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On the uniqueness of viscosity solutions
of second order PDE's with constraints

(HRR 2 0 2BRES TR OO —EH SV T)

Kobe Univ., Nacki YAMADA
(mEAX ®H UH Bi)

In this note we shall present some uniqueness results
of viscosity solutions of second order partial differential
equations with constraint conditions.

First we shall give a definition of viscosity solutions for
general nonlinear second order elliptic equations. Consider
(%) F(D%u, Du, u, x) = 0 in QcRY,
where F is defined and continuous on SNXRNXRXQ sV denotes
the set of NXN symmetric matrices) satisfiing the following
ellipticity condition:

F(A,p,t,x) 2 F(B,p,t,x) if A =B;

A, BesN, perRV, t €R, x € Q.

Definition. Let u € C(Q); u 1is said to be a viscosity
1)
solution of (%) if and only if we have for all ¢ € C“(Q):

(i) for each local maximum point XO of u - ¢, we have:

F(szp(xo), DP(xy), Ulxy), X,) =0

0 0
(ii) for each local minimum point XO of u - ¢, we have:

2 =
F(D @(xo), D@(XD), u(xo), XO) =20.0
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Let Q be a bounded domain in RN with smooth boundary
and

p

N1z

N
P, . _ \ _P
L™u = L aijuxixj *
i,Jj=1 i=1
be uniformly elliptic operators with smooth coefficients.

D .
3 + A} = A 9 © o © 9
bluX cu P 1, 2 m

i
~ We shall treat the following three kindS of problems:
(1) Minimax equation;
min{max{-Au + u - f, u - wl}, u - ¢b} =0 in Q
u=0 on 2Q.
(2) Hamilton-Jacobi-Bellman equation with é gradient constréint;

max<Llu - £!, L2u - £2, ..., L™ - £™, ipul - g} =0 in Q

u=0 on 9Q

(3) System of minimax equations;
min{max{LPuP - P, uP - uP*tl Ky, uf - uP+1 + k} =0 in Q,
uw =0 on 99 p=1, 2, ..., m, LR ul,

where K and Kk are given positive constants.

For these problems, we can prove the existence of solutions
by the so-called penalty method. Our basic idea to prove the
uniqueness of viscosity solutions is to compair any viscosity
solution with the solution which we have established by the
penalty method.

Let B € C(R) be a function such that

v
N

Bit) =0 if ts0, Bty = t - 1 if t
Bty =0, "ty =0 on R,

and we set Bg(t) =,Ts(t) = B(t/e) for each € > 0.



§1. A minimax equation
Consider a minimax equation

min{max{-Au + u - f, u - wl}, u - ¢é} =0 a.e. . in Q
(1.1)

uIaQ =0
where f, wl and d@ are smooth functions satisfying ¢é s ¢1

i < < H
in Q and zj’zlaQ =0 = dllag.

It is convenient to formulate the notion of viscosity
solutions of (1.1) in the following manner. We say that u € C(Q)
is a viscosity solution of (1.1) if both (A) and (B) hold:

(A) w2 Su = wl in Q, ul = 0.

o
(1.2) (B) Let © € C2(Q:

(i) if u - @ attains its local maximum at x0 € Q and
- <
db(xo) < u(xo), then A + usf at Xg
(ii) if wu - ¢ attains its local minimum at Xq € Q and
u(xo) < wl(xo), then -A¢® + u2f at xO.l

Since (1.1) is equivalent to the following variational
inequalities with bilateral constraints:
< i =
wé sSu = wl in Q ulaQ o,
f on {x € @l wé < u < wl},

-Au + u

v

-Au + u f on {x € Ql u-= ub}’
-Au+u=f on {xé€ Q u-= wl},
it is known (Bensoussan et Lions [1], Chapter 3, Section 5)
that there exists a solution u € w2‘r(9) with r > N which
is a limit of solutions u, of the penalized equation
- A u, +oug o+ Be(u8 - wl) - Bs(¢§ - us) = f in Q

(1.3)

8|8Q = 0.



Theorem 1.1 Let v € C(Q) Dbe a viscosity solution

of (1.1). Then we have u = v in Q.

Proof. We prove only v =u in Q because the inequality
in the opposite direction can be proved similarly.
If v =u in € does not hold, there exist a subsequence

x8 (we denote simply XE) and x0 € Q such that

(i) X ————>x0 as € —=>0,

(1.4) (ii) (v - ug)(x ) = max (v - ue)(x),

XE€Q

(iii) (v = u)(xX,) = max - (v - ul)(x) > 0.
0 X€EQ ‘
Since ¢é Su<v at Xg, we have ¢b < v and ug < v = wl
near X,. Then (1.2 - i) implies
- < |

(1.5) Ausi-v._f at xg

We also have Be(ue - wl) = 0. Hence from (1.3) we get

- =
(1.6) Au8+ug_f at X -

Combining (1.5), (1.6) and letting & — 0, we have
(v - u)(xo) =0

which is a contradiction.m

§2. HJB equation with a gradient constraint

For given non-negative functions fp, p=1,....,m and g,
we consider the Dirichlet problem
max{Llu - fl, e ,Lmu - fm,IDul - g} =0 in Q,

(2.1)
uIaQ = (.
Here Du 1is the gradient of a function u.

Evans [3] was the first to treat the equation with a

gradient constraint in the case m =1 1in (2.1). Relaxing



the restrictions in {31, Ishii and Koike [10] have proved

w2 %%

the existence of solutions in the space Q) and the

2,1
doc

On the other hand, the Hamilton-Jacobi-Bellman (HJB)

uniqueness in the class W5’ (Q ~ C(Q with r > N.
equation has been treated by many authors. Using a system of
variational inequalities, Evans and Friedman [7], Lions [12]
and Evans et Lions [8] have proved the existence of solutions

2’°%§D for uniformly elliptic HJB equations.

in the space VW
Moreover, Evans [51, [6] has proved the existence of classical
solutions for uniformly elliptic HJB equations (see also Gilbarg
and Trudinger [91, Chapter 17). By defining an appropriate
notion of weak or viscosity solution, Lions [13] has obtained
the uniqueness in the space C(Q), with the aid of stochastic
representation of solutions. [In [13], it is not assumed that
the operators are uniformly elliptic, but rather that they
contain zero-th order terms with strictly positive coefficients.
Note that our equation (2.1) is a non-uniformly elliptic HJB

equation without zero-th order term.

We make the following assumptions on Lp:

p > 2
(2.2) aijsisj =2 91 &l
for some 6 > 0, all €& ¢ RN and p=1, ... ,m,
(2.3)  aP., bP, P € 2

ij i

for p=1, ... ,m and ! =i, J =N,
(2.4) cP =z o
for some constant c0 >0 in Q p =1, s M,

P _ _P
(2.5) aij = aji

(4]



for p=1, ... ,m, 1

1A
.
IIA
2z

On given functions , 9 on Q we impose the following

assumptions:

(2.6) P, g€ (D
for p=1, ... ,m,

(2.7) P, g 20

in Q for p=1, ... ,m.

Under these assumptions we may state our main theorem.

Theorem 2.1 We have:

(i) Under the assumptions (2.2) - (2.7), there exists

a solution u € wﬁé‘;"(sz) ~ W'%Q of the equation

max{Llu - fl, eoo LM - £ |Dul - g} = 0 ~a.e. in Q,

(2.8) #
ulaQ = 0.
(ii) If, in addition, 9 > 0 in Q, then the solution of

(2.8) is unique in the class CI(Q) n C(@), where the solution
is understood as a viscosity solution satisfying the boundary

condition.m

2.1. Approximate systems and a priori estimates

We consider the following approximate systems:

PP P2 _ 2 P _ ,P+tl, _ P .
L uy + BE(IDuel g”) + rg(u8 ug ) f in Q,
(2.9
p = = m+l _ 1
ue'@Q =0, p=1, ... ,m, where ug ug. .
In the following we shall state some a priori estimates for

P

solutions ug,

p=1, ... ,m, of (2.9) which are independent of

€ > 0. The proofs of these estimates are found in [15].



Lemma 2.2, ([15, Lemma 4.1]1) We have

(2.10) 0§ui§c in Q,
8uz
< <
(2.11) 0 = n =C on oQ.m

Here and hereafter capital C denotes various constants depending
on known constants and @/0n denotes the inward normal derivative

on 0Q.

Lemma_z_ﬁ_ ([15, Lemma 4.2]) We have

p
(2.12) Al =C.H
€l o

lemma 2.4, ([15, Lemma 4.31) We have

P
(2.13) "us"w2.M%Q) =C.n
Qoc

2.2. Proof of Theorem 2.1
Lemma 2.5, There exists a solution u of (2.8) belonging

2,00 1

, 00
to WQOC(Q) ~ W (Q.

Proof. From a priori estimates in the preceding section,

we can choose a sequence sj (which we simply denote &) such

that
uzz———>up in C(Q, Duz —— pu® compact uniformly in Q,
2. p 2. P . r .
D u, — D"u weakly in Lro(Q) with r < o9
Since re(uz - uz+1) are locally bounded, it follows that up
defined in (2.14) satisfy u' = ... =u® =z ue€ w2 ~ v"" .

foc
We shall prove that u solves (2.8).

First we note that Lpui - fP 20 a.e. in Q. Hence we



have LPu - fP =0 a.e. in Q p=1, ... ,m. Since

BS(IDui!2 - 92) are also locally bounded, we get

(2.15) max<L'u - £', ... ,L™u - £™, (Dul - g» S0 a.e. in Q.

To prove the inequality in the opposite direction, it is
sufficient to show that u 1is a viscosity supersolution of (2.8).
Let ¢ € C2(Q) and assume that u - ¢ takes its local strict
minimum at Xq € Q. VWe shall show
(2.16) max{—ap @

p=1 m 1471
9 e o & o
Here and hereafter we use the summation convention and denote -

+ b?Qi + cPu - fp, ID¢l - g} 20 at Xg -

the derivatives with respect to xi by subscript i.

Since lD@(xO)I = g(xo) implies (2.16), we may assume ID@(XD)I

< g(xo). Since uﬁ converges to u uniformly, there exists

a sequence {xi} C Q such that
(i) 1lim xi = x0 for any p=1, ... ,m,
€—=>0

(ii) uz - ¢ attains its local minimum at xi,

. P P
(iii) ID@(xs)l s g(xs).
For each &, let p(g) Dbe such that

(2.17) WP® oy xP®y = pin wWf - 9 xDy.
& € p=1,..‘,m € =

Since p wvaries in a finite set, there exists 5 which appears

infinitely many times in (2.17). Consider such p and ¢

such that p(e& = p. Then we have Bg(IDuiI2 —

0

and re(UZ; qul) = 0 at xi. Since uz is also a viscosity

_aP P PP 5 (P P
aij@ij + bi?i tcu, 2 f at Xge

Passing to the limit as & — 0, along which we take 5 = p(g),

supersolution of (2.9), we get

ol



we have (2.16).1

lemma 2. 8. Assume g > 0 in Q. Then the viscosity

solution of (2.8) is unique in the class CI(Q) A C(Q.

Proof. By Lemma 2.5 we have a solution u belonging to

ﬁéz%ﬁn N Wl’o%fh and approximate solutions uf which

£
converge to u along a subsequence. In the following we fix

such a u and convergent approximate solutions ui (simply we

J

W

denote ui).

Let v be any viscosity solution of (2.8) which belongs
to cli@ ~ c.
First we claim that v =u in Q. If not, there exist

Xg € Q and pO such that
Pg

p
(2.18) (v -~ u_"J)(x,) = max_ (v - u){x) > 0.
€ 0 X € Q &
p=1,...,m
Since v is a viscosity subsolution, we have
Py P Py P P P
0.0 0 °0 0 0

- <
. ai ¥, 1 j + bi Ugy + ¢ v= f ~at Xy
(2.19) P .

IDuS (XO)I _.g(xo).

. Py, 2 2
The second inequality in (2.19) implies BE(IDu8 1 - g®)y =0
o Py Pgtl
at XO and (2.18) implies re(u8 - u8 ) = 0 at XO.
Then, from (2.8), we have
Pn P P, P Pn P P
0.°0 070 070 _ 0
Ayl gyt b Ugy v ¢ U = f at  x,.
Subtracting this from the first inequality in (2.18) we get
P P
0 0

- =<
c (xO)(v ug )(xo) =0,

which is a contradiction.
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Next we show that pu =v in Q for 0 < p< 1. If not,
there exist p€ (0,1) and x; € Q@ such that
(2.20) (v - pu)(xo) = min (v - pu) < 0.
XEQ
Since v € CI(Q), we have IDv(xO)I = plDu(xO)I < g(xo).
Then there exists a ball U with center x0 satisfying
(2.21) IDvl < g in U.
This implies that v ié a viscosity supersolution of
(2.22) max (LPv - fPy = 0 in u.
P=l,...,m
Consequently v is a viscosity solution of (2.22) in U.

Considering (2.22) with boundary condition ¢ =

vtaU, it is known

(Evans [51, [61, Gilbarg and Trudinger [9] Chapter 17) that (2.22)

has a smooth solution.

(Lions [131) that the viscosity solution of (2.22)

Therefore we can conclude that v

(2.22) in U.

On the other hand,

it is also known
is unique.

is the smooth solution of

By a selection lemma, there exists a measurable function
p:U0 — {1, ,M} such that
Lp(X)v - fp(X) =0 a.e. in U.
Since u 1is a subsolution of (2.22) we have
2.23) LPX - sy - (1 - fP) 20 ale. in UL
On the other hand, by Bony's maximum principle, we get
(2.24) lim ess inf (-aP®(v-pw).. + P (v-pw).) =o0.
iJ ij i i
X —>x0
Combining (2.23) and (2.24), we have
p(xo) p{xo)
C (X )(v - pu)(x,) - (1 - p)f (x,) 290
0 0 0
which contradicts (2.20).
Since p 1is arbitraly in (0,1), we have v = in Q.
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This completes the proof.H

By Lemmas 2.5 and 2.6 we have completed the proof of

Theorem 2.1.1H

83. System of minimax equations

In this section we consider the following system of minimax

equations:

min{max{LPu®? - fp, uP - up+l— K}, uP - up+1+ ky =0 in Q,
(3.1) .

p - _ m+l _ 1

U 'aQ" 09 P - 19 o o o ,m, U - u

This system is equivalent to the following system of
variational inequalitits with bilateral obstacles:

up+1- k suf = up+l+K in Q, uplaQ = 0,

LPuP = £ ir uPMlox < uPe WPl k
o LPuP = £P if uP = up+1+ K,

LPuP z P if uf = up+1- K,
for p=1, ..., m where um+1 = ul.

In [141, the author have treated this system in the
space wz’r(g) (1 =r < o and proved the uniqueness of the
solution in this space by using a stochastic representation
of the solﬁtion. The new.argument here is to prove the
uniqueness of the solution in the class of viscosity solutions.

On the other hand, Lenhart and Belbas [11] considered a
system of equations with unilateral constraints

max{LPu? - £P, uP - MPu)y = 0 in Q,

(3.3) P
u laQ =0, p =‘1, ceey I



1<

and proved the existence and uniqueness of the solution in

1 m}

w2’°%gn. Here, u = {u', ..., u and Mpu is defined as-

follows:

4. K(p,q)I 1 =q =m, 9 # P},

MPu = min{ u
where K(p,q) are given nonnegative constants.
As was explained in [111, [14]1, these systems are closely
related to some stochastic control problems (see [11]1, [14]
or [7] for the detail). As a generalization of these systems

we can treat the following system:

nPu = uP =uMPu in Q, uplaQ = 0,

LPuP = P if mPu < uP< MPu,
o LPuP s fP if uP = MPu,

LPuP 2 2 if WP = mPu,
for p =1, .5 M Here, m‘u is defined by

mPu = max{ u? - k(ip,q)I 1 S q =m, 9@ # p}

where k(p,q) are given nonnegative constants. However, to make
the idea clear, we shall treat the simpler preblem (3.1).
The system (3.4) will be treated in [161].

We make the following assumptions on Lp:

P > 2
(3.5) aijsigj 2 0l €
for some @& > 0, all £ € RN and p =1, ..., m,
p P P 1,= '
(3.6) aij’ bi’ c € C(Q
for p=1, ..., my, and 1 =Si,J =N.

There exists a sufficiently large constant c0 such that

(3.7) Pz c,

for all p=1, ..., m. The size of o is determined only by



8 and the sizes of a?j, b? and their derivatives (see [14,

Lemma 4.31).

On given functions fp, p=1, ..., m, we assume

(3.8) P e cl (.

Let K, k be given positive constants satisfying the

following "no loop of zero cost" condition:

K om-49g
K * q

Our main result in this section is the fdllowing:

(3.9) for g =1, ..., m-1.

Theorem 3.1 Under the assumptions (3.5) - (3.9), we have:

(i) there exists a viscosity solution u = {ul, u2, e s

um} of the system of inequalities

mintmax{LPu® - £P, u® - P* -3, WP - P ky =0 in @
(3.1)

P _ _ m+l _ 1

u IaQ = 0, p=1, ... ,m, u = u .

1,

each of which belongs to W O%QD {1 SESr < o9,

(ii) the viscosity solution of (3.1) is unique in C(Q.H

The notion of viscosity solution of (3.1) is defined as
follows which is a modification of original definition in

Crandall and Lions [21 and Lions [131.

Definition A set of functions u = {ul, ceey um},

uP € c(®, p=1, ..., m is said to be a viscosity solution

of (3.1) if and only if both (3.9) and (3.10) hold:

(3.9) up+1— k suPx) = up+1+ K in Q and uplag =0,
for p=1, ..., m.

(3.10) Let ¢ € C2(Q:

13
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(iy if up - ® attains its local maximum at x0 and

up+l(x0) - k < uP(xy), then
p p PP < P '
aijvij + bi@i + cu =f at Xy

(ii) if up - ® attains its local minimum at x0 and

uPix) < uPtlix.) + K. then

0
_ P P PP 5 (P
aij?ij + biQi + cu =2f at x,.H
3.1. Approximate systems and a priori estimates
We consider the following approximate systems:
P. P P _ ,P+l_ - P+1_ , _ Py = -
A uy o+ Béua u K) Bs(u8 k ug) f in Q,

g
(3.11) p n+1

“Qagz g0, p=1, ...., m, u = u
In the following, we shall state some a priori estimates

on ui. ‘The proofs of these estimates are found in [147.

lLemma 3.1, ([14, Lemmas 3.1 and 4.21) We have

Il + P = Const.H
eC(Q £ wl,@%ag)

lemma 3.2, ([14, Lemma 4.3]1) We have

a1 0o =< Const.m

wl
3.2. Proof of Theorem 3.1
Using these estimates, we can find a viscosity solution

of (3.1). First, by the same argument as in [14, Theorem 5.21,

we have:

Lemma 3.3. There exists uf € wl'%Q ~ C(®, p = 1,

... M, such that up+1- k = up(x) = up+1+ K in Q.8



lLemma 3.4. The set of functions u = {ul, e um} which

was obtained in Lemma 3.3 is a viscosity solution of (3.1)}.

Proof. From Lemma 3.3 it is obvious that u satisfies

(3.9). We shall prove (3.10). Let ¢ € C°(Q and assume that

p+1

up - 9 takes its local maximum at XO € Q@ and u (X, - k <

0
up(xo). Without loss of generality we may assume that XO is

a strict maximum point of up - ¢ in Q.

Since uz converges to up uniformly, there exists a

sequence {xi} C Q such that

(i) 1im x2 = Xg
. g—=>0
(3.12) (ii) ui - @ attains its local maximum at xp

>

y

s P P, » P+l _
(iii) ug(xs) = u8 (xg) k.

Note that (3.12-iii) implies that

p+1_ _ . ptl _ P
(3.13) Ba(us Kk u8 ) = 0 at x8
and
‘ p _ P+l _ _ o

(3.14) Bs(u8 u, K) =0 in Q.
Substituting (3.13) and (3.14) into (3.11), we get

_ P P P P PP < P P
(3.15) aijue,ij + bi ue,i + C u8 sf at Xe’

On the other hand since (3.12-ii) implies

P _ < P _ - p
(u€ @Hj =90, (u8 @)i 0 at xe,
we have
_ P P P P PP < (P P
(3.16) aij?s,Lj+ bi ?SJ.+ C u8 =f at xg.

Passing to the limit as & — 0, we can conclude (3.10-i).
The opposite inequality (3.10-ii) is obtained by the same

argument .®
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To prove the uniqueness of viscosity solutions, we choose
a viscosity solution u = {u, ..., um} which was obtained

in Lemma 3.4 and fix it.

lemma 3.5, Let v = {v', ..., v'} be any viscosity

solution of (3.1). Then we have u = v.

Proof. VWe shall prove vp s up for all p =1, ...,m.

If not, we can find a convergent sequence {xg} from the

family of maximum points of vp - ui in Q, which satisfies

the following conditions:

There exist Py 1 = Py =nm, and X5 € Q such that

(i) lim X = X
e =0 € 0
P P
(3.17)  (ii) (v 9 -y O)(xo) = max vP - Py > 0,
X,p
P p p p
(iii) (v 0 _ uao)(xe) = max (v 0. ugo)(x).
X€ Q
First we shall claim that
PO p0+1 p0 p0+1
(3.18) u "(x,) = u (x,) + K or v "(Xx,) = v (x,) - K.
0 0 0 0
Assume the contrary. From the convergence and continuity of
b
0
u8 , we have
Po < Po
(3.1%9) us(xg)__ugx£)+ K.
Substituting this into (3.11), we get
P, P P, P P, P P
_ 070 0.°0 0.°0 > 0
(3.20) aijuaij + b UsJ + C ug = f at xe.

On the other hand, since v 1is a viscosity solution,

(3.17-1ii1) implies
P, P P, P Py, P P
_ 070 0.°0 0,70 < 0
(3.21) aiﬁ%gij+ bius,i+ cC v =f at Xa'
Combining (3.20) and (3.21) and letting & -0, we have
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Py

P P
c (u 0 0

- v )(XO) 2 0, which contradicts (3.17-ii).

Hence we have (3.18).

On the other hand, from (3.17-ii), we get

P P P~+1 pP.t+1
0 0 0 0
v (XO) - u (xO) =V (xo) - u (xO).
Since this implies
5 PO p0+1
0 2v (XO) - v (xo) - K
p P,+1
0 0
2 u (XO) - u (xo) K,
p Pat+1l P P,t1
we have v 0. v 0 + K at XO if u 0 . u 0 + K.
Therefore we can conclude that
Py P0+1
v (xo) = v (xo) + K
(3.22) or
P PAt1
0 _ 0 _
v (xo) = v (xo) k.
We have also
P P P,+1 pPLt+1
(3.23) (v 0. u 0)(x ) = (v 0 . u 0 J(X,) = max vP - u Jixy.
0 0 X.p

We can repeat this argument starting from the paramarer
p0+1 and can get (3.22) and (3.23) for p0+2.

Continuing this procedure, we can obtain (3.22) and (3.23) for

all p =1, ..., m.- Summing up (3.22) for p =1, ..., m, we
have

m

N\ N

) K =0

i=1
where KP = K or -k.

Since this contradicts the assumption (3.8), we have
vP =P for all p=1, ..., m.
The opposite inequality u” = s, P =1, ..., m 1is

obtained by the same argument.H
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These two lemmas complete the proof of Theorem 3.1.8
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