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Kazuhiko Ushio
Department of Industrial Engineering
Kinki University

Osaka 577, Japan

1. Introduction

be a complete bipartite

Lgt Pk be a path on k points and Km,n

graph with partite sets V; and V,, where |V,|=m and |V,|=n. A
spanning subgraph F of Km a

is called a Pk—factor if each component
’

of F is isomorphic to | If Km n is expressed as a line-disjoint
2

sum of Pk-factors,,then this sum is called a Pk—factorization of

m,n’

In this paper, a necessary condition for the existence of a

Pk—factorization of Kyn will be given. And it will be shown that

’

the necessary condition is also sufficient when k is even.

2. Pk—Factor of K
m,n

With respect to a PP

N

-factor of K, ,» we give the following
, N
theorem.
Theorem 1. A K has a P, -factor if and only if
—_— m,n k
(1) m=n=0 (mod k/2) when k is even, and
(II) m+n=0 (mod k), (k-1)m< (k+*1)n and (k-1)n < (k+1)m
when k is odd.
Proof. (Necessity) Suppose that K, , has a P -factor F.

’

Let t be the number of components of F. Then t=(m+n)/k. Each
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component is a path obtained by traversing V1 and‘Vz. Thus when k
is even, it holds that m=n=kt/2. Conditibn (I) is necessary. And
when k is odd, let ty (t2) be the number of components of F whose
end points are in vy (VZ)’ respectively. Then it holds that
m=((k+1)t1+(k-1)t2)/2 and n=((k-1)t1+(k+1)t2)/2. So we have

t1=((k+1)m-(k-i)n)/2k and t2=((k+1)n—(k-1)m)/2k. From Ot <t and

1

0<t,<t, we must have (k-1)m<(k+1)n and (k-1)ng(k+1)m. Condition

2

(I1) is necessary.
(Sufficiency) When k is even, put m=n=kt/2. Consider a Ha-

milton-path of K,n and divide it into t paths of same length.

’

Then they form a Pk—factor of K When k is odd, for those pa-

_ n,n’
rameters m and n satisfying (II), put t1=((k+1)m—(k—1)n)/2k and

t2=((k+1)n—(k—1)m)/2k and t=(m+n)/k. Then ty and t, are integers
such as 0<t

<t and 0t <t. And it holds that m=((k+1)t1+(k—1)t2)/2

1 2
and n=((k-1)t1+(k+1)t2)/2. Using (k+1)t1/2 points in V4 and
(k—l)t1/2 points in V,, consider t4 Pk's whose end points are in
Vl' Using remaining (k-l)t2/2 points in vy and remaining (k+1)t2/2
points in VZ’ consider t, Pk's whose end points are in VZ' Then
these ty+t, Pk's are line-disjoint and they form a Pk—factor of
Km,n'

Corollary 1. A Kn n has a Pk—factor if and only if

’

(' n=0 (mod k/2) when k is even, and

(11)" n=0 (mod k) when k is odd.

3. Pk—Factorization of K
m’

With respect to a Pk—factorization of Km nr Ve give the fol-
’
lowing theorem.

Theorem 2. If Km n has a Pk—factorization, then it holds that
b
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(I) m=n=0 (mod k(k-1)/2) when k is even, and
(Ii)" m+n=0 (mod k), (k~1)m< (k+1)n, (k-1)ng (k+l)m
and kmn / (k-1)(m+n) is an integer when k is odd.
Proof. Suppose that K has a P,-factorization. Let r be

’

the number of Pk—foctors of K and t be the number of components

m,n
of each Pk—factor. Then t=(m+n)/k and’r=kmn/(k—1)(m+n). Thus t
and r are integers. By Theorem 1, it holds that m=n=0 (mod k(k-
1)/2) when k is even, and that m+n=0 (mod k), (k-1)m<(k+1)n, (k-
" 1)ng(k+1)m and kmn/(k-1)(m+n) is an integer when k is odd.

Corollary 2. If K, n has a Pk—factorization, then it holds

’

that
()™ n=0 (mod k(k-1)/2) when k is even, and
(ID)"' n=0 (mod 2k(k-1)) when k is odd.
We prepare the following extension theorem, which is very

useful.
Theorem 3, If Km,n has a Pk—factorlzatlon, then Ksm,sn has

a PP—factorization for every positive integer s.
N

Proof. 1If every subgraph Ky q of K_ is replaced by K
9 Pl

S m,n’

then K is replaced by K Using K -factorization (1-fa-
S,S S 1,1

m,sn’

ctorization) of K , we can see that K has a K_ _-factoriza-
S,8 sm, sn m,n

tion. Using a PK—factorization of K o2 We can easily construct
)

8

a Pk-factorlzatlon of Ksm n° About a l1-factorization of Ks,s’
see [1,2].
Using this theorem, we can obtain several results. VWhen k
is even, we have the following lemma.
Lemma 1. %k is even and m=n=k(k-1)/2
==> K has a P, -factorization.
m,n k

’

Proof. The proof is shown by a construction algorithm. Let
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V1= {V<1),V(1>,...,Vé1)} and V2= {ng),vgz),... (2)}
(i)_ (1)

n=k(k-1)/2. Construct k-1 Pk's such as Py (il1)as1V Ei)l)le

1 2 1 2) (1
gl)l) +2¥ El)l)bTZ v ia)l £b> (o ((?)’ where a=k/2, b=k/2-1 and

k(l)*((k/Z 1)T1 mod k-1)+(k/2-1)(k-1). Then F=P£1)U P£2>U .. U
(k 1)

, where m=

is a Pk-factor. Increasing all point numbers of F in V1
by k-1 (mod m) simultaneously k/2 times and increasing all point
numbers of F in V, by k-1 (mod n) simultaneously k/2 times, we
obtain k2/4 Pk—factors. Then it can be easily cheéked that these
Pk—factors are line-disjoint and that the sum of them is a Pk—fa-
ctorizgtion of Km,n'
Applying Theorem 3 to Lemma 1 and considering Theorem 2, we have
the following theorem.

Theorem 4. When k is even, a Km,n has a Pk-factorization if
and only if m=n=0 (mod k(k~-1)/2).

When k is odd, we have the following lemmas.

Lemma 2. k is odd, (k-1)m=(k+1)n and kmn / (k-1)(m+n) is an
integer

==> (i) m+n=0 (mod k), and
\ (i1) m=(k+1)s/2, n=(k-1)s/2 when k=3 (mod 4),
m=(k+1)s, n=(k-1)s when k=1 (mod 4),
where s is a positive integer.

Lemma 3. k is odd, (k-1)n=(k+1)m and kmn / (k-1)(m+n) is an
integer |
==> (i) m+n=0 (mod k), and

(ii)' m=(k-1)s/2, n=(k+1)s/2 when k=3 (mod 4),

m=(k-1)s, n=(k+1l)s when k=1 (mod 4),
where s is a positive integer.

Lemma 2 and Lemma 3 can be easily checked. Ve have the following
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lemmas.
Lemma 4. k=3 (mod 4), m=(k-1)/2, n=(k+1)/2

==> K has a P, -factorization.
m,n k

Proof. The proof is shown by a simple construction algorithm.

Let V1= {v§1>,v§1),...,vél)} and V = {v(z),v<2) .o (2)}

m=(k-1)/2 and n=(k+1)/2. Construct a Py such as Py —v(2> (1> (2)

(1) €2 2 .
V2 gk)l)/zvg<)1)/2 §k21)/2 Then F=P, is a Pk—factor. Inc-

reasing all point numbers of F in V, by 2 (mod n) simultaneously
2

, Where

n/2 times, we obtain n/2 P -factors. Then it can be easily chec-
ked that these Pk—factors are line-disjoint and that the sum of

them is a Pk-facLorlzatlon of Km,n'

Lemma 5. k=1 (mod 4), m=k-1, n=k+1

==> K has a P, -factorization.
m,n k

Proof. The proof is shown by a simple construction algorithm.

Let V = {v(l),vgl),...,vél)} and V2= {vgz),véz),...,véz)} , where
(1), (2), (1)), (1)

m=k-1 and n=k+1. Construct two P, 's such as P
+62) o1 +62) (2)_ (2) (1) (2) (1) (2)
V(k=1)/2Y(k=1)/2"(k+1)/2 a0 Pp =V Vi1 Var2Vp2* * *Vat (k-1

blzk 1)/2 §T2k+1)/2, where a=(k+1)/2 and b=(k-1)/2. Then F=Pé

L}P(z)

k

)/2
1)

is a Pk—factor. Increasing all point numbers of F in V2
by 2 (mod ﬁ) simultaneously n/2 times, we obtain n/2 Pk-factors.
Then it can be easily checked that these Pk—factors are line-dis-
- joint and that the sum of them is a Pk-factorization of Km,n'
Applying Theorem 3 to Lemma 4 - Lemma 5 and considering Lemma 2 -
Lemma 3, we have the following Theorems.

Theorem 5. k is odd, (k-1)m = (k+1)n and kmn / (k-1)(m+n) is
an. integer

==> Km,n has a Pk—factorization.
Theorem 6. k is odd, (k-1)n=(k+1)m and kmn / (k-1)(m+n) is .
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an integer
== Km,n has a Pk—factorization.
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