P_k -Factorization of Complete Bipartite Graphs Kazuhiko Ushio Department of Industrial Engineering Kinki University Osaka 577, Japan ## 1. Introduction Let P_k be a <u>path</u> on k points and $K_{m,n}$ be a <u>complete bipartite</u> graph with partite sets V_1 and V_2 , where $|V_1| = m$ and $|V_2| = n$. A spanning subgraph F of $K_{m,n}$ is called a P_k -<u>factor</u> if each component of F is isomorphic to P_k . If $K_{m,n}$ is expressed as a line-disjoint sum of P_k -factors, then this sum is called a P_k -<u>factorization</u> of $K_{m,n}$. In this paper, a necessary condition for the existence of a P_k -factorization of $K_{m,n}$ will be given. And it will be shown that the necessary condition is also sufficient when k is even. ## 2. P_k-Factor of K_{m,n} With respect to a P_k -factor of $K_{m,n}$, we give the following theorem. Theorem 1. A $K_{m,n}$ has a P_k -factor if and only if - (I) $m = n \equiv 0 \pmod{k/2}$ when k is even, and - (II) $m+n\equiv 0\pmod k$, $(k-1)m\leq (k+1)n$ and $(k-1)n\leq (k+1)m$ when k is odd. <u>Proof.</u> (Necessity) Suppose that $K_{m,n}$ has a P_k -factor F. Let t be the number of components of F. Then t=(m+n)/k. Each component is a path obtained by traversing V_1 and V_2 . Thus when k is even, it holds that m=n=kt/2. Condition (I) is necessary. And when k is odd, let t_1 (t_2) be the number of components of F whose end points are in V_1 (V_2), respectively. Then it holds that $m=((k+1)t_1+(k-1)t_2)/2$ and $n=((k-1)t_1+(k+1)t_2)/2$. So we have $t_1=((k+1)m-(k-1)n)/2k$ and $t_2=((k+1)n-(k-1)m)/2k$. From $0 \le t_1 \le t$ and $0 \le t_2 \le t$, we must have $(k-1)m \le (k+1)n$ and $(k-1)n \le (k+1)m$. Condition (II) is necessary. (Sufficiency) When k is even, put m=n=kt/2. Consider a Hamilton-path of $K_{n,n}$ and divide it into t paths of same length. Then they form a P_k -factor of $K_{n,n}$. When k is odd, for those parameters m and n satisfying (II), put t_1 =((k+1)m-(k-1)n)/2k and t_2 =((k+1)n-(k-1)m)/2k and t=(m+n)/k. Then t_1 and t_2 are integers such as $0 \le t_1 \le t$ and $0 \le t_2 \le t$. And it holds that m=((k+1) t_1 +(k-1) t_2)/2 and n=((k-1) t_1 +(k+1) t_2)/2. Using (k+1) t_1 /2 points in V_1 and (k-1) t_1 /2 points in V_2 , consider t_1 P_k 's whose end points are in V_1 . Using remaining (k-1) t_2 /2 points in V_1 and remaining (k+1) t_2 /2 points in V_2 , consider t_2 P_k 's whose end points are in V_2 . Then these t_1 + t_2 P_k 's are line-disjoint and they form a P_k -factor of K_m , n. Corollary 1. A $K_{n,n}$ has a P_k -factor if and only if (I)' $n \equiv 0 \pmod{k/2}$ when k is even, and (II)' $n \equiv 0 \pmod{k}$ when k is odd. ## 3. P_k -Factorization of $K_{m,n}$ With respect to a $\mathbf{P}_k\text{-factorization}$ of $\mathbf{K}_{\text{m,n}},$ we give the following theorem. Theorem 2. If $K_{m,n}$ has a P_k -factorization, then it holds that - (I)" $m = n \equiv 0 \pmod{k(k-1)/2}$ when k is even, and - (II)" $m+n\equiv 0\pmod k$, $(k-1)m\leq (k+1)n$, $(k-1)n\leq (k+1)m$ and kmn/(k-1)(m+n) is an integer when k is odd. <u>Proof.</u> Suppose that $K_{m,n}$ has a P_k -factorization. Let r be the number of P_k -foctors of $K_{m,n}$ and t be the number of components of each P_k -factor. Then t=(m+n)/k and r=kmn/(k-1)(m+n). Thus t and r are integers. By Theorem 1, it holds that $m=n\equiv 0 \pmod k(k-1)/2$ when k is even, and that $m+n=0 \pmod k$, $(k-1)m \le (k+1)n$, $(k-1)m \le (k+1)m$ and kmn/(k-1)(m+n) is an integer when k is odd. Corollary 2. If $K_{n,n}$ has a P_k -factorization, then it holds that (I)"' $n \equiv 0 \pmod{k(k-1)/2}$ when k is even, and (II)"' $n \equiv 0 \pmod{2k(k-1)}$ when k is odd. We prepare the following extension theorem, which is very useful. Theorem 3. If $K_{m,n}$ has a P_k -factorization, then $K_{sm,sn}$ has a P_k -factorization for every positive integer s. <u>Proof.</u> If every subgraph $K_{1,1}$ of $K_{s,s}$ is replaced by $K_{m,n}$, then $K_{s,s}$ is replaced by $K_{sm,sn}$. Using $K_{1,1}$ -factorization (1-factorization) of $K_{s,s}$, we can see that $K_{sm,sn}$ has a $K_{m,n}$ -factorization. Using a P_k -factorization of $K_{m,n}$, we can easily construct a P_k -factorization of $K_{sm,sn}$. About a 1-factorization of $K_{s,s}$, see [1,2]. Using this theorem, we can obtain several results. When k is even, we have the following lemma. Lemma 1. k is even and m = n = k(k-1)/2 ==> $K_{m,n}$ has a P_k -factorization. Proof. The proof is shown by a construction algorithm. Let $\begin{array}{l} {\rm V_1=\left\{\,v_1^{(1)},v_2^{(1)},\ldots,v_m^{(1)}\right\}} \quad {\rm and} \ {\rm V_2=\left\{\,v_1^{(2)},v_2^{(2)},\ldots,v_n^{(2)}\right\}} \ , \ {\rm where} \ {\rm m=n=k(k-1)/2.} \quad {\rm Construct} \ {\rm k-1} \ P_k\ {\rm 's~such} \ {\rm as} \ P_k^{(i)} = v_{(i-1)a+1}^{(1)}v_{(i-1)b+1}^{(2)} \\ {\rm v_{(i-1)a+2}^{(2)}v_{(i-1)b+2}^{(2)}\ldots v_{ia-1}^{(1)}v_{ib}^{(2)}v_{ia}^{(2)}v_{k(i)}^{(2)}, \ {\rm where} \ {\rm a=k/2, \ b=k/2-1} \ {\rm and} \ {\rm k_{(i)=((k/2-1)+1 \ mod\ k-1)+(k/2-1)(k-1)}.} \quad {\rm Then} \ {\rm F=P_k^{(1)}\cup P_k^{(2)}\cup\ldots \cup} \\ {\rm P_k^{(k-1)}} \ {\rm is~a~P_k-factor.} \quad {\rm Increasing~all~point~numbers~of~F~in~V_1} \\ {\rm by~k-1~(mod~m)~simultaneously~k/2~times~and~increasing~all~point~numbers~of~F~in~V_2~by~k-1~(mod~n)~simultaneously~k/2~times,~we~obtain~k^2/4~P_k-factors. \ Then~it~can~be~easily~checked~that~these~P_k-factors~are~line-disjoint~and~that~the~sum~of~them~is~a~P_k-factorization~of~K_m,n}. \end{array}$ Applying Theorem 3 to Lemma 1 and considering Theorem 2, we have the following theorem. Theorem 4. When k is even, a $K_{m,n}$ has a P_k -factorization if and only if $m = n \equiv 0 \pmod{k(k-1)/2}$. When k is odd, we have the following lemmas. Lemma 2. k is odd, (k-1)m = (k+1)n and kmn/(k-1)(m+n) is an integer - ==> (i) $m+n\equiv 0 \pmod{k}$, and - (ii) m = (k+1)s/2, n = (k-1)s/2 when $k \equiv 3 \pmod{4}$, m = (k+1)s, n = (k-1)s when $k \equiv 1 \pmod{4}$, where s is a positive integer. Lemma 3. k is odd, (k-1)n = (k+1)m and kmn/(k-1)(m+n) is an integer ==> (i) $$m + n \equiv 0 \pmod{k}$$, and (ii)' $m = (k-1)s/2$, $n = (k+1)s/2$ when $k \equiv 3 \pmod{4}$, $m = (k-1)s$, $n = (k+1)s$ when $k \equiv 1 \pmod{4}$, where s is a positive integer. Lemma 2 and Lemma 3 can be easily checked. We have the following lemmas. <u>Lemma 4</u>. $k \equiv 3 \pmod{4}$, m = (k-1)/2, n = (k+1)/2==> $K_{m,n}$ has a P_k -factorization. Proof. The proof is shown by a simple construction algorithm. Let $V_1 = \{v_1^{(1)}, v_2^{(1)}, \ldots, v_m^{(1)}\}$ and $V_2 = \{v_1^{(2)}, v_2^{(2)}, \ldots, v_n^{(2)}\}$, where m = (k-1)/2 and n = (k+1)/2. Construct a P_k such as $P_k = v_1^{(2)}v_1^{(1)}v_2^{(2)}v_1^{(1)}v_2^{(2)}v_2^{(1)}\cdots v_{(k-1)/2}^{(2)}v_{(k+1)/2}^{(2)}v_{(k+1)/2}^{(2)}\cdots v_{(k-1)/2}^{(2)}v_{(k+1)/2}^{(2)}v_{(k+1)/2}^{(2)}\cdots v_{(k-1)/2}^{(2)}v_{(k+1)/2}^{(2)}\cdots v_{(k-1)/2}^{(2)}v_{(k+1)/2}^{$ Lemma 5. $k \equiv 1 \pmod{4}$, m = k-1, n = k+1 ==> $K_{m,n}$ has a P_k -factorization. Proof. The proof is shown by a simple construction algorithm. Let $V_1 = \{v_1^{(1)}, v_2^{(1)}, \dots, v_m^{(1)}\}$ and $V_2 = \{v_1^{(2)}, v_2^{(2)}, \dots, v_n^{(2)}\}$, where m=k-1 and n=k+1. Construct two P_k 's such as $P_k^{(1)} = v_1^{(2)} v_1^{(1)} v_2^{(2)} v_2^{(1)} \dots v_n^{(2)} v_n^{($ Theorem 5. k is odd, (k-1)m = (k+1)n and kmn/(k-1)(m+n) is an integer ==> $K_{m,n}$ has a P_k -factorization. Theorem 6. k is odd, (k-1)n = (k+1)m and kmn/(k-1)(m+n) is an integer ==> $K_{m,n}$ has a P_k -factorization. ## References - [1] M.Behzad, G. Chartrand and L. Lensiak-Foster, Graphs and Digraphs, Wadsworth, California, 1979. - [2] F. Harary, Graph Theory, Addison-Wesley, Massachusetts, 1972. - [3] K.Ushio, P₃-factorization of complete bipartite graphs, Presented at "First Japan Conf. on Graph Theory and Applications, Hakone, 1986" and submitted to "Proc. First Japan Conf. on Graph Theory and Applications, Hakone, 1986".