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Discrete Dirichlet Potentials on an Infinite Network

Maretsugu YAMASAKI 1w oW

SR AFHAFEE

introduction

As a continuation to the previous papers (3] and (81, we shall
study some analogies of discrete Dirichlet potentials on an infinite
network and Dirichlet potentials on a Riemannian manifold. In
order to investigate the behavior of discrete Dirichlet potentials at
an ideal boundary point of the network, we introduce discrete
analogues of the Royden boundary and the harmonic boudary of the
network. We shall show in § § that a discrete Dirichlet function
of order p (1 < p < «) is a Dirichlet potential of order p if and
only if it vanishes on the p-harmonic boundary. Another chracteri-
zation of discrete Dirichlet potentials was proved by the author (8]

with the aid of extremal length of a family of infinite paths on the

network. In this proof, we did not use the concept of the Royden
boundary. We shall give another proof of this characterization by
using p-harmonic boundary. These results have counter parts in {[{2]
in case p = 2.

§ 1. Preliminaries

Let X be a countable set of nodes, Y be a countable set of
afcs. K be the node-arc incidence function and r be a strictly
positive function on Y. Assume that the quartet N = (X, Y, K, r} is
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an infinite network, i.e., the graph G = (X, Y, K} is connected,
locally finite and has no self-loop. More precisely we assume the
following conditions:

(1.1) The range of K is (- 1, 0, 1};

{x € X; K(x, y) # 0}(the end of y)

]

(1.2) For each yv € Y, e(y)
consists of exactly two nodes x, X, and K(xl, y)K(xz, y) = - 1;

{y € Y; K(x, y) # 0} is a nonempty

(1.3) For each x € X, Y(x)

finite set;

(1.4) For any x, X' € X, there are xl, 000 xn € X and yl, coo
Yo+l € Y such that e(yj) = {Xj—l’ xj), j =1, e2e, n + 1 with Xy = X
and x = x'.

n+l
For notation and terminology, we mainly follow [3]1 and [8].

Let L(X) be the set of all real functions on X and L,(X) be the
set all u € L(X) with finite support. For u € L(X), its discrete
derivative du € L(Y) and its discrete Dirichlet integral Dp(u) of
order p (1 < p < =) are defined by

Kx, y)u(x),

dud(y) - r(y)—li

x€X
Ar(y)ldu(y)lp.

D, (w) Zyey
Denote by D'PIN) the set of all u € L(X) with finite Dirichlet
integral of order p. It is easily seen that D(pzN) is a reflexive

Banach space with the norm ﬂuup = [Dp(u) + lu(b)lpll/p, where b is a

fixed element of X. Let DépzN) be the closure of LO(X) in D(pzN)

with respect to this norm. Note that DépzN) is independent of the
choice of b. We call an element of Dép%N) a Dirichlet potential of
order p.

Let wp(t) be the real function on the real line R defined by

mp(t) = ltlp_lsign(t). For each w € L(Y), let us define Qp(w) €
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L(Y) by wp(w)(y) = mp(w(y)) for y € Y.

For each u € L(X), the p-Laplacian Apu € L(X) of u is defined by

zer

We say that u is p-harmonic on a subset A of X if Apu(x) = 0 on A.

A u(x d .
P ) K(x, y)wp( udy))
Denote by HD(pzN) the set of all u € D(pzN) which is p-harmonic on X.
It should be noted that HD‘PIN) is not a linear space if p # 2.
For a set S of real functions on X, denote by BS the subset of S
which consists of bounded functions. We shall use the notation

BD PNy, BDépzm) and BHDPIN) in this sense.

§ 2. Royden boundary
For u € BD(pzN), we consider the norm HuHB defined by

1/7p sup{lu(x)|; x € X}.

ﬂuﬂB = [Dp(u)]
It is easily seen that BD(pzN) is a normed space with respect to this
norm and that BD(pzN) is closed under max. and min. operations, i.e.,
if u, v € BD'PIN), then max(u, v) and minCu, v) belong to BD‘PIN).

Theorem 2.1. BD(pzN) is a Banach algebra with respect to the
norm HuHB.

Proof. Let u, v € BDPIN) and put o = sup{ju(x)|; x € X} and 8

= sup{|lv(x)|; x € X}. Then |duv(y)| < 8ldu(y)| + aldviy)|,

r(y)(8lduy)| + aldviy)|1P
1/p

Dp(uv) < zer

< (1D, (Bu)] + [Dp(av)]l/p}p

= 8 w1tP + arp_(vr1t/PyP
P P
by the Minkowski's inequality. Thus we have
1/p

HuvHB < [Dp(uv)] + af

/p

1 1/p
< BLDp(u)] + a[Dp(v)] + B < ﬂuHBﬂvﬂB.
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Therefore BD(pzN) is a normed algebra.

If (un) is a Cauchy sequence in BD(pzN) with respect to | "B’
then it is a Cauchy sequence in p‘PIN) with respect to | up. Thus
there exists u € D(DZN) such that flu - uan -+ 0 as n & o, Since

{u_} converges uniformly on X, we see that u € BD‘PIN) and flu - un“B
-+ 0 as n @+ . Therefore BD(pzN) is a Banach algebra with respect to
the norm uuHB.

By a compactification of X which is regarded as a locally
compact Hausdorff space with respect to the discrete topology, we
mean a compact Hausdorff space X* containing X as a dense open subset.
There is a unique (up to a homeomorphism) compactification X* of X
such that every f € BD(pzN) can be continuously extended to X* and
the class of extended functions separates points of X* (cf.[4; § 81).
This compactification is called the Royden p-compactification of N

(p) = X* - X is called the p-Royden boundary of N. The

and ' = T
extension of £ € BDPIN) to X* is denoted by f again.

Put 9(r) = (£l; £ € BDPINn). By the Stone-Weierstrass
theorem, 2(I') is dense in the set C(I') of all continuous functions on
F with respect to the sup-norm.

Next, we introduce the Royden p-harmonic boundary:

r, =T = (xer; £ = 0 for a1l £ € BDPINY.

Note that Fh is a compact subset of TI.

§ 3. Decomposition theorems
We proved in [8]

Theorem 3.1. Let N be of hyperbolic type of order p. Then



<P2N> can be decomposed uniquely in the form: u = v + h

every u € D
with v € D;PIN) and h € HDPIny.
In order to obtain a similar decomposition of BD(DZN), we need
the following type of Clarkson's inequality (cf.[8; Lemma 2.21):
Lemma 3.1. Let u, v € D(pzN). Then the following inequali-
ties hold:
(3.1) D (u+ v) + D (u-v)<2P7hD w + D (VI in case 2 < p;

1/(p-1) 1/¢(p-1)

(3.2) [D (u + v)] + [D (u - v)1]
‘ p P

1/(p-1) in case 1 < p £ 2.

< 2D _(u) + D_(v)1]
p p
Let u € D(pzN) and A be a nonempty proper subset of X. Then
the following extremum problem has a unique solution:

(3.3)° Find B(A) = inf{Dp(f); f € LX), £ =uonX - A).

In fact, let (fn} be a sequence in L(X) such that Dp(fn) - B8(A) as

n & o, Then we see by Lemma 3.1 that (un} is a Cauchy sequence in
D(pzN) with respect to the norm | np. Thus the existence of an
optimal solution is established. The uniqueness of an optimal

solution follows from [8; Lemma 2.1].

By the standard variational technique, we can prove

Lemma 3.2. The optimal solution uA of problem (3.3) has the
following properties:

A A

(3.4) u = uon X - A and Dp(u ) = B(A).
(3.5) ApuA(x) = 0 on A.
(3.6) 1f lu(x)| < ¢ on X, then |luP(x)| < ¢ on X.

(3.7) If u>0 on X, then ud > 0 on X.

We have
Lemma 3.3. Let u € DPIN) and (N }(N_ = < X_, Y_>) be an
exhaustion of N. Denote by u: the optimal solution of problem (3.3)
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with A = X _. Then D (u* - u*) -+ 0 as n, m > «,
n P n m
. * _
Proof. Put Bn = B(Xn). Since u = uon X Xm for m > n,
we have 0 < Bm < Bn < Dp(u) { o, Thus (Bn} converges. In case

p 2 2, we have by (3.1)

* * % % * *
Bn < Dp((un + um)/Z) < Dp((un + um)/2) + Dp((un - um)/2)
p-1 % * P |
< 2 [Dp(un/Z) + Dp(um/Z)] = 2 (Bn + Bm).
In case 1 ¢ p £ 2, we have by (3.2)
1/ (P71 ¢ tp (u* + u¥y/2)1t/ D
n p n m

* * 1/(p-1) * % 1/(p-1)
< (Dp((un + um)/2)] + [Dp((un um)/2]

* * 1/(p-1) _ -1 1/(p-1)
< 2[Dp(un/2) + Dp(umlz)] = 2 (Bn + Bm) .
It follows that D (u* - u*) > 0 as n, m » =.
P n m
We shall prove
Theorem 3.2. Let N be of hyperbolic type of order p. Then

every u € BD(pzN) can be decomposed uniquely in the form: u = v + h
with v € BDSPIN) and h € BHD‘PiN).

Proof. Let u: be the function defined in Lemma 3.3 and put ¢ =
sup{lu(x)|; x € X). Then Iu:| < c on X by Lemma 3.2. By choosing

. %
a subsequence if necessary, we may assume that (un(b)) converges.

Then {u:) is a Cauchy sequence in D(pzN) with respect to | “p by
Lemma 3.3. There exists h € D(pzN) such that ﬂu: - hﬂp - 0 as
n &+ o, We see easily that h € BHD(pzN). Put vn = u - u: and v =

%k
u - h. Then v € LO(X) and llv - Vn“p = Hun - th - 0 asvn > ®, S50
that v € BDéPZN). This is a desired decomposition. The unique-

ness of the decomposition follows from Theorem 3.1.
We shall prove the following weak minimum principle:

Theorem 3.3. Let u=v + h with v € BDépzN) and h € BHD‘PIN).

If u 2 0 on X, then h > 0 on X.
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Proof. Note that u € BD(pzN). Let u: be the function
defined in Lemma 3.3. Then u: >2 0 on X by Lemma 3.2. By the
same reasohing as in the proof of Theorem 3.2, we see that there
exist K € BHDPIN) and ¥ € BD PIN) such that u = W + K and K 2> 0
on X. By the uniqueness of the decomposition, we conclude that
h =h >0 on X. |

Here we observe that BDépzN) plays the role of the class MA(R)

in [6]1 or QDB,A(U) in [41]. In fact, we have
Lemma 3.4. For every u € BDépzN), there exists a sequence

{f } in L.(X) such that {f } is uniformly bounded and llu - £ | _ - 0O
n 0 n np

as n =2 o,

Proof. In the proof of Theorem 3.2, we take fn = u - u:.

Since u € BDép%N) and Hu: - h"p 5 0 as n - o, we see that h = 0 and

.
flu'l_ » 0 as n » o, Therefore flu - f Il_ » 0 as n » =,
np np

§ 4. A limit theorem on DépzN)

In order to obtain a fundamental limit property of sequences in
DépzN), we begin with some definitions. Let ¢ be a positive number
such that 1/p + 1/g = 1. Denote by Ly(Y; r) the set of all w € L(¥)

2er

w2 > by

r(v)lwy)|® < . For w

such that H_ (w) , W, € L(Y), we
q 1 2

define < wl,

< w

10 Wy > 2oey

whenever the sum is well-defined.

[i]

r(y)wl(y)w (y)

2
We shal prove
Lemma 4.1. Let N be of hyperbolic type of order p and a € X
and consider the following extremum problem:
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4]
Then there exists ma € Lq(Y; r) such that

4.1 dpCa, @) = inf(D (V)3 v € p{PIN) and v(a) = 13.

(4.2) < du, 0> = u(ad (a, =) for every u € DSPZN).
Proof. Since N is of hyperbolic type of order p, dp(a, @) > 0.

By the standard variational technique, we see that there exists a

unique ua € D(pzN) such that ua(a)

0
Eyev r(y)[@p(dua(y))ldv(y) =0
for every v € D

1, dp(a, @) = Dp(ua) and

3P2N> with v(a) = 0. Put @ (y) = ¢ _(du,(y)). Then
_ q _ (p-1)q _ ©
Hq(wa) = zer r(y)lma(y)l = zer r(y)Idua(y)l = D (u) < =,
so that ma € Lq(Y; r). For any u € DépzN), u - u(a)ua belongs to
DéPZN), and hence
Zer

Namely ma'satisfies our requirement.

r(y)ma(y)[du(y)] = u(a)Eer r(y)ma(y)[dua(y)] = u(a)Dp(ua).

Lemma 4.2. Let N be of hyperbdlic type of 6rder P. Then
ap PINY = (du; u € DépiN)} is a closed subset of L_(Y; r) with
"respect to the norm [Hp(w))l/p.

(p . -
Proof. Let un € DO EN), W € Lp(Y, r) and Hp(dun w) - 0 as

n -» «o, Since D (u ) = H (du_), we see that {D_(u_ )} is bounded.
P n p n P n

We show that {un(b)} is bounded. Supposing the contrary, we may
assume that un(b) - ® gs n =& o, Put u = un/un(b). Then Dp(un) =
P @ M =
Dp(un)/lun(b)l - 0 as n - and u’(b) 1. Thus
' - -— 1] l/p .
"un lﬂp = [Dp(un)] - 0
as n 2> o, Therefore 1 € DépzN), which contradicts the assumption

that N is of hyperbolic type of order p (cf. [7]). By choosing a
subsequence if necessary, we may assume that {un(b)) converges.
We have
_ - - _ p,1/p
ha umup = (D (u - u) + Iun(b) um(b)l ]
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= - - p.1/p
= [Hp(dun du ) + ]un(b) um(b)l ] - 0

as n, m > o, Since DépzN) is a Banach space, there‘exists
u € DépzN) such that Hun - uﬂp - 0 as n » o, We have
1/p 1/p 1/p
H - d < - + [H (du - du
L p(w u)l [Hp(w dun)] L p( u n)]
1/p -
< [Hp(w dun)] + llu unup -+ 0

as n - ©, so that w = du € dD PiN).

Theorem 4.1. Let {un} be a sequence in DépzN) which converges
pointwise to u € L(X). If (Dp(un)} is bounded, then u € DépzN).

Proof. No proof is necessary in case N is of parabolic type of
order p, so we assume that N is of hyperbolic type of order p. Put
W = dun. Since {Hp(wn)) is bounded, we can find a weakly conver-
gent subsequence of {wn} in Lp(Y; r). Denote it again by (wn} and
let w be the limit. Since dDépzN) is convex and strongly closed
by Lemma 4.2, we see that dDépzN) is weakly closed. Thus we can
find g € DépzN) such that w = dg and < dvn, w'> 2 < dg, w'>. as n - w
for every w' € Lq(Y; r). For a € X, we have @, € Lq(Y; r) by Lemma
4.1, so that

< dun, e, > = un(a)dp(a, «) and < dg, wa> = g(a)dp(a, ®).
It follows that u(a) = g(a) for every a € X. Thus u € DPIN).

We say that a function T from R to R is a normal contraction
of R if TO = 0 and ITs1 - T82| < ls1 - szl for every s,, s, € R.
We define Tu € L(X) for u € L(X) by (Tu)(x) = Tu(x).

We have

Theorem 4.2. Let T be a normal contraction of R. If u €
DPN), then Tu € DSPUIN).

Proof. It suffices to consider the case where N is of
hyperbolic type of order p. There exists a sequence (fn} in LO(X)
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such that lIf - ull_ - 0 as n » o, Put v. = Tf and v = Tu. Then
n o] n n

v € L (X)), (D (v.)} is bounded and

n 0 P n

lvn(x) - vx)| = ITfn(x) - Tu(x)]| < lfn(x) - u(x)|] - 0
as n - o, Thus Tu = v € DépzN) by Theorem 4.1.

Lemma 4.3. Let F be a closed subset of X* such that
FOT, =¢. Then there exists f € BDéPZN) such that f = 1 on F and
0<f<1onX.

Proof. Let x € F. Since x ¢ Fh, there exists fx € BDépzN)
such that f (x) # 0. We may assume that fx 2 0 on X and fx(x) >0
by Théorem 4.2. Since fx is continuous on X*, there is an open
neighborhood Vx of X in X* such that fx > 0 on Vx. Since F is .
compact, we can choose a finite number of points x1,~-~, xn € F such

_ Cen o .
that vxlu V) Vxn o F. Put g = 21:1 fxi and o = inf{g(x); X € F}.

Then g € BDépzN) and ¢ > O. Hence f = min(l, g/a) is the required
function in view of Theorem 4.2.
¥We have

Theorem 4.3. N is of parabolic type of order p if and only if

(p) _
Fh = ¢. | |
Proof. If N is of parabolic type of order p, then 1 € BDépzN),
so that [, = ¢. Assume that I, = ¢. Taking F = x* in Lemma 4.3,
we see that 1 € BDépzN). Thus N is of parabolic type of order p.

§ 5. Duality theorem
We have

Theorem 5.1. (Minimum principle) Assume that N is of



hyperbolic type of order p. If u € BHD(plN) and u 2 0 on Fh,
fhen u > 0 on X.

Proof. For any € > 0, put F8 = {x € X*; u(x) + € < 0}. Then
F8 is a closed set in X" and F8 N rh = ¢. By Lemma 4.3, there
exists f € BDépzN) such that f = 1 on F8 and 0 £ f £ 1 on x*.
Since u is Eounded, u=- ¢ on X* for some constant ¢ = 0. We have
u+ e+ cf20onXx*. Sinceu+ e €BHDPIN) and cf € BDSPIN), we
see by Theorem 3.3 that uw + € 2 0 on X. Since € is arbitrary, it
follows that u =2 0 on X.

The reasoning of this proof is the same as in [4; Theorem 8.21.

Now we shall prove the following duality theorem:

Theorem 5.2. Assume that N is of hyperbolic type of order p.

(p)
h

Proof. Let 9 = (u € BDPIN); u = 0 on ). By the defini-

Then BDépzN) = (u e BDPIN); u =0 on Py,

tion of I, BDPIN) c 9. Letue€® andu=v +h withve BD PIN)
and h € BHD‘Pin). We have h = u - v = 0 on I,. It follows from
Theorem 5.1 that h = 0 on X, so that u = v € BDPIN). |

In o:der to obtain a similar characterization of DépzN), we
recall the following lemma(cf.[7; Lemma 3.11):

Lemma 5.2. Let u € D(pZN) be non-negative. Then
fa - min(u, n)llp - 0 as n 5 ©,

For u € D(pZN) N L+(X), u(n) = min(u, n) € BD(pzN) and u(n) is
continuous on X*, so that we define u(x) for x € I' by the limit of
u(nzx) as n = o, In case u € D(pzN) is of any sign, we define u(x)
for x € I by u'(x) - u (x), where u = max(u, 0) and u = max(- u, 0)

are the positive part and the negative part of u respectively.

As a generalization of Theorem 5.2, we have
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Theorem 5.3. Let N be of hyperbolic type of order p. Then
P> = (u € DPN); u=0onr).
Proof. Let u € D(pZN). By considering the positive part and

the negative part of u separately, we may restrict our attention to

the case where u is non-negative. For a positive integer n, we put
u(n) = min(u, n). Assume that u € DépzN). Then u(n) € BDépzN)

by Theorem 4.2, so that u, = 0 on Fh by Theorem 5.2. Thus u = 0

on Fh. Next we assume that u = 0 on Fh. Then u(n) € BD(pzN) and

u(n) = 0 on Fh, so that u(n) € BDéPZN) by Theorem 5.2. Thus u €

D PIN) by Lemma 5.2.

For later use, we shall prove

Lemma 5.3. Let N be of hyperbolic type of order p and F be a
nonempty compact set in I - Fh. Then there exists v € D(pzN) such
that v = ® on F and v = 0 on Fh.

Proof. By Lemma 4.3, there exists u € BDép%N) such that u =1

on F and O £ u £ 1 on X*. Let u: be the function defined in Lemma
3.2. Then u: =1 on F. By the same reasoning as in the proof of
Lemma 3.4, we may assume that Hu:ﬂp - 0 as n & o, By choosing

subsequences if necessary, we may assume that

ok -np * -np
'un(b) < 2 and Dp(un) < 2 .

_ n * _ o % . (p =
Put v = Ekzl u, and v = 2n=1 u . Since v € BD IN) and v, 0
on Fh, we see by Theorem 5.2 that vn € BDépzN). We have
o sk L] %k
v vup = "2k=n+1 ukﬂp < zk=n+1 Hukﬂp

b -k -n
< 2popap 2 <2020

as n = o, so that v € DépzN). Hence v = 0 on Fh by Theorem 5.3.

On the other hand, we have v 2> vn = n on F. Thus v = «» on F.
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§ 6. Another characterization of Dirichlet potentials

For a family A of paths in N, its extremal length lp(A) of order
p is defined by

A, 7 = inf(H (W); W € E(A)),
where E(A) is the set of all W € L+(Y) such that ZP r(y)¥W(y) =2 1 for
all P € A. The notion of the extremal length of a network was first
introduced by Duffin [(11. We say as in [56]1 that a property holds
for p-almost every path of A if it does for the member of A except
for those belonging to a subfamily with infinite extremal length of
order p.

Denote by Pa,m(N) the set of all paths from a € X to the ideal
boundary of N and by PQ(N) the union of Pa,w(N) for all a € X. We
call an element of Pm(N) an infinite path.

We proved in [31 that every Dirichlet function u(x) of order p
has a limit as x tends to the ideal boundary of N along p-almost
every infinite path P € PQ(N). We denote this limit simply by u(P).

Qé proved in [3]1 and [81]

Theorem 6.1. Let u € DPIN).  Then u € DJPIN) if and only it

u(P)

0 for p-almost every P € P_(N).

In the proof of this theorem, we used the following

Lemma 6.1. Let h € HD(pzN) be nonconstant. Then there exist
X, € X and 'an infinite subnetwork N' = < X', Y' > of N such that X, €
X', h(x) > h(x,) on X' - {x,} and kp(A') < @, where A' is the set of
all infinite paths in N which are contained in N°'.

By Theorems 5.3 and 6.1, we have

Theorem 6.2. Let u € D(pZN). Then u(x) = 0 on Fép) if and
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only if u(P)> = 0 for p-almost every P € P_(N).

This result has a counterpart in [2]1 in case p = 2. In order to
give another proof of Theorem 6.1 relying upon the Royden boundary as
in [2]), we introduce some notions. For every infinite path P, let ~
e(P) the end part of P in the Royden compactification X*, i.e., e(P)
is the intersection of I' and the closure of the set CX(P) of nodes of
P in X*. It is easy to verify that for u € D(pzN), u(P) exists and
is equal to a constant ¢ if and only if u(x) = ¢ on e(P). For a
subset B of X*, denote by ¢l(B) the closure of B in X*.

Theorem 6.3. Let AO be a subfamily of PQ(N) such that F =
cl(U{e(P); P € AO)) is disjoint from Fh. Then AP(AO) = o,

Proof. In case N is of parabolic type of order p; xp(AO) p-

Ap(Pm(N)) = @ by [7]. Assume that N is of hyperbolic type of order

pP. By Lemma 5.3, there exists v € D(pzN) such that v = « on F and
v = 0 on Fh. For any P € AO and € > 0, we have e(P) ¢ F and v(P)
= o, gso that EP r(y)|deEv(y)| = =. Thus
< = .
xp(AO) Hp(d(ev)) £ Dp(v)

Since é is arbitrary, we have lp(AO) = @,

As a converse of this result, we have

Theorem 6.4. Let AO be a subfamily of P_(N) with Ap(AO) = o,
Then the set F = cl(U{e(P); P € P_(N) - AO}) contains T .

Proof. It suffices to consider the case where Fh # ¢. In this
case N is of hyperbolic type of order p by Theorem 4.3, so that
Ap(Pm(N) - AO) < =, "It follows from Theorem 6.3 that F n Fh z .
Assume that there is a point o € Fh - F. We show that there exists
h € HD(pEN) such that h(a) = h = 0 on fh N F and 0 ¢ h < 1 on X.

1,
In fact, we can find u € BD(pZN) such thét u(x) =1, u = 0 on Fh NnF
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i

and 0 < u < 1 on X, since BD(pzN) separates points of x*. By
Theorem 3.2, u can be decomposed in ihe form: u = v + h with v €
BDéplN) and 'h € BHD(pzN). Then h satisfies our requirement by
Theorem 5.1. For this h, there exist XO € X, an infinite

subnetwork N' of N and a subfamily A' of infinite paths which satisfy

the conditions in Lemma 6.1. Let us put F1 = ClU{e(P); P € A* -
AO)). Since Ap(A - AO) { o, Fh n F1 # ¢ by Theorem 6.3. By the
relation F1 N Fh c Fn Fh, we obtain h = 0 on F1 N Fh. On the

other hand, we have h(P) = h(xo)z> 0 for all P € A', which implies

h > h(xo) on Fl’ This is a contradiction. Thus F contains Fh.
Proof of Theorem 6.1: No proof is necessary if N is of

parabolic type of order p and we turn to the hyperbolic case.

‘Let u € D(pzN). By considering the positive part and the‘negative

part of u separately, we may assume that u is non-negative. Assume

that u(P) = 0 for p-almost every P € P_(N). Let AO be the set of

all P € Pm(N) for which u(P) does not exist or u(P) # 0. Then

xp(AO) = o, s0 the set F = cl(U{e(P); P € Pm(N) - AO}) contains‘l“h by

Theorem 6.4. If u € BD(pzN), then u = 0 on Fh. In fact, for o €

' there exists a generalized sequence {xt} in F which converges to

h

o. Let X, € e(Pt) with Pt € P_(N) - AO. Then u(xt) = u(Pt) = 0.

Since u is continuocus on X*, we conclude that u(a) = 0. It follows

from Theorem 5.2 that u € BD(pEN). If u is unbounded, then we see

0
(n) (n)ﬂ

easily that u = min(u, n) € BD(gzN). Since llu - u -» 0 as

n » . we conclude that u € Dép2N). For the proof of the suffi-
ciency, assume that u = 0 on Fh. For each positive integer k, let

Ak be the set of all P € Pm(N) for which u(P) exists and u(P) > 1/k

and put F, = cl(U{e(P); P € A3 Since u = 0 on I', we see that



Fk is disjoint from Fh, and hence AD(AK) = «© by Theorem 6.3. Let AO

be the set of all P € PQ(N)’such that u(P) does not exist and put Aoo

o0

= Un=0 Ak. Then Ap(Am) = « and u(P) = 0 for all P € P_(N) - A_.

Namely u(P) = 0 for p-almost every infinite path.
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