Linear codes and t-spreads

Fumikazu Tamari

Department of Mathematics Fukuoka University of Education Munakata, Fukuoka 811-41 Japan

1. Introduction

Let $\not A$ be a family of flats in a t-dimensional finite projective geometry PG(t,s) where s is a prime or prime power. Let ℓ (≥ 2) be a positive integer. A family $\not A$ is said to be an ℓ intersectional empty set (or ℓ -IE set) if the intersection of any ℓ flats A_1 , A_2 , ..., A_ℓ in $\not A$ is empty but the intersection of some (ℓ -1) flats B_1 , B_2 , ..., $B_{\ell-1}$ in $\not A$ is not empty. $\not A$ is also said to be a regular ℓ -IE set if all flats in $\not A$ have the same dimension, i.e., $\dim(A) = V$ for all A in $\not A$. Furthermore, $\not A_0$ is said to be a maximal (regular) ℓ -IE set if $\not A$ $\not A$ in $\not A$ for all (regular) ℓ -IE set $\not A$ in $\not A$ in $\not A$ of $\not A$.

Let V(n;s) denote an n-dimensional vector space over a Galois field GF(s). A k-dimensional subspace C of V(n;s) is called an s-ary linear code with code length n, k information symbols and the minimum distance d if the minimum distance (Hamming distance) of the code C is equal to d, and is denoted by (n,k,d;s)-code.

We now consider the following problem.

Problem A. Find a linear codes C (called an optimal linear code) whose code length n is minimum among (*,k,d;s)-codes for given integers k, d and s.

In this paper, we shall construct optimal linear codes using L-IE sets.

2. Preliminaly results

We shall give some properties of flats in PG(n,s) in this section.

Let W be a μ -flat in PG(n,s) and let \underline{b}_i (i = 1,2,..., μ +1) be a basis of the μ -flat W. The (n - μ - 1)-flat W defined by W = { \underline{h} \in PG(n,s) : $\underline{h}\underline{b}_i^T$ = 0 over GF(s) (i = 1,2,..., μ +1) is called the dual space of the μ -flat W where \underline{a}^T denotes the transpose of \underline{a} . Especially the empty set will be defined as the dual space of the space and vice versa. Then we can easily prove the following :

Proposition 1. Let V and W becamy flats in PG(n,s) and let V^* and W^* be the dual space of V and W, respectively. Then

- (i) V < W if and only if V > W
- (ii) $V^* \cap W^* = (V \oplus W)^*$ and $(V \cap W)^* = V^* \oplus W^*$

where V D W denotes the flats generated by V and W.

A family of t-flats $\{V_i\}$ in PG(n,s) is called a t-spread if every point in PG(n,s) belong to one and only one t-flat $\{V_i\}$.

Let α be a primitive element of $GF(s^{n+1})$. Then every point in PG(n,s) is represented by the power α^i of α for some $i=0,1,\ldots,v_{n+1}-1$ where $v_{n+1}=(s^{n+1}-1)/(s-1)$. If t+1 divides n+1, then a family of cyclically generated

t-flats in PG(n,s), represented by

$$V_{i} = \{\alpha^{0+i}, \alpha^{0+i}, \dots, \alpha^{(w-1)\theta+i}\}$$
 (i = 0,1,...,\theta - 1)

is a t-spread in PG(n,s) where $w=(s^{t+1}-1)/(s-1)$ and $\theta=(s^{n+1}-1)/(s^{t+1}-1)$ Since α is a primitive element of GF(q), $q=s^{t+1}$, every nonzero of elément of GF(q) may be represented by $\alpha^{j\theta}$ (j = 0,1,...,q - 2). Morever, the set of points α^{i} (i = 0,1,..., θ - 1) may be regarded as that of PG(k,q) where k + 1 = (n + 1)/(t + 1). This implies that $\{V_i\}$ defined above can also be regarded as the set of all points of PG(k,q). Thus we have

Proposition 2 (cf.[2]). There exists a t-spread in PG(n,s) if and only if t+1 divides n+1. Furthermore, there exists a t-spread $\{V_i\}$ such that $\{V_i\}$ can be regarded as the set of all points of PG(k,q) where k+1=(n+1)/(t+1).

A set L of vectors \underline{a}_1 , \underline{a}_2 , ..., \underline{a}_m in V(r;s) such that no t vectors of L are linearly dependent, is called a t-linearly independent set and a t-linearly independent set L_0 is said to be maximal if there exists no t-lineary independent set such that $|L| > |L_0|$. The cardinality of a maximal t-lineary independent set L_0 is denoted by $M_{\pm}(r,s)$.

Attempts of obtaining $M_t(r,s)$ have been made by many research workers. But, unfortunately, $M_t(r,s)$ are patially obtained for some t, r and s but not yet completely.

Proposition 3. Let m be a nonnegative integer. Then, there exists a set of $\{(\ell-1)m+(\ell-2)\}$ -flats Y_i ($i=1,2,\ldots,\pi$) in $PG(\ell(m+1)-1,s)$ such that $\dim(Y_{i_1} \cap Y_{i_2} \cap \cdots \cap Y_{i_r}) = (\ell-r)m+(\ell-r-1)$ for any flats Y_i ($j=1,2,\ldots,r$) in $\{Y_k\}$ ($1 \le k \le \overline{\pi}$) where $1 \le r \le \ell$ and $\pi = M_\ell(\ell,s^{m+1})$.

Proof. It follows from Proposition 2 that there exists an m-spread $\{w_i^*\}$ $(i=1,2,\ldots,\zeta)$ in $PG(\ell(m+1)-1,s)$ where $\zeta=(s^{\ell(m+1)}-1)/(s^{m+1}-1)$. Since each m-flat w_i^* can be regarded as a point in $PG(\ell-1,s^{m+1})$, there exists a maximal ℓ -linearly independent set $\{Y_k^*\}$ $(k=1,2,\ldots,\pi)$ in $\{W_i^*\}$, i.e., $\dim(Y_i^*)$ $\oplus Y_{i_2}^*$ $\oplus \ldots \oplus Y_{i_r}^*$ = rm + r - 1 for any flats $\{Y_i^*\}$ $(j=1,2,\ldots,r)$ in $\{Y_k^*\}$. Let Y_k be the dual space of Y_k^* in $PG(\ell(m+1)-1,s)$ for $k=1,2,\ldots,\pi$. Then, it follows from Proposition 1 that $\{Y_k^*\}$ $(k=1,2,\ldots,\pi)$ is a required set. This completes the proof.

Corollary. There exists a regular 1-IE set with the cardinality π in PG(1(m + 1) - 1,s) where π is an integer given in Proposition 3.

Proposition 4. A necessary condition for $\mu_1, \mu_2, \dots, \mu_\ell$ that there exist μ_1 -flats W_1 (i = 1,2,..., ℓ) in PG(k-1,s) such that $W_1 \cap W_2 \cap \cdots \cap W_\ell$ = ϕ , is that $\mu_1, \mu_2, \dots, \mu_\ell$ satisfy the following condition:

$$\mu_1 + \mu_2 + \dots + \mu_0 \leq (\ell - 1)k - \ell.$$

Proof. Let $W_{\underline{i}}^{*}$ (i = 1,2,...,l) be the dual space of $W_{\underline{i}}$ in PG(k-1,s). Then, it is easily shown that $\sum_{\underline{i}=1}^{l} \{\dim(W_{\underline{i}}^{*}) + 1\} \ge k$. Since $\dim(W_{\underline{i}}^{*}) = k - 2 - \mu_{\underline{i}}$ for $\underline{i} = 1,2,...,l$, we have required result.

3. Linear codes and linear programmings

Let $N = \|n_{ij}\|$ (i = 1,2,..., v_k , j = 1,2,..., v_k) be the incidence matrix of v_k hyperplanes H_i (i = 1,2,..., v_k) and v_k points Q_j (j = 1,2,..., v_k) in PG(k-1,s) defined by

$$n_{ij} = \begin{cases} 1, & \text{if the ith hyperplane H}_{i} & \text{contains the jth point } Q_{j}, \\ 0, & \text{otherwise,} \end{cases}$$

where $v_k = (s^k - 1)/(s - 1)$.

It is known that Problem A is equivalent the following Problem B (cf. Theorem 2.2 in [3]).

Problem B. Find a set $\{x_j\}$ $(1 \le j \le v_k)$ of nonnegative integers $\{x_j\}$ that v_k minimizes $\sum_{j=1}^{N} x_j$ subject to the inequalities:

$$v_k$$

$$\sum_{j=1}^{r} (1 - n_{jj}) x_j \ge d (i = 1, 2, ..., v_k)$$
(3.1)

for given integers k, d and s.

Let d be a positive integer. It is easy to see that d can be expressed uniquely by

$$d = 1 + \theta_0 + \theta_1 s + \dots + \theta_{k-2} s^{k-2} + \theta_{k-1} s^{k-1}$$
 (3.2)

where θ_1 's are integers satisfying $0 \le \theta_1 \le s-1$ for $i=0,1,\ldots,k-2$ and $\theta_{k-1} \ge 0$.

Proposition 5 (cf. Theorem 2.2 in [3]). If $\{X_j\}$ ($j=1,2,\ldots,v_k$) is a set of nonnegative integers satisfying the inequalities (3.1) and d is expressed as (3.2), then

We now give a general construction of a solution of Problem B, that is, a set of nonnegative integers satisfying the inequalities (3.1) and attaing the lower bound (3.3).

Let $\varepsilon_{\bf i}$ = s - l - $\theta_{\bf i}$ for i = 0,1,..., k - 2 and let β be a set which consists of $\varepsilon_{\bf i}$ μ -flats $V_{\bf i}^{\mu}$ (0 \leq μ \leq k - 2, i = 1,2,..., $\varepsilon_{\bf i}$) where $V_{\bf i}^{\mu}$'s are not necessarily distinct. Given $\varepsilon_{\bf i}$ (i = 0,1,...,k - 2), let $\Re(\varepsilon_0,\varepsilon_1,\ldots,\varepsilon_{k-2})$ be the family of all such β 's and let $\zeta_{\bf j}(\beta)$ denote the number of flats in β which contain the point $Q_{\bf j}$ in PG(k-1,s).

Proposition 6 (cf. Theorem 3.1 in [3]). Let d be an integer given by $(3.2). \quad \text{If there exists a set } \beta \text{ in } \exists (\epsilon_0, \epsilon_1, \ldots, \epsilon_{k-2}) \text{ such that } \max(\zeta_j(\beta): 1 \leq j \leq v_k) \leq \theta_{k-1} + 1, \text{ then a set } \{x_j\} \text{ of nonnegative integers which is given by}$

$$\{x_j = \theta_{k-1} + 1 - \zeta_j(\beta) : j = 1, 2, ..., v_k\}$$

is a solution of Problem B.

Note that there exists a set β in $\Re(\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_{k-2})$ such that $\max(\zeta_j(\beta))$: $1 \le j \le v_k = 1$ — 1 if and only if there exists an 1-IE set β in $\Re(\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_{k-2})$. It is known in [3] that if there exists an 1-IE set β in $\Re(0, \varepsilon_1, \ldots, \varepsilon_{k-2})$, then there exists an 1-IE set β in $\Re(\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_{k-2})$ (cf. Lemma 4.1 in [3]). Therefore, in this paper we shall investigate about 1-IE sets of $\Re(0, \varepsilon_1, \ldots, \varepsilon_{k-2})$ in details.

Let E(k,s) be a collection of ordered sets $(\epsilon_1,\epsilon_2,\ldots,\epsilon_{k-2})$ of integers such that $0 \le \epsilon_i \le s-1$ for $i=1,2,\ldots,k-2$. Consider a subset $E_t(k,s)$ of E(k,s) for some $t=0,1,\ldots,k-2$ satisfying the following condition:

(a)
$$\sum_{i=1}^{k-2} \epsilon_i \le t+1$$
(3.4)

(b)
$$\sum_{i=1}^{k-2} \epsilon_i \ge t+2$$
 and $\beta_1 + \beta_2 + \ldots + \beta_{t+2} \le (t+1)(k-1)-1$

where β_i (1 = 1,2,...,t + 2) are the first t + 2 integers in the following series:

Proposition 7. A necessary condition for ε_j ($j=1,2,\ldots,k-2$) that there exists an l-IE set β in $\Im(0,\varepsilon_1,\ldots,\varepsilon_{k-2})$ for a given positive integer ℓ (≥ 2) is that $(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_{k-2})$ ε $E_{\ell-2}(k,s)-E_{\ell-3}(k,s)$ where $E_{-1}(k,s)=\phi$.

Proof. See Theorem 4.1 in [3].

or

In the following, let ℓ be an integer such that $2 \le \ell \le k-2$. Let $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{k-2})$ be any element in $E_{\ell-2}$ where $k = \ell(m+1) - q$ $(m \ge 0, 0 \le q \le \ell-1)$. Then it follows from (3.4) that $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{k-2})$ must be an ordered set satisfying the condition:

$$k-2$$

$$0 \leq \sum_{i=k+1}^{k} \epsilon_i \leq \ell - 1$$
(3.5)

where $\delta = [(lk - k - l)/l] = (l - l)m + l - 2 - q$ and [x] denotes the greatest integer not exceeding x.

Now, we shall describe main theorems in this paper.

Theorem 1. Let $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{k-2})$ be an element in $E_{\ell-2} - E_{\ell-3}$ such that Σ $\varepsilon_1 = 0$. If an ordered set $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{k-2})$ satisfies the following condition:

k-2

$$\sum_{i=1}^{\Sigma} \epsilon_{i} \leq M_{\ell}(\ell, s^{m+1}),$$

then there exists an 1-IE set β in $\Re(0,\epsilon_1,\ldots,\epsilon_{k-2})$.

Proof. Two cases must be considered (i.e., q=0 and $1 \le q \le l-1$). Case (I) when q=0 (i.e., k=l(m+1)). Let $Y_{\bf i}$ ($i=1,2,\ldots,\pi$) be $\{(\ell-1)m+\ell-2\}\text{-flats obtained in Proposition 3. Consider a }\mu\text{-flat }V_{\bf j}^{\mu}$ ($1 \le \mu \le k-2$, $j=1,2,\ldots,\epsilon_{\mu}$) in $Y_{\bf t+j}$ where ${\bf t}=\sum_{i=0}^{\mu-1}\epsilon_i$ and $\epsilon_0=0$. Then $\beta=\{V_{\bf j}^{\mu}\}$ ($1 \le \mu \le k-2$, $j=1,2,\ldots,\epsilon_{\mu}$) is a required set.

Case (II) when $1 \le q \le l-1$ (i.e., k = l(m+1)-q). Let G be any $\{l(m+1)-q-1\}$ -flat in PG(l(m+1)-l,s). Let $V_j^{\mu+q}$ $(1 \le \mu \le k-2, j=1,2,\ldots,\epsilon_{\mu+q})$ be a set of $(\mu+q)$ -flats in PG(l(m+1)-l,s) which were obtained in Case (I) of this theorem. Since $\dim(G \cap V_j^{\mu+q}) \ge \mu$, we can obtain μ -flats U_j^{μ} $(1 \le \mu \le k-2, j=1,2,\ldots,\epsilon_{\mu})$ contained in $G \cap V_j^{\mu+q}$. Let $B = \{U_j^{\mu}\}$. Then, B is required set, because G can be identified with PG(l(m+1)-q-l,s).

In the case Σ ϵ_i = $p \ge 1$, let us denote by δ + ϵ_i (i = 1,2,...,p) $i=\delta+1$

$$\overbrace{\delta+1,\delta+1,\ldots,\delta+1;\delta+2,\delta+2,\ldots,\delta+2;\ldots;k-2,k-2,\ldots,k-2}^{\mathfrak{E}_{\delta+1}}$$

where $1 \le e_1 \le e_2 \le ... \le e_p \le k - 2$. Put $e_1 + e_2 + ... + e_p = e$.

Theorem 2. Let $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{k-2})$ be an element in $E_{l-2} - E_{l-3}$ such that k-2 $1 \leq \sum_{i=\delta+1}^{r} \varepsilon_i \leq l-2$. If an ordered set $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{k-2})$ satisfies the follow-

$$\sum_{i=1}^{k-2} \varepsilon_i \leq M_{2}(\ell, s^{m+1})$$

and

ing condition:

$$\sum_{i=\delta-e+1}^{\delta} \varepsilon_{i} \leq \min\{M_{\ell-p}(\ell-p,s^{\tau}), M_{\ell}(\ell,s^{m+1}) - p\}$$

where Σ ϵ_1 = p and τ = $[e/(l-p)](\ge 1)$, then there exists an l-IE set β in $f(0,\epsilon_1,\ldots,\epsilon_{k-2})$.

Theorem 3. Let $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{k-2})$ be an element in $E_{\ell-2} - E_{\ell-3}$ such that k-2 Σ $\varepsilon_1 = \ell-1$. If an ordered set $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{k-2})$ satisfies the following $i=\delta+1$ condition:

$$\begin{array}{cc} k-2 & & \\ \Sigma & \varepsilon_1 \leq M_2(\ell,s^{m+1}) & , \\ i=1 & & \end{array}$$

then there exists an l-IE set β in $f(0, \epsilon_1, \ldots, \epsilon_{k-2})$

In order to prove Theorems 2 and 3, we prepare two lemmas.

For simplicity, Put (l-1)m+l-2=u. Let V_i (i=1,2,...,p) and V_j (j=p+1,p+2,...,l) are $(u+e_i)$ -flats and $(u-e_j)$ -flats in PG(l(m+1)-1,s), respectively, such that $V_1 \cap V_2 \cap \cdots \cap V_p \cap V_{p+1} \cap \cdots \cap V_l = \emptyset$.

Then it follows from proposition 4 that e_i (i = 1, 2, ..., l) must be integers satisfying the condition:

$$e_1 + e_2 + \dots + e_p \le e_{p+1} + e_{p+2} + \dots + e_{\ell}.$$
 (3.6)

Let e_1 (i = 1,2,...,l-1) be integers such that $1 \le e_1 \le e_2 \le \cdots \le e_p \le m$ and $0 \le e_{p+1} \le e_{p+2} \le \cdots \le e_{l-1}$. Put $e_l = \max\{(e_1 + e_2 + \cdots + e_p) - (e_{p+1} + e_{p+2} + \cdots + e_{l-1}), e_{l-1}\}$. Then it is easy to see that e_1, e_2, \cdots, e_l are integers which satisfy the inequality (3.6) and $e_{p+1} \le e_{p+2} \le \cdots \le e_{l-1} \le e_l$. Put $e_1 + e_2 + \cdots + e_p = e$ and $[e/(l-p)] = \tau$. Then we have

Lemma 1. If $\tau \ge 1$ and $\ell - p \ge 2$, then there exists an ℓ -IE set β consists of $(u + e_i)$ -flats V_i $(i = 1,2,\ldots,p)$, $(u - e_j)$ -flats Q_j $(j = p + 1,p + 2,\ldots,\ell-1)$, $(u - e_\ell)$ -flats R_k $(k = \ell,\ell+1,\ldots,\lambda+p)$ and (u - e)-flats T_n $(n = \lambda + p + 1,\lambda+p+2,\ldots,\pi)$ in $PG(\ell(m+1)-1,s)$ where $\pi = M_\ell(\ell,s^{m+1})$ and $\lambda = \min\{\pi - p,M_{\ell-p}(\ell-p,s^{\tau})\}$.

Proof. Let $Y_{\mathbf{j}}^{*}$ ($\mathbf{j}=1,2,\ldots,\pi$) be m-flats given in the proof of Proposition 3. Let $U_{\mathbf{i}}$ and $V_{\mathbf{i}}^{*}$ be an $(\mathbf{e_{i}}-1)$ -flat and an $(\mathbf{m}-\mathbf{e_{i}})$ -flat in $Y_{\mathbf{i}}^{*}$, respectively, such that $U_{\mathbf{i}} \cap V_{\mathbf{i}}^{*} = \phi$ for $\mathbf{i}=1,2,\ldots,p$. Let W be the flat generated by $U_{\mathbf{i}}, U_{\mathbf{2}}, \ldots, U_{\mathbf{p}}, \mathbf{i.e.}, W = U_{\mathbf{i}} \oplus U_{\mathbf{2}} \oplus \ldots \oplus U_{\mathbf{p}}$. Then, it is easy to see that W is an $(\mathbf{e}-1)$ -flat where $\mathbf{e}=\mathbf{e_{1}}+\mathbf{e_{2}}+\ldots+\mathbf{e_{p}}$, because $\dim(Y_{\mathbf{i}}^{*}\oplus Y_{\mathbf{i}}^{*}\oplus \ldots \oplus Y_{\mathbf{i}}^{*})$ = $\ell m + \ell - 1$ for any flats $Y_{\mathbf{i}}^{*}$ ($\mathbf{j}=1,2,\ldots,\ell$) in $\{Y_{\mathbf{k}}^{*}\}$. Let $\mathbf{e}=(\ell-p)\tau+f$ ($0 \leq f < \ell-p$). Then we can choose an $(\mathbf{e}-f-1)$ -flat $W_{\mathbf{i}}$ and an (f-1)-flat $W_{\mathbf{i}}$ in W such that $W_{\mathbf{i}} \cap W_{\mathbf{i}} = \phi$. Then we can obtain a set of $(\tau-1)$ -flats $D_{\mathbf{i}}$ ($\mathbf{i}=p+1,p+2,\ldots,\xi+p$) in $W_{\mathbf{i}}$ such that $\dim(D_{\mathbf{i}}\oplus D_{\mathbf{i}}\oplus \ldots \oplus D_{\mathbf{i}})=\mathbf{e}-f$ $-1=(\ell-p)\tau-1$ for any flats $D_{\mathbf{i}}$, $D_{\mathbf{i}}$, \ldots , $D_{\mathbf{i}}$ in $\{D_{\mathbf{i}}\}$ ($\mathbf{i}=1,2,\ldots,\xi$) where $\xi=M_{\mathbf{i}-\mathbf{p}}(\ell-p,s^{\tau})$

We now prove this lemma by separating two cases.

Case (I)
$$e - (e_{p+1} + e_{p+2} + ... + e_{\ell-1}) \ge e_{\ell-1}$$
 (i.e., $e_{\ell} = e - (e_{p+1} + e_{p+2} + ... + e_{\ell-1})$.

- (i) Case $0 \le e_j \le \tau 1$ for j = p + 1, p + 2, ..., g where $p + 1 \le g \le \kappa 1$. Let B_j and F_j be an $(e_j 1)$ -flat and a $(\tau 1 e_j)$ -flat in D_j , respectively, such that $B_j \cap F_j = \phi$ and put $Q_j^* = B_j \bigoplus Y_j^*$ for j = p + 1, p + 2, ..., g.
- (ii) Case $e_j = \tau$ for j = g + 1, g + 2, ..., r where $g + 1 \le r \le l 1$. Let $Q_j^* = D_j \bigoplus Y_j^*$ for j = g + 1, g + 2, ..., r.

(iii) Case $\tau + 1 \leq e_j \leq u$ for $j = r + 1, r + 2, \dots, \ell$.

Let F_j be a $(\tau - 1 - e_j)$ -flat obtained in (i) and let $\underline{a}_{(\sigma_j + n)}$ (n.= 1,2,..., $\tau - e_j$) be a basis of F_j for $j = p + 1, p + 2, \ldots, g$ where $\sigma_{p+1} = 0$ and $\sigma_j = j-1$ Σ $(\tau - e_j)$ $(p + 2 \le j \le g)$. Since $e_l = e - (e_{p+1} + e_{p+2} + \ldots + e_{l-1}) = (l - p)\tau + f - (e_{p+1} + e_{p+2} + \ldots + e_{l-1})$ and $e_j = \tau$ $(j = g + 1, g + 2, \ldots, r)$, $(\tau - e_{p+1}) + \ldots + (\tau - e_g) + (\tau - e_{g+1}) + \ldots + (\tau - e_r) + (\tau - e_{r+1}) + \ldots + (\tau - e_{l-1}) + (\tau - e_l) = (l - p)\tau - (e_{p+1} + e_{p+2} + \ldots + e_{l-1}) - e_l$ implies

Put $K_{i} = \underline{a}_{(\sigma_{i}+1)} + \underline{a}_{(\sigma_{i}+2)} + \cdots + \underline{a}_{(\sigma_{i}+e_{i}-\tau)}$ for $i = r+1, r+2, \dots, \ell-1$ and put $K_{i} = \underline{a}_{(\sigma_{\ell}+1)} + \underline{a}_{(\sigma_{\ell}+2)} + \cdots + \underline{a}_{(\sigma_{\ell}+e_{\ell}-f-\tau)}$ where $\sigma_{r+1} = 0$ and $\sigma_{i} = 1$ $\sum_{j=r+1}^{i-1} (e_{j} - \tau) (r+2 \le i \le \ell-1).$

Let $Q_j^* = D_j \oplus K_j \oplus Y_j^*$ for $j = r + 1, r + 2, ..., \ell - 1$ and let $R_k^* = D_k \oplus K_\ell \oplus W_2 \oplus Y_k^*$ for $k = \ell, \ell + 1, ..., \lambda + p$ and let $T_n^* = Y_n^* \oplus W$ for $n = \lambda + p + 1, \lambda + p + 2, ..., \pi$.

Let V_i , Q_j , R_k and T_n be the dual space of V_i^* , Q_j^* , R_k^* and T_n^* , respectively, for each i, j; k, and n. Let $\beta = \{V_i\} \cup \{Q_j\} \cup \{R_k\} \cup \{T_n\}$. Then β is a required set.

Case (II)
$$e - (e_{p+1} + e_{p+2} + ... + e_{l-1}) < e_{l-1}$$
 (i.e., $e_l = e_{l-1}$).

Similary, it can be shown that Lemma also holds in this case. This completes the proof.

Lemma 2. There exists an ℓ -TE set β consists of $(u + e_i)$ -flats V_i $(i = 1, 2, ..., \ell - 1)$, $(u - e_j)$ -flats Q_j $(j = \ell, \ell + 1, ..., \pi)$ in $PG(\ell(m+1)-1, s)$ where π is an integer which is given in Lemma 1.

Proof of this lemma is similar to that of lemma 1 and hence we omit the proof of this lemma.

[Proof of Theorem 2]. Similary to the proof of Theorem 1, we shall prove that of this theorem by separating two cases.

Case (I) when q = 0. From Lemma 1, we can obtain $(\delta + e_i)$ -flats V_i (i = 1, 2,...,p) and μ -flats V_j^μ (1 $\leq \mu \leq \delta$, j = 1,2,..., ϵ_μ) such that

$$V_1 \cap V_2 \cap \cdots \cap V_p \cap U_{p+2} \cap \cdots \cap U_{\ell} = \phi$$

for any flats U_{p+1} , U_{p+2} , ..., U_{ℓ} in $\{V_j^{\mu}\}$. Let $\beta = \{V_j^{\mu}\} \cup \{V_j\}$. Then it is easy to see that β is a required set.

Case (II) when $1 \le q \le l - 1$. Similary to case (II) in the proof of Theorem 1, we can easily prove this theorem. This completes the proof.

[Proof of Theorem 3]. Similary to the proof of Theorem 2, we can easily prove this theorem and hence the proof of this theorem is omitted.

References

- [1] B. I. Belov. V. N. Logachev. and V. P. Sadimirov,

 Construction of a class of linear binary codes achieving the

 Varshamov-Griesmer bound, Problems of Info. Transmission, 10 (3)

 (1974), 211-217.
- [2] P. Dembowski, Finite Geometries (Springer-Verlag, Berlin, Heidelberg, New York, 1968).
- [3] N. Hamada and F. Tamari, Construction of optimal codes and optimal fractional factorial designs using linear programming, Annals of Discrete Mathematics 6 (1980) 175-188.
- [4] N. Hamada and F. Tamari, Construction of optimal codes using flats and spreads in a finite projective geometry, European Journal of Combinatorics 3, (1982), 129-141.
- [5] G. Solomon and J. J. Stiffler, Algebraically nuctured cyclic codes, 170-179.