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1. Introduction
Let /d be a famlly of flats in a t—dimensional finite projective geometry
PG(t,s) where s is a prime- or prime power. Let g (22) be a positive integer.
A family A is said to be an £ intersectional empty set (or £-IE set) if the

intersection of any £ flats A, A A, in 4 is empty but the intersection

23 =t ot 3

~ of some (% - 1) flats B> By, - m;{ is not empty. }{ is also said to

- 5By
be a regular 2-IE set if all flats in ;g have the same dimension, i.e.,dim(A) =
v for all A m;t Furthermore, 5}0 is said to be a maximal (regulér) 2-IE set
if ];U’ > I}{I for all (#‘egular) L-IE sets,d in PG(t,s) where I;z“ denotes the
cardinalty of ). '

Let V(n;s) denote an n-dimensional vector space over a Galois field GF(s).
A k-dimensional subspace C of V(n;s) is called an s-ary linear code with code
length n, ‘k informaﬁion symbols and the minimum distance d if the minimim dis-
tance (Hammming distance) of the code C is equal to d, and is denoted by
(n,k,d;s)-cdde.
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We now conSider, the following problem.

Problem A. Find a linear codes C (called an optimal linear code) whose

code length n is minimum among (¥,k,d;s)-codes for given integers k, d and s.
In this paper, we shall construct optinal linear codes using £¥IE sets.

2. Preljminaly results

We shall give some properties of flats.in PG(n,s) in this section.

Let W be a u-flat in PG(n,s) and let b, (i =1,2,...,u+l) be a basis of
N 'i* - i ‘
the p-flat W. The (n - u —"1)-flat W defined by W = {h € PG(n,s) : }'_19? = 0 over -

GF(s) (1 =1,2,...,+1) is called the dual space of the u-flat W where a’

denotes the transpose of a. Especlally the empty set will be defined as thef

dual space of the, space and vice versa. Then we can easily prove the following :

ool

: o % *
Proposition 1. et V and W beTany flats in PG(n,s) and let V and W

be the'dual space of V-and.W, réspectivély. -Then

: * *
1) V€ Wifand only if V DO W
* * % * * *
M) VAW = (OW) and (VAW =V @W
where V @ W denotes the flats generated by V and W.

A family of t-flats ‘{Vi} in PG(h,s) is called a t-spread if every point

in PG(h,s) belong to one and only one t-flat {V;}-

n+l 3

Let a be a primitive element of GF(s . Then every point in PG(n,s)

- 1 where v =

1s represented by the power czi of c¢'for some 1 = 0,1,...,v N+l

n+l
+ -
(s" ;'— 1)/(s-=1). If t +1divides n + 1, then a family of cyclically generated
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t-flats in PG(n,s), represented by

V. = {a.0+i

6+i
i P >

WL g g1 . ..,8-1)

s ey

23

+
is a t-spread in PG(h,s) where w = (st+1 “1)/(s -1) and 8 = (s" . 1)/(s 1

Since @ 1s a primitive element of GF(q), q'= st+l, every nonzero of elémént of

@F(q) may be represented by a3° (j = 0,1,...,q - 2). Morever, the set of points

ot (1= 0,1,...,8 - 1) may be regarded as that of PG(k,q) where k +1 =
(n +1)/(t +1). This implies that {vi} defined above can also be regarded as

fhe set of all points of PG(k,q). Thus we have

Proposition 2 (ef.[2]). There exists a t-spread in PG(n,s) if and only if
t.+1 divides n + 1. Furthermore, there exists a t-spread {Vi} such that Wi}

can be regarded as the set of all points of PG(k,q) where k + 1 = (n + 1)/(t + 1).

A set L of vectors 21, 2y, - in V(r;s) such that no t vectors

SR
of L are linearly dependent, is called a t—linéarly independent set and a
t-linearly independent set L0 is said to be maximal if there exists no t-lineary
independent set such that |L| > ILOI . The cardinality of a maximal t-lineary
independent set L0 is denoted by Mt(r,s) .

Attempts of obtaining M’c (r,s) have been made by many research workers.
But, unfortunately, Mt(r,s) are patially obtained for some t, r and s but not

yet completely.



Proposition 3. Let m be a nonnegative integer. Then, there exists a set of

{2 - )m + (2 - 2)}-f1ats Y, (1=1,2,...,m in PG(2(m+1)-1,s) such that

(G=1,

dim(Yiln Yiz/‘\. .. ('\Yir) =(2 -r)m + (2 - r - 1) for any flats Yij

2,..,7) In (£} (LgkgR where 1 rg tand v =M4(2,s"0).

Proof. It follows from Proposition 2 that there exists an m-spread {W;}
(1 =1,2,...,7) in BG(2(mHL)-1,s) where ¢ = (s*(™1) _ 1)/ _ 1). Since
each m-flat w; can be regarded as a point in PG(2-1,s™ "), there exists a maxi-
‘mal £-linearly independent set {1} (k = 1,2,...,n) in (i}, i.e., am(yzl
@Y: ®@. .. @Y;r) =mm +r - 1 for any flats'{Y*j}(j = 1,2,...,r) in
{f;}.- Let Y, Dbe the dual. space of Y; in PG(L(m+1)-1,s) for k = 1,2,...,T-
Then, it follows from Proposition 1 that {Yk} (k = 1,2,...,7) is a required

set, This completes the proof.

Corollary. There exists a regular 2-IE set with the cardinality = in .

PG(2(m + 1) - 1,s) where © 1s an integer given in Proposition 3.

Proposition 4. A necessary condition for W5 Mgy o o ., My that there
exist p;-flats W, (1 = 1,2,...,2) in PG(k-1,s) such that LY LY REvAL
= ¢, 1s that His By ¢ - ., M, satisfy the following condition:

Bptu, t oo bp < (200K~ 2.

*
Proof. Iet Wi (1 =1,2,...,2) be the dual space of Wi in PG(k-1,s). Then,
2 * *
1t 15 easily shown that I {dim(W,) + 1} 2 k. Since dim(W;) =k - 2 - u,; for
1=1 -

1=1,2,...,2, we have required result.
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3. Linear codes and linear programmings

Let N = “nj;j " (1= l,2,...,vk, j=1,2, .'..,vk) be the incidence matrix of
v, hyperplanes Hy 1= 1,2,...,vk) and v, points Qj (G = 1,2,...,vk) in PG(k-1,s)
defined by
{l, if the ith hyperplane I-Ii contains the jth point Qj’
n —

1 0, otherwise,

where v,_ = (s - 1)/(s - 1).
It is known that Problem A is equivalentYthe following Problem.B- (¢f. The-
orem 2.2 in [3]).

Problem B. Find a set’ {xj} (L<Jz vk) of nonnegative integers'.{x'j‘} that

—
...k . )
minimizes I x'j subject to the inequalities:
J=1 '
v |
jil (1 —'nﬁ)xj 24 (1 =1,2,...,v) (3.1)

for given integers k, d ard s.

Let @ be a positive integer. It is easy to see that d can be expressed

uniquely by

d=~1+eo+els+“'+e K219 k-1 (3.2)

where ei's are integers satisfying 0

A
@D

> 0.
Proposition 5 (cf. Theorem 2.2 in [3]). If {Xj} G = 1;2,~--,Vk) is a set
of nonnegative integers satisfying the inequalities (3.1) and d is expressed

as (3.2), then
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v,
¥
J=1
. where v, = (s1 -1)/(s

v,

xj k + Bovl + 91V2 + ...+ ek—lvk‘ (3.3)

1) for 1 =1,2,...,k.

We now give a general construction of a solution of Problem B, that is,
a set of nomnegative integers satisfying the inequalities (3.1) and attaing

the 1 Cin>
ower bound (3.3).

Let ey =s-1-49, fori=0,1,..., k-2 and let B be a set which con-
sists of g, wTlats v;_l (Ogugk-2,1-= 1,2,...,€u) where V‘;zs are not nec-

essarily distinct. Given g; (1 =0,1,...,k - 2), let Te ) be the

0512 52
family of all such B’s and let ;J.(B) denote the nunber. of flats in B which

contain the point Qj in PG(k-1,s).

Proposition 6 (cf. Theorem 3.1 in [3]). ILet d be an integer given by
(3.2). If there exists a setf in 3[(50’51”“’6}:—2) such that najc{cj(B) :e

lgisvwlca

-1 + 1, then a set {xj} of nonnegative integers which is given by

{xj =8 5 +1- ;J.(ﬁ) : j= 1,2,...,vk}
1s a solution of Problem B.

Note that there exists a set § in ey,ep5---,€, ,) such that max{z,(B) :

1l by Jz Vk} =92 -11if and only if there exists an 2-IE setB in?(eo,al,---:ek_z)-
It is lnown in [3] that if there exists an ¢-IE set B in 3(0,51,-“,61(_2), then
there exlsts an ¢-IE set B in?(eo,el,...,sk_z) (cf. Lemma 4.1 in [3]). Therefore,

in this paper we shall investigate about £-IE sets of 3:(0,51, ...,f-;k__z) in details.

Let E(k,s) be a collectién of ordered sets (51’52"""61(—2) of integers

such that 0 < e, < s - 1 for 1 = 1,2,...,k = 2. Consider a subset E (k,s) of

€
i
E(k,s) for some t = 0,1,...,k - 2 satisfying the following condition:
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k-2 .
(@) = g st+l
1=1 -~
or (3.1
k-2
(b) iglei_z_t+2:;-ﬁand By By + . .. +B o, (E+1k-1) -1

where B, (1 =1,2,...,t + 2) are the first t + 2 integers in the following series:

k-2 k-3 5

—

k-2,k-2,...,k-2;k-3,k-3,...,k-3;...31,1,...,1

Proposition 7. A necessary condition for €-j (j =1,2,...,k = 2) that
there exists an 2-IE set B in ?(ﬂ,;l,...;ek_Z) for a given positive integer 2 (;2)

is that (51’82""’5‘1(—2) € El_é(k,s) - EZ—B(k’S) where E_l(k,s) = ¢.
Proof. See Theorem 4.1 in [3].

In the following, let £ be an integer such that 2 < £ s k - 2. Let (g,

€55-++5§, o) be any element InE, , where k=fm+1) -q m20,02q <2 ~-1).

-2
Then it follows from (3.4) that (el,ez, . .,e:k_é) must be an ordered set satisfying
the condition:

k-2

< I g, <2-1 (3.5)
T i=6+1 N

o
A

where 6§ = [(k -k - 2)/2]=(2-1)m+4 -2 - q and [x] denotes the greatest

integer not exceeding x.
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Now, we shall describe main theorems in this paper.

Theorem 1. Let (gy,€5,...,5 ,) be an element’ ing ,-E 5

k-2
- .. tisfies the
such that 1=§+1 g; = 0. If an ordered set (el,ez, ,sk_z) sa

following condition:
k-2

LI €

A sm-l-l)
i=1

< Mz(l,

>

then there exists an ¢-IE set § in 3(0,51,...,sk_2)~

Proof. Two cases must be considered (i.e., q=0and 1<q< % - 1).
Case (I) whenq =0 (i.e., k= 2(m + 1)). Let Y, (1 =1,2,...,m) be
{(2 - 1)m + ¢ - 2}-flats obtained in Proposition 3. Consider a y-flat v’:]‘

(lgugk2, j= 1,2,...,5:“) inYt-l-j where t = I ¢, and g5 = 0. Then B=

{V‘J:‘} (lsugk?, j= 1,2,...,¢,) is 2 required set.

Case (IT) when 1 < q <2 -1 (i.e., k=2(m+1) -q). Let Gbe any
{elm + 1) - g - 1}-flat in PG(2(m+l)-1,s). Let v?*q (lgugk-2,3=
1,2,...,€u+q) be a set of (u + q)-flats in PG(L(m+l)-1,s) which were obtained

in Case (I) of this theorem. Since dim(G '/\V‘").Hq) > u, we can obtain p-flats

U? (1gugk-2,5=1.2,...,c) contained in G/\v‘;”q. Let f= {U‘g}; Then,

BB 1s required set, because G can be identified with PG(2(m+l)-g-1,s).

This completes the proof.
| k-2

In the case I
=§+1 -

" p integers such that

€ =P2 1, let us denote by § + e; 1= 1,2»,...,p)

€s+1 €542 €c-2

—

S+1,6+L, ..., 6+1;642,642,...,6+2;...3k-2,k-2, ... k-2

- + .. .+e =e¢e.
ep__<_k 2. Putel+e2 o

A

wherel;e?léezg...
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Theorem 2. Let (sl,;z,...,ek_‘z) be an element in E;, , - E, . such that

2-3
k-2 ‘
1< I e,<2%-2. If an ordered set (e, ,c yee sy ) satisfies the follow-
= 5 = 1°72 -2
1=6+1 -

ing condition:

k-2

I e g M, (2,51

i=
and

§ T mt+l
z Ei _S_ Inin{Ml— (Z-p,s ), Ml(z;s ) - p}
1=§-e+1 P
k-2 .
where I g = pand T = [e/(% - p)](21), then there exists an L-IE set B in
1=6+1 =
g(o,el, . .,ik_z) .
Theorem 3. Let (sl,ez,...,ek_z) be an element in E, , - El__3 sugh _tha.t
k-2 :
L e, =2-1, If an ordered set (e €030 v =) 2) satisfies the following

1=6+1 * 1 - »
condition:

k-2

z g £ Ml(z,smﬂ) R

i=1

then there exlsts an 2-TE set B 1n J(0,e5,.- .55, )

In order-to prove Theorems 2 and 3, we prepare two lemmas.
For simplicity, Put (2 - I)m+ 2 - 2 = u. Let V; (1 = 1,2,...,p) and
VJ (J=p+1l,p+2,...,2) are (u+ ei)-flats and (u = ej)—flats in PG(Q(m+l)

—;,s), respectively, such that Vl f\V2 N- .- ﬂVp {\Vp.,.lﬂ <o Vg =0
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Then it follows from proposition 4 that e (1 =1,2,...,) must be integers

satisfying the condition:

el+e2+”}‘+ep§ep+l+ep+2+'"+ez‘ (3.6)
Let e, (1 =1,2,...,2 - 1) be integers such that lgejSeys-.-2e 5m

and 0 < < = ; . -
€4 S €42 S..-5¢ ;- Pute ma.x{(el te,t.. .4 ep) (ep+l
+ep+2+ .. +e2_1), ez_l}. Then it is easy to see that e, e,, . - . , €
are inte
gers which satisfy the inequality (3.6) and i1 < ep_!_2 <. .02 €1

Put e, + ¢

< .
=S 17 %

+ .. .+ep=eand[e/(l—‘p)]=1'. Then we have

lemma 1. If t>1and & - p 2 2, then there exists an &-IE set J consists
of (u+ e,)-flats vV, 1 =1,2,...,p), (u - ej)—flats QY (J=p+1,p+2,...,
£-1), (u-e)-flats R_(k = 2,2 +1,...,A + p) and (u - e)-flats T (n =1+
P+1,A+p+2,...,7) in PG(L(m+l)-1,s) where 7 = Mz(l,smﬂ) and A = min{r - p,

M!.—-p( ""p,st)} .

*
Proof. Let YJ (J =1,2,...,7) be mflats given in the proof of Proposition
* *
3. Let Ui and Vi be an (ei - 1)-flat and an (m - ei)—flat in Yi, respectively,
* : .
such that Uinvi =¢ for i =1,2,...,p. Let Wbe the flat generated by Ul*, U2,

e U, 1., W=Ul®U2®. . "®Up' Then, it is easy to see that W is an

p
. * ¥ *
(e -1)-flat where e = e, +e, + . . . + e_, because dim(Y; @Y, @. . .Y, )
1 2 p . i, 71, 1g
* '.
=fm+4-1forany flats ¥, (J = 1,2,...,2) in'{f, }. ILetes= (¢-p)t+f
J

(0<f <2 -p). Then we can choose an (e - £ - 1)-flat Wl and an (f - 1)—flat

W,

=p+1,p+2,...,§ +p) In W, such that dim(D, ®D, @ . . .®D, ) =e-Tf
1 , il 12 ll—p

- 1= (2 -p)t -1 for any flats Dy 5Dy 5+« 5D in'{Di} (1=1,2,...,8)
1 2 2-p

in W such that W) ) W, = ¢. Then we can obtain a set of (t - 1)-flats D; (1

- T
where & Ml_p(!.—p,s )

- 10 -



We now prove this lemma by separating two cases.

Case(I)e-(e coote, ) 2e (ie.,e

e ¥ =e - (ep+l +

2

e

p+2+‘ .. te

9.-1) -

(1) Caseogej_f_T»—lforj=p+.1,p+2,..._,gwherep+1§g_5_x—l.

let BJ and FJ be an (eJ -1)-flat and a (t -1 - ej)-flat in DJ., respectively,
* *
such that By N F; = ¢ and put Q; = BJ.@YJ. for j =p + 1,0+ 2,...,8-
(11) Caseej=rforj=g+1,g+2,...,rwhereg+l§r§2.-l. Let
* *
Q =Dj€f)*zJ far =g+ 1l,g+ 2,...,r.

(111) Ca.set+1_§eJ_S_uforj=r+l,r+2,...,2..

Tet F,j bea(t-1- ej)-flat obtained in 1) and.le,_t'a(c +n

T - ej) be a basis of Fj for J=p+1,p+2,...,8 vmere.cpﬂ 0 and oy =
=1

)(n 1,2,...,

- e : “ =e - -
1Ep+1 (t-e) (p+22Jge). Sincee, =e- (e, +e,, e, 1)
- - = j=g+1,g+2,...,T),
(L-p)t+f (e € un ...+el_1)andej Tt(=85+18 -+sT)
(r—epﬂ)-l-.. . .+(r—eg)+(r—eg+l)+. ; .+(r-e)+(r—er+l)
+ .. .+('r—e2__l)+(‘r—el)=(2.—p)r-—(ep+l+ep+2+. . '+ezl)_el
implies
8 ' 2-1
T (t—e)=(e£-f-—‘r)+ T (ei—‘t).
i=p+1l J i=r+l
= : i = + oo 9,—1
i i1
= : = and. =
and put Kl E(GZ-H') +a(0 +2) I 53-'(0’2+e£—f‘-'f.') where 9 0 an _cri
1-1
T (ej-t)(r+2§1§2.-1).
J=r+1

- 11 -
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. * * *°
Let Q = DJ.,@KJ.@YJ. for j=r +1,r +2,...,4 - 1and let R_ =Dk®Ky_@

* * * .
wz@kaork=z,g.+1,...,x+pand1et T, =Y @Wforn=X+p+1A+p+2,

ce e ,TI'.
h i’ J‘ b Rk arld- T be tbe d‘Jal Space. Of Vs Qj 3 Rk and n’ . p y,

for each i, .35 k, and n. Let 3= {vi} v {QJ.} ] {Rk}U' {Tn}.' Then,ﬁ is a required

set.
Case (II) e - (ep+1 + €42 + ... +’e2_1) <ep 4 (i.e., g = el-l)'
Similary, it can be shown that Lemma also holds in this case. This completes
the proof.

Lemma 2. There exists an L-IE set B consists of (u + ei)-,flats A (1=1,
2,...,4 = 1), (u- ej)—flats QJ (J =2, +1,...,7) in PG(2(m+1)-1,s) where T is
an integer which is given in Lemma 1.

Proof of this lemma is similar to that of lemma 1 and hence we omit

the proof of this lemma.

[Proof of Theorem 2]. Similary to the proof of Theorem 1, we shall prove
that of this theorem by separating two cases.

Case (I) when q. = 0. From Lemma 1, we can obtain (§ + ei)—flats Vi (1=1,
2,...,0) and p-flats V}‘ (11 $8,J=1,2,...,6,) such that

NN NN TeNn- - NG = 0

foranyflatsUp+,Up+2, « e ey

easy to see that § is a required set.

Uy tn (V1. Let B= (A (v;}. Then it is

-12 -
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Case (II)whenlgq;l-l. Similary to case (II) in the proof of Theorem

1, we can easily prove this theorem. This completes the proof.

[Proof of Theorem 3]. Similary to the proof of Theorem 2, we can easily

prove this theorem and hence the proof of this theorem is omitted.
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