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CHARACTERIZATION OF MIN-HYPERS IN A FINITE PROJECTIVE GEOMETRY

AND ITS APPLICATIONS TO ERROR-CORRECTING CODES

Noboru Hamada

Osaka Women's University

1. Introduction

Let V(n;q) be an n-dimensional vector space consisting of row vectors
over a Galois field GF(q) of order g where n is a positive integer and g is a
prime power. A k-dimensional subspace C of V(n;g) is said to be an (n,k,d;q)-
¢code (or a g-ary linear code with code length n, dimension k, and minimum
distance d) if the minimum distance of the code C is equal to d, that is,
min{ d(a,B) [ o, BE€C, a#B } = d where d(a,B) denotes the Hamming distance
between two vectors o and B in Vin;q).

It is well known (cf. MacWilliams and Sloane (1977) in detail) that if the
elements of an (n,k,d;q)-code C are used as codewords over a g-ary symmetric
channel, with g inputs, g outputs, a probability l-p that no error occurs, and
a probability p (< 0.5) that an error does occur, each of the g-1 pdssible
errors being equally likely, the code C is capable of correcting all patterns
of [(d-1)/2] or fewer errors by using a maximum likelihood decoding where [x]
denotes the greatest integer not exceeding x. Hence in order to obtain a g-ary
linear code which is capable of correcting most errors for given integers n, k
and q, it is sufficient to obtain an (n,k,d;q)-code C (called an optimél linear
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code) whose minimum distance d is maximum among (n,k,*;q)-codes for given inte-
gers n, k and q. It is also known that in order to obtain an optimal linear
code, it is sufficient to solve the following problem for any prime power g and

any integers k and d such that k > 3 and 4 > 1.

Problem A. Find an (n,k,d;q)-code C whose code length n is minimum among

(*,k,d;q)-codes for given integers k, 4 and q.

Let g be any prime power and let k and d be any integers such that k > 3

and 4 > 1. Then d can be expressed uniquely as follows.
(1.1) d = owdg - I e g

using some integers w and ea's such that w > 1 and 0 £ € < g-1. Using (1.1),

o
a lower bound for the code length n of Problem A, due to Griesmer (1960) for the
case g = 2 and to Solomon and Stiffler (1965) for the case g > 3, can be express-

ed as follows.

Theorem 1.1. If there exists an (n,k,d;q)-code, then

k-1 d k-2
(1.2) n > % - = wvV - I € v
2=0 qz k a=0 o o+l

where w and sa's denote integers determined by (1.1) from three integers k, d

and g and vu = (qu-l)/(q—l) for any integer u > 0 and [x ] denotes the small-

est integer > x.

Theorem 1.1 shows that in order to obtain a solution of Problem A for given

integers k, d and g, it is sufficient to obtain an (n,k,d;q)-code meeting the
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Griesmer bound (1.2) in the case where there exists such a code for given inte-

gers k, d and q. Hence we shall consider the following

Problem B. (1) Find a necessary and sufficient condition for integers
k, d and g that there exists an (n,k,d;q)~code meeting the Griesmer bound (1.2).
(2) Characterize all (n,k,d;q)-codes meeting the Griesmer bound (1.2) in

the case where there exist such codes.

Remark 1.1. Since in the special case (el,ez,-o-,ak_z) = (0,0,°"",0),
i.e., d = qu—l - €yr Problem B has been already solved completely for any prime

power g and any integers k, w and € such that k > 3, w > 1 and O 2 €, L qg-1
(cf. Corollary 2.2 in Hamada (1985) for example), it is sufficient to solve

Problem B for the case (e ,e,,"-,€ ) # (0,0,---,0).

2’
Remark 1.2. In the case (el,ez,"',ek_z) # (0,0,---,0), d can be also

expressed as follows.

h ui
(1.1") d = wgqg - (e+ X g )
i=1

using some integers w, € and ui's such that w > 1, 0 < € < g-1 and
£1 €2 k-2

— A — A - A
(1.3) (llll...lll 2127..'121 ot ’ k_zlk"zl"'lk"z) = (1111112, et ,llh)

where h = I Eu‘ For example, (1.3) means that “l =1, u2 = 1 and u3 = 3 in
a=1

the case k = 5, g > 3 and (€l,€2,€3) = (2,0,1). In this case, the Griesmer

bound (1.2) can be expressed as follows.
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(1.2") n > wv - (e +

where w, €, h and ui's denote integers determined by (1.1').

It is well known (cf. Baumert and McEliece (1973). and Hamada and Tamari

(1980)) that for any integers k and g, there exists some integer d_ (depending

0]
on k and q) such that there exists an (n,k,d;q)-code meeting the Griesmer

bound for any integer 4 ;=d0' From the actual point of view, it is desirable
to obtain a solution of Problem A (or B) for comparatively small integers k, d

)

and qg. Hence we shall confine ourself to the case w = i and (31,82,5~-,ek_2
# (0,0,--+,0) in this paper. Problem B has been solved completely by Helleseth
(1981) for the case w = 1 and q = 2 and by Hamada (1985) for the case w = 1,
q23ande =0orl(a=0,1,--,k-2).

The purpose of this paper is to generalize those results using characteriza-
tion of min-hypers in a finite projective geometry. In Section‘z, a connection
between a min-hyper and an (n,k,d;q)-code meeting the Griesmer bound (1.2) will
be described and it will be shown that in order to solve Problem B for the case
w =1 and (81,82,"',€k_2) # (0,0,---,0), it is sufficient to solve Problem C,
i.e., it is sufficient to find a necessary and sufficient condition for integers
€

€ , t and g that there exists an {f,m;t,gq}-min-hyper and to

o' f17 77T 7 Fea1

characterize all‘{f,m;t,q}—min-hypers if there exist such min-hypers where t =
t-1 t-1

k-1, £ = x sav and m = % €V . In Section 3, several construc-

a=0 o+l a=1 o o

tive methods of min-hypers and a sufficient condition for the existence of a
min-hyper will be given. In Section 4, we shall characterize certain min-hypers

and using these characterizations, we shall obtain a necessary condition for the

existence of some min-hyper. In detail, refer Hamada (1986a,1986b and 1986c) .
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2. A connection between a min-hyper and an (n,k,d;q)-code meeting the bound (1.2)

In order to solve Problem B for the case w = 1, we shall use a min-hyper

which has been introduced by Hamada and Tamari (1978).

Definition 2.1. Let F be a set of f points in a finite projective geometry

PG(t,q) of t dimensions where t > 2 and £ > 1. If (a) |FMN H| > m for any
hyperplane (i.e., (t-1)-flat) H in PG(t,q) and (b) IF n HI = m for some hyper-

plane H in PG(t,q), then F is said to be an {f,m;t,q}-min-hyper where m > O and

lAl denotes the number of elements in the set A.

Example 2.1. (1) Let F be a p-flat in PG(t,q) where 0 < u < t. Then F

is a {Vu+l, vu;t,q}—min-hyper where Vu = (qu-l)/(q-l) for any integer u > O.

Because IFI = vu+l' [F N HI = vu or Vu+l for any hyperplane H in PG(t,q) and

lFN H| = vy for some hyperplane H in PG(t,q).

(2) Let F be a set of g. 0-flats, €

0 1-flats, f" ’ €

(t-1)-flats in

1 t-1

PG(t,q) which are mutually disjoint where 0O §=€a 2g-1 for a = 0,1,---,t-1.
t-1 t-1
ThenFisa{ X ev ., I savu;t,q}-min-hyper.

0=0 o o+l o=1

Definition 2.2. Let:&3C(€l,€2,"',Sk_z;k—l,q) denote a set of all (n,k,d;q)-

k-2
codes meeting the Griesmer bound (1.2) in the case w = 1 and d = qk—l - I saqa.
k-2 k-2 =0
.o s Yo b ck— -
Let d3F(eO,el, ,ek_z,k 1,q) denote a set of all {aEO € Va1’ = € Vy ik 1,q}

min-hypers.

Definition 2.3. T™wo (n,k,d;q)-codes Cl and C2 are said to be congruent if

there exists a k X n generator matrix G2 of the code C2 such that G2 = GlPD (or

G2 = GlDP) for some permutation matrix P and some nonsingular diagonal matrix D

whose entries are elements of GF(q) where Gl is a k x n generator matrix of Cl'
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The following theorem is due to the author (cf. Theorems I, 2.3 and 2.4

in Hamada (1985)).

Theorem 2.1. There is a one-to-one correspondence between a set BC(SO'

€.,

1’ -,ek_z;k—l,q) and a set d3F(

eo,el,"',&;k_z;k—l,q) if we introduce an

equivalence relation between two (n,k,d;q)-codes as Definition 2.3 where

(Eo,sln"‘,ek_z) 76 (OIOI"'IO)°
Remark 2.1. (1) Theorem 2.1 shéws that ﬁc(eo,el,“',ek_z;k—l,q) # 0

if and only if @F(eo,sl,---,ak_z;k—l,q) # 9.
(2) Let ea's, k and g be any integers such that BF(eo,sl,--o,ek_z;k-l,q)

# @ and let F = { (hl) , (1_92) ;o (_Igf) } be any {f,m;k-1,g}-min-hyper where
k-2 k-2
f= I ev ,m= L € v, b,'s being distinct nonzero vectors in a k-dimen-
o o+l o’ =i
sional vector space over GF(q) consisting of column vectors and (b) denotes a

point in PG(k-1,q), i.e., (21) = (\_)2) if and only if there exists some nonzero
element o in GF(q) such that v, =0y,. Let G = [_]91 1_32 Ef 1. Then we

can obtain an (n,k,d;q)-code meeting the Griesmer bound (1.2) for the case w = 1

k-2
and d = qk-:L - I eaqa from the matrix G which is a k x £ generator matrix of

a=0

a g-ary anticode with code length f, dimension < k, and maximum distance f-m

(cf. Ch. 17-§6 in MacWilliams and Sloane (1977) in detail).

tt*,E )

Definition 2.4. Let E(t,q) denote a set of all ordered sets (so,e =1

l’

of integers eu's such that (e -,st_l) # (0,0,--+,0) and 0 < sa < g-1 for

1782 °

o =0,1,---,t~1. Let U(t,q) denote a set of all ordered sets (g,u.,u ,---,uh)

172
of integers €, h and u;'s such that 0 < e <g-1, 1 <h < (t-1) (g-1), 1 L3R IS

291 for £ =1,2,---,t-1 where n, denotes the

" 2

2;---5__uh;t—lan60;nz
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number of integers i in { 1,2,---,h } such that ui = ¢ for the given integer %.

Theorem 2.1 and Remark 1.2 show that in order to solve Problem B for the

case w = 1 and (e ',sk_z) # (0,0,---,0), it is sufficient to solve the

1'82'..

Problem C. Let t and g be a given integer > 2 and a given prime power.

(1) Find a necessary and sufficient condition for an ordered set-(so,el,

---,et_l) in E(t,q) (( or an ordered set (eg,u.,u ,"',uh) in U(t,q) )) that

1°72
t-1 t-1 ' h
there exists a { Z e v .., I € v it,ql-min‘hyer (( or a { IVt
h a=0 a=1 i=1 i
I v ;t,q}-min-hyper )).
i=1 M3
t-1 t-1

(2) Characterize all { I € Vor1’ T €4V it,q}-min-hyper§(( or all
h h

a=0 a=1
{ = v +1 +e, L v ;t,gq}-min-hypers )) in the case where there exist such
i=1 M3 i=1 Mi

min-hypers.

3. Construction of several min-hypers and a sufficient condition

“n
LA < <A <t-1,0<m

A;'s such that 1 <n < (t+1) (g-1), 0 £ A 5

1

and O §=mu 2g-1 for o = 1,2,---,t-1 where ma denotes the number of integers i

in { 1,2,---,n } such that Ai = o for the given integer o. Leth(t,q) be a

set of all ordered sets (c,ul,uz,---,uh) such that 0 < 0 < g and (O,ul,u2,~--,uh)

€ U(t,q) where U(t,q) denotes a set defined in Definition 2.4. |
Definition 3.1. For each ordered set (Al,kz,"',kn) inrA(t,q), let us

denote by E;(Al,kz,-°',hn;t,q), a family of all sets lj Vi of a Al-flat Vl’ a

i=1
in PG(t,q) which are mutually disjoint. As

lz—flat v ; a Am—flat YL

2’ pi}

occasion demands, we shall denote :}(Al,xz,"',kn;t,q) by QfU(c,ul.uz,"',uh;t,q)
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where o mo, h n mo, ui )\mo_'_i

of integers i in { 1,2,---,n } such that A; = 0.

(i=1,2,---,h) and my denotes the number

Definition 3.2. Let V be a 8-flat in PG(t,q) where 2 < 6 < t. A set S

of m points in V is said to be an m-arc in V if IS N HI £ 6 for any hyperplane
H in PG(t,q) such that VMl H is a (6-1)-flat in the 6-flat V where m > 6. 1In

the special case 6 = t, S is said to be an m~arc in PG(t,q). Let m(t,q) denote

the largest value of m for which there exists an m-arc in PG(t,q).

Definition 3.3. Let M(8,0;t,q) denote a family of all sets V \ S of a

9-flat V in PG(t,q) and a (g+b-0)-arc S in Vwhere 2 < 6 < tand 0 £ 0 £ q.

Let m(e,c;g,'ﬂl,ﬂ -+-,7 ;t,q) denote a family of all sets (V\S) U AU B of a

27 2
set V\S in u(e,c;t,q) , & set A of § points in PG(t,g) and a set B in J‘U(O,'rrl,

«e-,m ;t,q) such that VA A =g, (vis) N B=¢andAﬂB=¢whereO;z;, 3

Ty %

2q, ¢+ g L4, 2 5.9 S | P 0 5.2 5.(t—2)(Q'l)r :% (OIW ¢t Mg, 7trq) = Q in
= = =7'="r " == v 2 2
the case £ = 0, (O'“l’ﬂz'”"ﬂﬁ,) € U(t,q) in the case £ > 1 and A = § in the
case § = 0.

Theorem 3.1. (Hamada(1986a)) (1) In the case (c,ul,uz,-",uh) € G(t,q) '

3tU(G,ul,u2,—--,uh;t,q) # @ if and only if either (@) h = 1 and 1 < p, < t-1 or

1
(b) h > 2 and uh—l + uh < t-1.

(2) In the case 2 <6 < t, U(B,0;t,q) # @ if and only if g+6-m(6,9) < 0 < q.
(3) In the case 0 <z, & < q, C+E_i_q,2_5_65__111,1;2,;(t—2)(q—l) and

2,"',1r2;t,q) # @ if and only if either

t <qgor (b) & > 2, 'nz_l+1r2;t-land

(Orﬂlrﬂzr

(a) 2 =1, 6 + most and g+6-m(9,q)

"'IWZ) 3 U(th)l nz(elc;glﬂllﬂ

fia

q+6-m{8,q) < ¢ £ g.

The following theorem give‘s three methods of construction of min-hypers.
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Theorem 3.2. (Hamada(l986a)) Let JU(c,ul,uz,"',uh;t,q) #9, Ud,0;t,q9)

cec,m,;t,q) # @ where (o,u

# ¢ and m(erC;Elﬂll"Tzl 2

creow) € Ult,q).

h h

(1) 1IfF € JU(o,ul,uz,---,uh;t,q) , then F is a { I v11 +1 + 0, I v11 ;
i=1 i i=1l i

lIuZI

t,q}-min-hyper.

0-1 6-1
(2) 1fr € Y(0,0;t,q), thenF is a{ Z (g-1)v +a9, I (g-1l)v_;
) a=1 o+l a=1 o

t,g}-min-hyper.

0-1
(3) IfFe€ n?(e,t;i,wl,wz, ’,wz;t,q), then F is a { El (q-l)va+1 +
2 6-1 2 o=
Z V'ﬂ'.+l + C + Er X (q-l) VU. + Z V’IT. ;t,q}—mln.hyper.
i=1 1 a=1 l:l i

Remark 3.1. Theorem 3.2 shows that in the case g+86-m(8,q) < o < g4, h

v

(6-1) (g-1) 2 2, o

Hla-1) (-1 +1 =~ e (g-1+2 = 77 T H(o-1) (g-D+g-1

(a = _1,2,"',8—1) and uh—l + uh £ t-1 for some integer € such that 2 < 06 < t,

h h

there exist at least 6 { £ v 4179 v ;t,ql-min-hypers F
i=1 M i=1 i

17 Farm ey

and Fe such that Fl € 3'0(0"“11“2!. ..lthtrq) r F(}. € m(a,Cmiga,U(a_l) (q—l)+1'

2y

h;t,q) (o = 2,3,°+-,06-1) and either Fe € m(elce;ger

H(0~1) (g-1) +2’

v e H . i >
Po-1) (g=1)+1' H(g-1) (g-1) +2” ,uh,t,q) or F € JA(8,0;t,q) according as h

(6-1) (g-1) or h = (6-1) (g-1) where [ and Eu (2 £ o < 6) are any nonnegative

integers such that ga + Ea = 0 and g+o-m(a,q) < Ca 2q.

From Theorems 3.1 and 3.2, we have the following corollary which gives a

sufficient condition for integers t, €, h, pl, uz, cee , uh and g (( or integers

h h
k, d and q )) that there exists a { I v + €, I Vll ;t,q}-min-hyper (( or

i=1 Wt i=1 M4

an (n,k,d;q)-code meeting the bound (1.2') in the case w = 1)).
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Corollary 3.1. If either (a) 0 < e <g-l1,h=1andl Ly 2t-lor (b)

0<eg<g-l, h>2 anduh_l+uh

a = = eese — = = LR —-_
ane Wig-1) (g-1)+1 ~ M(a-1) (g-1) +2 Ya-1) (g-1) +q-1 = & (@ = 1s2,000,0-1)
h h
for some integer 6 such that 2 £ 6 < t, there exist a {z vu +1 + €, I vu ;
i=1 i i=1 i

t,q}-min-hyper and an (n,k,d;q)-code meeting the bound (1.2') where k = t+1,

h u,
w=1and d = qk 1. (e+ 2 g * ).

i=1

In the special case g = 2, we have the following corollary since m(6,2) =

0+2 for any integer 6 > 2.

Corollary 3.2. If either (a) € € {0,1}, h =1 and 1 < p, < t-1 or (b)

1
e €{0,1}, h > 2 and u ., + Wy £t-lor (c) e €{0,1}, 2 <h < t-1 and (uy,u,,
h h
-,uh) = (1,2,°"",h), there exist a { £ v 4 FEr v ;t,2}-min-hyper and
i=1 ¥ i=1 W
an (n,k,d;2)-code meeting the Griesmer bound (1.2') where k = t+1, w = 1, d =
h M.
2k o (e+ ¥ 2 1) and vu = 2" - 1 for any integer u > O.
i=1

Helleseth (1981) showed that (1) a sufficient condition in Corollary 3.2
is also a necessary condition in the case g = 2 and (2) there is no (n,k,d;2)-
code meeting the Griesmer bound (1.2') except for (n,k,d;2)-codes constructed

by Theorem 3.2, Remarks 3.1 and 2.1 in the case g = 2, k = t+l, w = 1 and 4 =

h oy,
Zk_l -(e+ I 2 * ). In terms of a min-hyper, his result can be expressed

i=1

as follows.

Theorem 3.3. Let (e,ul,pz,---,ph) be an ordered set in U(t,2) and let

vy = Mo for any integer p > O where t » 2.
(1) In the case h =1, F is a {V11 +1+s,vu ;t,2}-min hyper if and only if

1 1

- 10 -

< t-1 or (c) g+6-m(6,q) < e < g-1, h = (6-1) (g-1)
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FE 3U<e,ul;t,2>.

h
2 In th h > + < t- i
(2) n the case h > 2, Hpop tH < t-1 and (ul,uz) # (1,2), F is a {.Z Vo4l
h i=1 i
+e, I v_ ;t,2}-min-hyper if and only if F € Eﬁ (e, v U, "",u ;t,2)
i=1 i U 172 h

(3) In the case t >3, (ul,u2,~-',uh) = (1,2,---,h) and t/2 < h £ t-1 (i.e.,

h

S o . . . .
W > t-1), F is a { Zl Vu 4t I vui,t,Z} min‘hyper if and only if

+

e iiap

Hh-1

F € MY (h+l,e;t,2).

]

(4) In the case t > 4, (ul,u2,°-°,uh) (1,2,-+-,h) and 2 < h < t/2 (i.e.,

h h
i +u <t-1),Fisa{Z wv +€e, I v
h-1 h = +1 :
i=1 M4 i=1 M

-,h;t,2) or F € M(h+l,e;t,2) or F € n?(a,;a;ga,a,a+l,

;t,2}-minhyper if and only if
either F € G (e,1,2,""

---,h;t,2) for some integer o in-{2,3,---,h} where ¢, and Ea are any nonnegative

integers such that Ca + & = €.

(5) In the case h > 8, (ul,uz,---,ue_l) = (1,2,---,06-1), Hg > 06 and W +

h h
¥, < t-1 for some integer 8 > 3, Fisa { I v €, I v_ ;t,2}-min-hyper
h = = u +l . .
i=1 i=1 i
if and only if either F € :FU(e,ul,uz,"',uh t,2) or F € ﬂZ(a,Ea Ea,ua.ua+l Ty

uh;t,z) for some integer a in {2,3,:--,8} where ca and Eu are any nonnegative

integers such that ;u + & = €.

+ - i
(6) In the case h > 2, uh—l uh > t-1 and (ul,uz) # (1,2), there is no
h h
{ I v +€, I v ;t,2}-min-hyper.
+
=1 u 1 i=1 ui

Remark 3.2. Theorem 3.3 can be proved directly using the inductive stru-

cture of a min-hyper such as Proposition 3.1 in Hamada (1985).

h h
Remark 3.3. In the case g > 3, there exists a {z vu +1 + e, X vu ;
h h i=1 i i=1 i
t,q}-min-hyper except for { I v + €, I v ;t,ql-min-hypers constructed
i=1 M3t i=1 My

by Theorem 3.2 and Remark 3.1.
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Example 3.1. (1) In the casegq= 3, h=1, u, =1, € = 2and t > 2, let
(vo), (vl) and (v2) be any non-collinear points in PG(t,3) and let F = {(vl),

+ + . : R - . .
(vo vl), (2vO vl), (vz), (vl+v2). (v0+2vl+v2)}. Then F is a {v2+2,1,t,3} min

hyper which contains no 1l-flat (i.e., F & }U(Z,l;t,3)) where v2 = (32—1)/(3—1) .

(2) In the case g =4, h =1, pl =1, e=2and t > 2, let (vo), (vl) and

+\))l

(v2) be any noncollinear points in PG(t,4) and let F = { (v0+vl), (avo 1

2 2 2
+ + 3 . 0 -
(o Yo vl), (VZ), (vo vl+v2)v (a v0+avl+v2), (av0+a vl+v2)} where o is a primi

. 2
tive element of GF(2”) such that a2 =a + 1 and u3 =1. Then F is a {v2+2,1;

t,4}-min-hyper which contains no 1-flat where v (42—1)/(4—1).

2

(3) In the case q > 4, h = 2, My =M, = l, € =g-2 and t > 2, let V be any

2
2-flat in PG(t,q) and let Li (i =1,2,---,gq4l1) be g+l 1l-flats in V passing

through one point Q in V and let F = L U L, U {P3,P4,---,P l} where P, (3<1i

q+
< g+l) denotes any point in L; \ {Q0}. Then F is a {2v2+(q-2),2;t,q}-min-hyper

such that F £ J‘U(q—2,l,l;t,q) .

From Theorem 2.6 in Hamada (1985), we have the

g t-1 t=1
Theorem 3.4. If there exists a { Eo Eava+l' afo eava;t,q}—mln-hyper,
t-1 t-1 o= =
there exists a {afn Eava+l—n' afn emvu_n;t,q}—mln-hyper for any positive

integer n < t-2.

From Theorem 3:4, we have the following corollary which is very useful in

proving the nonexistence of a min-hyper.

t=1-n t-1-n
Corollary 3.3. (1) If there isno { I € Vo1’ b eava;t,q}—mln-
a=0 0=0
t-1-n
hyper for some positive integer n < t-2, there is no { GEOV eavm+a+l +
m-1 t-1-n m-1 A N
. i . .
z EiViiyr I Eavm+a z Ei vi,t,q} min-hyper for any integers m and €,'s

i=0 a=0 i=0
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suchthatl;m;nandO;eI;q—l.
|  n h
(2) If there isno { I v R A-TI ;t,q}-min-hyper for some ordered
i=1 M i=1 Wi
. h
set (9'“1'“2""’uh) in U(t,q) such that W < t-2, there is no {_2 Vi ml +
i=1 i
m-1 « h m-1 *
ev 1t )3 €0Vor1’ .Z V., 4m +tev o+ 3 ezvz;t,q}—mln-hyper for any integers
2=0 i=1 i 2=0
mand ;'s such that 1 £m < t-1-w_and 0 g e, < g-1.

4. Characterization of certain min-hypers and a necessary condition

Recently, the author proved the following theorem using Propositions 3.1 and

3.2 in Hamada (1985).

Theorem 4.1. - (Hamada(1985)) Let t and g be any integer > 2 and any prime
power > 3 respectively and let (e,ul,uz,---,uh) be any ordered set in U(t,q) such

that ¢ € {0,1} and 1 < u, < p, < --- < W < t-1 where 1 < h < t-1.

1 2
(1) Inthe caseh=1and 1l <y, < t-1, F is a {v + g,v ;t,q}-min-hyper
=" = T .
if and only if F € Gﬁ (e,u,:t,q) .
vl h h
(2) 1In the case h > 2 and»ph_l + Hy < t-1, Fis a {.E Vu.+l +e, I v ;
) i=1 i i=1 i
t,g}-min-hyper if and only if F € :% (e, U, 1, ,u ;t,9). :
U 172 h h h
(3) 1In the case h > 2 and W tw > t-1, there is no {.Z Vot e,‘Z v,
i=1 i i=1 i
t,gq}-min-hyper F.
In order to generalize Theorem 4.1, it is necessary to characterize all
{slv2 + so,sl;t,q}—min-hypers for any ordered set (eo,el) in E(t,q) and to
generalize Propositions 3.1 and 3.2 in Hamada (1985). In this section, we shall

try to characterize all {elv +e ;t,ql-min-hypers for any ordered set (so,el)

27%0"%1
in E(t,q) such that € € {1,2}, € € {0,1,2}, t > 2 and g > 3 and to generalize
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Proposition 3.1 in Hamada (1985). In the case M, > 2 and 0 < € < g-1, we have

1

the following theorem from the proof of Proposition 3.1 in Hamada (1985) since

v + (g-1) < v for any integer > 2.
-1 g " y ger W >

Theorem 4.2. - Let (e,ul,uz,-—-,uh) be any ordered set in U(t,q) such that

Hy ;:2 and :;U(s,ul—l,uz

g+l - h h

integers such that z §. = ¢. If there exists a { £ v +€e, T v ;t,g}-
s J .4 M.+l .. M,
j=1 i=1 i i=1 i

—l,"',uh—l;t-l,q) # @ and let 6j's be any nonnegative

min-hyper F such that (a) F1 G € :}(ul—z,u -2, --- ,uh—2;t,q) for some (t-2)-

2

flat G in PG(t,q) and (b) F () Hj € EﬁU(Bj,ul-l,uz—l, .o ,uh—l;t,q) for any

hyperplane Hj (1 < j < g+l) which contains G, then F € EﬁU(s,ul,uz,---,uh;t,q).

Remark 4.1. Let (e,ul,uz,-

h > 2 and ul > 2. Then it follows from Theorem 3.1 that (1) :}U(e,ul—l,uz—l,

--,uh) be an ordered set in U(t,q) such that

...,uh—l;t-l,q) # @ if and only if yu By < t and (2) :}U(s,ul,uz,"',uh;t,q)

h-1 T

R . + _ . : ; = i
# @ if and only if uh—l uh 2 t-1 Hence in the case uh-l + uh‘ t, there is
h h ,
no { Z v +1 + e, I v ;t,g}-min-hyper F which satisfies conditions (a) and (b)
i=1 Yy i=1 ¥
h h
in Theorem 4.2. In order to show that there is no { & v +1 +e,I v ;it,gl-
i=1 i i=1 ui
*
min-hyper in the case uh—l + uh = t, it is sufficient to show that (a) F €
h h , s
,;}(Lﬁfz,uz-z, .o ,uh—z;t,q) for any {.2 vu.—l' '2 vu-_z;t,q}—min-hyper F  and
. i=1 i i=1 i
- » h . h
® F*e R (e,u-l,u -1, --- ,u-l;t,q forany { I v +¢e, I v it,ql-
| v o2 h i=1 Wi i=1 WL

min-hyper F**.

From Theorem 4.2, Remark 4.1 and Corollary 3.3, we have the

Corollary 4.1. (1) IfF e :ﬁtﬁe,l;t,q) for any {v2+e,vl;t,q}-min.hyper

F*, then F € :; (e,u,;t,q) for any {v + ¢,v. ;t,q}-min-hyper F where t > 3,
U 1 pl+l ¥y
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0<e<qg-1and 2 <y < t-1.

1

(2) Let (OIP 3 P

17, --,ph) be an ordered set in U(t,q) such that h > 2, u

h
-2;t,q) for any { & v
i=1 ™

1 2

*
and Wo_q + B ;t.‘ If (a) F € 3!(}11-2,112-2, ctc U
h
I v
i=1 ¥

h =1
i

_2;t,q}—min-hyper F* and (B) F** ¢ :}(ul—l,u -1, --- -1;t,q) for any

s
i 2 h

{

i

Vu, ! Vﬁ
i i

h
I
= i

_pitsal-min-hyper F**, then F € Fi(u +m,u tm, --- . +m;t,q) for

2 h

1
h

any { Z v
Y VU-
i

it -min* i < < —~1-u -
o1 ui+m+l, +q}-min‘hyper F in the case 0 < m < (t-1 Wy uh)/z

i1 +m
h
and there is no { Z wv

i=1

v

’ m;t,q}—min-hyper F in the case (t-1-M
1 i

+

R

u.+m+1’ h-1"My) /2
1 1

<m< t-l-y .
m=tluh

In the case h 2> 2, ul = 1 and uh > 3, we can prove the following theorem

using a method similar to the proof of Proposition 3.1 in Hamada (1985).

Theorem 4. 3. Let (e,ul,uzl---,uh)' and 0 be an ordered set in U(t,q) and an

£ t and

integer respectively such that h > 6 > 2, Wy =

1, ue;3 and uh_l+u

h

let T be the number of integers i in {1,2,---,h} such that My

g+l
LI 8. =¢€.
j=1

be nonnegative integers such that

h
I Vv ;t,q}l-min-hyper F such that (a) F[lG & :7’\(uT+l—2,uT+

i=1 My 2

some (t-2)-flat G in PG(t,q) and (b) F N Hj € 3~U(T+6j,uT+l—l,u

1 and let 6j's

h

If there exists a { Z v

i=1

427t

P

+ €
41 !
ul

-2, ,uh-z;t,q) for

"luh_l7th)

for any hyperplane Hj (1 £ j £ g+l) which contains G, then F consists of a ue-—flat,

a Mgy

l—flat, ces , Q uh—flat and a set X in PG(t,q) which are mutually disjoint.

Remark 4.2.

either X € :7((1,2;t,2) or X € M(3,0;t,2) in the case g =2, € =0, h 23, u

il =2andu33;3.

2
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Remark 4.3. Theorem 4.3 shows that in the case h > § > 2, pl =1, ue >3
~h h
+ = i + . J— . N
and u__, o=t there is no {iEl Vlli"'l £, i§1 v J‘-,t,q} min-hyper which

satisfies two conditions (a) and (b) in Theorem 4.3 since there exist a uh_l—flat

and a uh—flat in PG(t,q) which are mutually disvjoint if and only if uh—l + uh L

Since there is no space to give the proof of the following theorem, we shall
describe only results. In detail, refer Hamada (1986a, 1986b and 1986c) in

which the proofs of theorems in Sections 3 and 4 and more general results are give

Theorem 4.4. (Hamada(1986b and 1986c¢)) Let t and g be an integer > 2 and

a prime power > 3 respectively and let v, = qg+l. »

(1) In the case 0 L e < E, F is a {v2+e,l;t,q}-min-hyper if and only if
F € 3U(e,l;t,q).

(2) In the case where either (a) g = 3 and € = 2 or (b) g = p2r and Jg < €
2 g-1 for a prime p and a positive integer r, there exists a {v2+’e,l;t,q}—min.
hyper F such that F & J‘U(e,l;t,q).

(3) 1In the case where q is a prime and (gq+l)/2 < € < g-1, there exists a
{v2+s,l;t,q}—min-hyper F such that F ¢ 3‘U(€,l;t,q) .

(4)) In the case t = 2, (a) there is no {2v2,2;t,q}—min-.hyper for any prime
power g > 3 and (B) there is no {2v2+1,2;t,q}—min-hyper for any prime power g
> 4 and (y) there is no {2v2+2,2;t,q}—min-hyper for any prime power q > 5.

(5) In the case t > 3 and g > 3, F is a {2v2,2;t,q}—min-hyper if and only if
F € G\(I,l;t,q).

(6) In the case t > 3 andq =3, F is a {2V2+1,2;t,3}-min-hyper if and only
if either F € £(0,1,1;t,3) or F € (2,1;t,3). 1In the case t > 3 and q 2 4,

F is a {2V2+l,2;t,3}—min-hyper if and only if F € F(0,1,1;t,q) .
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(7) In the case t > 3 and q > 5, F is a {2V2+2,2;t,q}wmin-hyper if and only

if F € J(0,0,1,1;t,q). In the case t > 3 and g = 3 or 4, there exists a {2v2w

+2,2;t,q}-min-hyper F such that F & }(0,0,1,1;t,q).
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