ $B,C,$ $D$ . It is shown

that

(2.3) $d(K)=2^{e}A^{2}D^{3}$ ,

where

(2.4) $e=\{\begin{array}{l}8,ifD\equiv 2(mod8)’6,ifD\equiv 1(mod4),B\equiv 1(mod2)’40’ i_{fD\equiv 1(mod4),B\equiv 0(mod2),A}i^{fD\equiv 1(mod4),B\equiv 0(mod2),A}I_{B\equiv 1(mod4)}^{B\equiv 3(mod4)}\end{array}$

By the discriminant-conductor formula we have

(2.5) $d(K)=mf^{2}$ ,

where $m$ is the conductor of $k=Q(\sqrt{D})$ the unique (real) quadratic subfield of $K$ . As

(2.6) $m=\{4DD,ifD\equiv 1(mod4)ifD\equiv 2(mod8)$

we have

(2.7) $f=2^{\ell}|A|D$ ,
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where

(2.8) $\ell=\{023,i_{fD\equiv 1(mod4),B^{or}\equiv 0(m_{od2),A+B\equiv 1(mod4)}^{1(mod4),B\equiv 1(mod2)}}i_{fD\equiv 1(mod4),B\equiv^{D_{0(}\equiv_{m^{od2),A+B\equiv 3(mod4)}’}}}^{fD\equiv 2(mod8)}i$

3. Formulae for $h(- K)$ . Let $G$ denote the multiplicative group of residues coprime with $f$ so that

$G$ is isomorphic in a natural way to $Gal(Q(e^{2\pi}:/f)/Q)$ . We let $H$ denote the subgroup of $G$ ,

which is isomorphic to $Gal(Q(e^{2\pi i/f})/K)$ . By galois theory we know that $G/H$ is a cyclic group

of order 4, say

(3.1) $G/H=<\alpha H>$

In what we do the particular choice of $\alpha$ will not be important. We define a character $\chi$ on $G$

by

(3.2) X$(\alpha)=i,$ $\chi(h)=1\forall h\in H$ .

lt is easy to show that all the characters on $G$ , which are trivial on $H$ , are given by

(3.3) $\chi_{0},$ $\chi,$
$\chi^{2},$ $\chi^{3}$ ,

where $\chi^{4}=\chi_{0}$ is the trivial character on $G$ . The characters $\chi$ and $\chi^{3}=\overline{\chi}$ are both odd

primitive characters of conductor $f$ . The character $\chi^{2}$ however may not be primitive. The

primitive character $(\chi^{2})’$ induced by $\chi^{2}$ is

(3.4) $( \chi^{2})’(n)=(\frac{m}{n}),$ $n>0,$ $(n, m)=1$ ,

where $m$ is the conductor of $k=Q(\sqrt{D})$ .

For $s$ a complex variable, we set

(3.5) $L_{1}(s)=L(s, \chi)L(s,\chi^{3})$

and

(3.6) $L_{2}(s)=L(s,\chi^{2})$ .
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It follows from [6] that

$\frac{h(K)}{h(k)}=\frac{fw(K)L_{1}(1)}{4\pi^{2}}$

where $w(K)$ denotes the number of roots of unity in $K$ , that is,

(3.7) $w(K)=\{\begin{array}{l}2,iff>510,iff=5\end{array}$

Since $h(K)=1$ when $f=5$ , we may assume that $f>5$ . As $k$ is the maximal real subfield of

$K$ , the classnumber $h(k)$ divides the classnumber $h(K)$ , and the integer $h(K)/h(k)$ is called the

relative classnumber of $K$ (over k) and is denoted by $h^{*}(K)$ . Thus we have

(3.8) $h^{*}(K)= \frac{fL_{1}(1)}{2\pi^{2}}f>5$ .

From the work of Berndt [2], we know that

(3.9) $L(1, \chi)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n}=$ $\frac{\pi\sum_{0<n<f/2}\overline{\chi}(n)}{iG(\overline{\chi})(\chi(2)-2)}$

where the Gauss sum $G(\chi)$ is defined by

(3.10) $G( \chi)=\sum_{j=1}^{f}\chi(j)e^{2\pi ij/f}$ .

Since

(3.11) $G(\chi)G(\overline{\chi})=-f$,

we obtain

(3.12) $L_{1}(1)= \frac{\pi^{2}}{f(\chi(2)-2X\overline{x}(2)-2)}|\sum_{0<n<f/2}\chi(n)|^{2}$

and so

(3.13) $h^{*}(K)=p| \sum_{0<n<f/2}\chi(n)|^{2},$ $f>5$ ,

where

(3.14) $\rho=\{\frac{}{0}\frac{\frac{}{2_{1}1^{1}1}\frac{1}{\int}}{8}$ $fodd,\chi(2)=-1fodd,\chi(2)=1fodd,\chi(2)=\pm ifeven,$

.
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Defining, for $j=0,1,2,3$ ,

(3.15)
$C_{j}= \chi(n)=:^{/_{\dot{g}^{2}}}\sum_{0<\mathfrak{n}<J}1=n\in\alpha H\sum_{0<n<_{\dot{f}}t/2}1$

,

we obtain

(3.16) $h^{r}(K)=\rho\{(C_{0}-C_{2})^{2}+(C_{1}-C_{3})^{2}\}$.

4. Lower bound for $h^{*}(K1$ . By extending the ideas used in [13], and the formula (3.8), it

can be shown that

(4.1) $h^{*}(K)>2$ for $f\geq 416,000$ .

Thus in order to determine all imaginary cyclic quartic fields with $h’(K)=2$ it suffices to

consider only those having $f<416,000$ .

5. Necessarv and sufficient condition for $h^{*}r_{\vee}K1\equiv 2(\sim mod 4)$ . In searching the imaginary

cyclic quartic fields $K$ of conductor $f<416,000$ for those fields with $h^{*}(K)=2$ , it suffices to

calculate $h^{*}(K)$ only for those fields $K$ having $h^{*}(K)\equiv 2(mod 4)$ . It is shown in [6] that

$h^{*}(K)\equiv 2(mod 4)$

$\Leftrightarrow f=16p$ , where $p\equiv 3$ or 5 $(mod 8)$ ,
(5.1)

or $f=8p$, where $p\equiv 5(mod 8)$ ,

or $f=pq$ , where $(p/q)=-1$ .

Here $p$ and $q$ denote distinct odd primes. This considerably reduces the number of fields $K$ for

which $h^{*}(K)$ must be calculated.

6. Calculation of $h^{*}(K1\backslash -\cdot$ Using the formula for $h^{*}(K)$ given in (3.16) and the results of \S 2,

$h$ “ $(K)$ was calculated by the method described in [6] for all fields $K$ with $f<416,000$ and $f$ of
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the form (5.1). It was found that

$h^{*}(K)=2\Leftrightarrow K=Q(\sqrt{-(5+\sqrt{5})})$ $(f=40)$

$Q(\sqrt{-3(2+\sqrt{2})})$ $(f=48)$

$Q(\sqrt{-5(13+2\sqrt{13})})$ $(f=65)$

$Q(\sqrt{-13(5+2\sqrt{5})})$ $(f=65)$

$Q\{\sqrt{-5(2+\sqrt{2})})$ $(f=80)$

$Q(\sqrt{-(10+3\sqrt{10})})$ $(f=80)$

$Q(\sqrt{-17(5+2\sqrt{5})})$ $(f=85)$

$Q(\sqrt{-(85+6\sqrt{85})})$ $(f=85)$

$Q(\sqrt{-(13+3\sqrt{13})})$ $(f=104)$

$Q(\sqrt{-7(17+4\sqrt{17})})$ $(f=119)$

7. Solution of classnumber 2 problem. We have

$h(K)=2\Leftrightarrow h^{*}(K)=2,$ $h(k)=1$

or

$h^{*}(K)=1,$ $h(k)=2$ .

However from [10] we know that

$h^{*}(K)=1,$ $h(k)=2$

cannot occur so that

$h(K)=2\Leftrightarrow h^{*}(K)=2,$ $h(k)=1$ .

Thus $h(K)=2$ occurs only for those fields $K$ in the list of \S 6 for which $h(k)=1$ . Since

$h(Q(\sqrt{2}))=h(Q(\sqrt{5}))=h(Q(\sqrt{13}))=h(Q(\sqrt{17}))=1$

and

$h(Q(\sqrt{10}))=h(Q(\sqrt{85}))=2$ ,
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we have proved the following theorem.

THEOREM. Let $K$ be an imaginary cyclic quartic field. Then $h(K)=2$ if and only if

$K=Q(\sqrt{-3(2+\sqrt{2})})Q(\sqrt{-5(2+\sqrt{2})})Q(\sqrt{-(5+\sqrt{5})})$ ,

$Q(\sqrt{-13(5+2\sqrt{5})}))Q(\sqrt{-17(5+2\sqrt{5})})Q(\sqrt{-(13+3\sqrt{13})})$ ,

$Q(\sqrt{-5(13+2\sqrt{13})})$ , or $Q(\sqrt{-7(17+4\sqrt{17})})$ .
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