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On Matukuma'®s Equation and Related Topics.

Shoji Yotsutani ( N v 5 & = )

Miyvazaki University, Miyazaki 889-21, JAPAN

1. Introduction

This is a joint work with Wei-Ming Ni (Univ. of Minnesota).
In 1930, Matukuma, an astrophysicist, proposed the following
mathematical model to describe the dynamics of a globular

cluster of stars,

i p
—_—s u
[+1x12

Au + 0, x € RS, (M)

where p > 1, u represents the gravitational potential

(therefore u » 0y, o =- 1 Au = 1. ——l——§ - "  represents

an an 1+1Ix|

the density and J 3 P dx represents the total mass (for
R .

details, see [9]). His aim was to improve the model proposed

earlier by Eddington in [3],

Au + S e2U =0, x € RB, (B>

+1x12

1 2u

1 5 e and fk3 o dx

where u, 0 = - =— Au = 1
an an 1+Ix|

represents the gravitational potential, the density, and the

total mass, respectively. (Since Matukuma'’s original paper
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was written in Japanese, we include a brief derivation of (M)

and (E) in Appendix for the reader’'s convenience.)
Since the globular cluster has the radial symmetry, positive

radial entire solution (i.e. solutions with u(x) = ulixl) > 0

for all x € R3) are of particular interest, and the equations

(M) and (E) reduce to ordinary differential equations

u +2—u+ L _P=0g >0,
re r r 1+ 2
r
{ (M)
w(0) = &, u (0) = 0,
r
and
U+ 2+ LU (> 0),
rr r r 1+r2
(E )

u(0) = a, u (0) = 0,
r

respectively, where a > 0. For each a > 0, we denote the

the global unique solution of (Ma) (or (Ea)) by u = ulrja).
Studying the structure of solutions of (Ma)’ Matukuma

con jectured

(1) if p < 3, then u(rja) bhas a finite zero for every

a > 0,

(i1) if p = 3, then ul(rja) is a positive entire solution

with finite total mass for every a > O,

(iii) if p > 3, then wulrja) is a positive entire solution
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with infinite total mass for every a > 0.

In 1938, Matukuma found an interesting exact solution of (M)

(see [101)

1/2y _ g1/2

u(r33t’?) 1+r2)"172 (p=3), (S)

which confirms part of his conjecture.
It turns out that the equation (Md) is more delicate than
Matukuma had expected. In answer to his conjecture, we prove.

that

(i) if 1 < p <5, then ulrja) has a finite zero for

every sufficiently large a« > 0,

(ii) if 1 < p <5, then ulrja) is a positive entire

solution with infinite total mass for every sufficiently

small a > 0,

(iii) if p 2 5, then u(r;a) is a positive entire solution

with infinite total mass for every a > 0.

The conclusions above follow from our main results stated

in Section 2 below. (Set K(r) = 1/(1+r2), n=3, and ¢ =20
in Theorem 2, £ = -2 and ¢ =1 in Theorem 5, and ¢ = 0 in
Theorem 6.) It is rather interesting to note that not only the

exponent p but also the initial value « has vital influence



on the behavior of the solution uf(ria).
In studying the equation (M), we consider a more general

equation which in particular contains the following equation

Au + K(r) W = 0, (P)

where K >0 on (0,») and p > 1. Under various decaying
hypotheses on K, we establish existence results for positive
entire solutions (see Section 2 below).

The equation (P) has come up both in geometry and in physics,
and has been a subject of extensive studies for some time.
When K =1, equation (P) is known as the Lane—-Emden equation
in astrophysics. (It is also sometimes referred to as the
Emden-Fowler equation due to the fundamental contribution of
Fowler [43 on this equation.) In this context, u corresponds
to the density of a single star, and positive radial solutions
of (P) in balls with zero Dirichlet boundary data are of
particular interest (see [1]). In 1973, Hénon [5] proposed
a model to study the ‘"rotating steller systems' and derived (P)

2

with K(r) = r”., This case (and its generalizations) has been
studied by various authors (see [13] and the references therein).
At the critical exponent p = (n+2)/(n-2), equation (P) arises
in the problem of finding conformal Riemannian metrics with
prescribed scalar curvatures K. In this context, u corresponds
to the conformal factor and the exact solution (S) has also been
known for quite some time which represents the usual metric on

the standard sphere.



The first general and systematic study of (P) seems due to
Ni C121. It is proved there that if K grows faster than or

r(n—2)(p-1)-2 at o, then (P) possesses no positive

equal to
entire solutions. (In fact, a slightly more general integral

condition is obtained in [12J.) Existence results in the case

-2

K decays faster than r at o have also been established

in [12] and slightly improved by [6]1-[83, [11] later. (In fact,
all these results deal with K = K{(x), not just radial cases.)
Other existence and non-existence results are also discussed

in 123, Recently, Ding and Ni [2] have proved a striking
result for the case p = (n+2)/(n-2) and K 1is a perturbation
of the constant 1. However almost all the methods developed

in those papers do not seem to apply to the case where K decays

-2

slower than or equal to r at o (which includes (M)) and
p < (n+2)/(n-2) (except Proposition 4.1 in E123). Our results
(see Section 2 below) cover most of the cases left open by previous

works,

For the Eddington’s equation (E), it is seen that it has no

positive entire solutions. It is interesting to note that the

Eddington’s equatioh (E) also comes up in Riemannian geometry.
When n = 2, it is related to problem of finding conformal
metrics with prescribed Gaussian curvatures (in this case, the
solution u 1is not required to be positive in the geometric

prob]em).



2. Main results

We consider the equation

n—-1 +.P
u + u+ K(r)(u > =20 (r >0, uw(0) =a >0 (P

re r r Q
where u+ = max {u, 0>. We shall assume throughout this paper
that n 2 3 although many of our results and methods do apply

to the case n < 3.

We now collect the hypotheses which will be assumed under

various circumstance (but not simultaneously). We introduce

K€ C((0,=)), K20 on (0,o), and
(K.1) {

K(rd) = 0+ at r =0,

(K.2) Kir) =c r? + o(+r%® at r =0,
(K.3) liminf ¢ ¥K(r)> > 0,
r-oo
_ ) ') _
(K.4) K(r) =c r®” + ofr”) at r = =,
(K.5) lim r(r ¥(r)) 3 = 0,
r->w r
(K.6) (roK(r))r S0 on (0,0,

where ¢, £ and ¢ are constants satisfying

g > —2) Q 2 -2’ C > 0.

)
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Theorem 1. Suppose that (K.1) holds. Then there exists a

unique solution ul(rja) € C(LO,=)) M Cz((O,w)) of (Pa)’ and

u = u(rja) satisfies the following identity,

2

n
n-1 R™ u (R)2 + B kir) u(rm)P*?
r p+l

u(Ru (R) +
r

N

n-2
= R

(2.1)

- JR{( - 2 )WHPH . ;%T - Kr(r)(u+)p+1} ML g
0

where R is an arbitrary positive number.

Remark 2.1. It is well-known that such Pohozaev-type identity

holds for the case K € C([0,=)})., The above theorem claims

that it also holds under the weaker assumption (K.1).

Theorem 2. Suppose that (K.1) and (K.2) hold, and p <

(n+2+20)/(n-2). Then there exists oy > 0 such that for every

o 2 I u(rsa) has a finite zero on L[0,=),

Theorem 3. Suppose that (K.1) holds with ¢ = 0, K(r) =

-2

0(r %) at r = and p > 1. Then there exists aq such that

for every a € (0,a0], u(rja) is positive on [0,@) and

Tim u(rja) =0
rr->ox



Theorem 4. Suppose that (K.1), (K.3) and (K.5) hold, and

p > (n+2+28)/(n-2). Then there exists aq such that for every

.

& € (O.QOJ, u(rja) 1is positive on [0,=) and 1lim u(rja) = 0.

oo

Theorem 5. Suppose that (K.1), (K.4) and (K.5) hold, and

p > (n+2+283/(n-2)., Then there exists oq > 0 such that for

every a € (O,QOJ, u(rsa) 1is positive on [0,«), 1lim u(rja) = 0,

r->o

and jEK(r)u(r)pr”“ldr = o,

Iheorem 6. Suppose that (K.1), (K.6) hold, and

.

p 2 (n+t2+20)/(n-2) Then for every a > 0, u(rja) is positive

on [0,=). Moreover if (r %K(r)) %0 on (0,=) or

b > (n+2+20)/(n-2), then 13K<r)u(r>°r“'1dr = -,

Remark 2.2. All the exponents appeared in Theorems 1-6 are

sharp. This may be seen by constructing suitable examples.

Remark 2.3. These results are announced in [14]., The details

are shown [153.
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We have given partial answers to the Matukuma'’s conjecture

in Section 1. Concerning the structure of the solutions of (Ma)

with 1 < p < 5, our analysis is still incomplete and we suspect
that the following conjecture hold ¢ for every 1 < p < 5,

there exists a unique dp > 0 such that

(i) i o > o then wu(rja) has a finite zero,

(11) 1 a = o , then ul(rja) 1is a positive entire solution

with finite total mass,

(iii) if 0 < a (< @ then ulrjo) is a positive entire

solution with infinite total mass.

In other words, we conjecture that for 1 ( p < 5 there is a

unique positive entire solution of (Ma) with finite total mass.

We have done several numerical computations for the initial

value problem (Ma) by using Runge—Kutta method. The independent

variable transformation, r = s/(1-s), is used for reducing the
interval [0,«) to [0,1). Fig. 1 (resp. Fig. 2) shows the
spatial pattern of U(sja) = u(ria), r = s/(1-s) (resp.

Visja) = ulrsa)/a, r = s/(1-s) ) , and the zero, where u(ria)

is a solution of (Ma) with n =3, p = 3, and the interval [0,=)

is reduced to [0,1).
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Ulsix) = u(ri«),

r = s/(1-s)

the zero
of U(s;x)

Fig. 1
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V(siu) = ulrijn)/x,

r = s/(1=-s)
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Appendix.

In this appendix we give a brief explanation of a derivation
of the Eddington’s equation and the Matukuma’s equation,
following Matukuma’s paper [91. Let @(x) be the gravitational

potential of a globular cluster, and 0(x) be the density, where

x € R3. Then we have

= pCE)
p(x) = JRa Tx = ET d& (A.1)

which 1mplies
Ap = - Aanp. (A.2)

From the observation of a globular cluster it seems that ©»

is radial and
P =p(r) | 0 a8 r 1 =,

where r = Ixl. Several physical theories have been proposed

to understand the dynamics of it. Here we shall focus on two

theories, one is due to Eddington and the other is Matukuma’s
theory. The essential point is to drive the relation between
o and 9. After the relation is determined, we obtain the

equation for 9. Denote the distribution function of stellar

velocities by f, then

p(x) = I 'F(V,x) dVo (A.3)
R3
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Eddington assumed that the globular cluster has the following

. properties,

(1) it is stationary (independent of the time),

(ii) it has radial symmetry,

(iii) the distribution of stellar velocities everyuwhere follows

Schwarzschild’s ellipsoidal law.

After some mathematical and physical considerations, he

obtained that

2 2

Flu,x) = a explh2(20-1012) = K2ix X v1%), x, v € R°  (A.4)

where a, h, and k are positive constants. From (A.3) and

(A.4), we see that

2,2 2.,-1

0 = const. (h2+k2r2)™1 oxp(2n29), (A.6)

and by (A.2) and (A.6) we have

A9 + C (h2+k%r?) ™1 exp2n?p) = 0, (8.7)

where C is a positive constant. Putting

r=hkls, 9 =h2% -2 Nogh? %) (A.8)

we have



AV + (1+s2)71 &2V = g, (A.9)

Thus we get the Eddington’s equation (E). It is seen that (Ed)
has no entire positive solution with finite total mass.

Therefore Matukuma tried to improve the Eddington’s theory.
Matukuma assumed that the globular cluster had the properties
(1),¢(11) and

(iii)’ the velocity distribution function Ff has the

followinf form

f = f(20- vl -k Ix Xvl ), x, v €R (a.10)
an
EMCo. + af + afl+ ---) for £ 20
0 i 2 '
f(&) = (A1)
0 for & s O,
where m > 0O, ao,al,az,"'z 0 are constants.
Then we have, from (A.3),(A.10) and (A.11), that
1 m+3/2 2
p = —5=59 (B, + B, 9 + B9+ -2 (A.12)
1+k2r2 0 1 2 ,
where Bi (1=0,1,2,--*) are non—negative constants. Thus it

follows from (A.2) and (A.3) that
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m+3/2

9 2, ...
Ap + I:;i:g CBO + 319 + 329 + >

H
o

where m > 0. After some change of variables, we get the

equation
vP 2
Av + {cy + c ¥ + c ¥+ ---3 =0,
1+ 2 0 1 2
r
where p > 1, Cgr Sq0 " 2 0 are non-negative constants. As
a special case, setting cg = i, Cq =€p = "°° = 0, we obtain

the Matukuma’s equation (M),
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