Isolated singularities and positive solutions of elliptic equations in $\ensuremath{\text{R}}^n$

Tokyo Metropolitan University 村田 賞 (Minoru Murata)

I would like to talk about isolated singularies of positive solutions of a second order linear elliptic equation

Pu =
$$-\sum_{j,k=1}^{n} \partial_{j}(a_{jk}\partial_{k}u) + \sum_{j=1}^{n} b_{j}\partial_{j}u + cu = 0$$
 (*)

in a domain of R^n . Here $\partial_j = \partial/\partial x_j$. The purpose of this talk is two-fold: (i) To give a relationship between positive solutions in a punctured ball and those in R^n ; (ii) to apply it to the study of isolated positive singularites of solutions.

1. Consider the equation (*) in a domain D of \mathbb{R}^n , $n\geq 2$. We assume that the coefficients are real-valued and satisfy the condition

 $a_{jk} \in L_{\infty,loc}(D)$, $b_{j} \in L_{2p,loc}(D)$ and $c \in L_{p,loc}(D)$ for some p > n/2, and $[a_{jk}(x)]_{j,k}$ is locally uniformly positive definite in D.

A positive solution of (*) means a positive continuous function in the Sobolev space $H^1_{loc}(D)$ of order 1 satisfying (*) in the weak sense. Let $\{D_j\}_{j=1}^{\infty}$ be a sequence of regular bounded domains which exhausts D. Let P_j be the Dirichlet realization of P on $L_2(D_j)$, and $\sigma(P_j)$ the spectrum of P_j . Put

$$\Gamma(P,D) = \inf_{j=1,2,...} \inf \operatorname{Re} \sigma(P_j)$$
.

Theorem (Allegretto-Piepenbrink-Agmon). There exists a positive solution of (*) in D if and only if $\Gamma(P,D) \geq 0$.

<u>Definition</u>. We say that (P,D) is subcritical if there exists a positive Green's function in D, and that (P,D) is critical if $\Gamma(P,D) \geq 0$ and there exists no positive Green's function in D.

Theorem. (i) (P,D) is subcritical if and only if there exists a function q in $L_{p,loc}(D)$ such that $q \ge 0$, $q \ne 0$, and $\Gamma(P-q,D) \ge 0$. (ii) (P,D) is critical if and only if $\Gamma(P,D) \ge 0$ but there exists no function q as above.

We denote by $H_+(P,D)$ the metric space of all positive solutions of (*) in D, where the metric is the usual one generated by the maximum norms on D_j , j=1,2,...

Theorem. Suppose that (P,D) is critical. Then $H_+(P,D) = \{Cu; C > 0\}$, where u is a particular solution satisfying the integral equation

$$u(x) = \int G(x,y)q(y)u(y)dy$$

with q being a nonnegative continuous function with compact support which is not identically zero and G being the Green's function for P+q in D.

2. Now consider the equation (*) in a punctured ball $B^* = \{0 < |x| < R\}$, where the coefficients satisfy the condition in Section 1 with D replaced by $\{0 < |x| < R+1\}$. Suppose that (P,B^*) is subcritical. Choose a positive continuous function g on $\{0 < |x| \le R\}$ satisfying

-
$$\Sigma_{j,k} \partial_{j}(a_{jk}\partial_{k}g) + \Sigma_{j} b_{j}\partial_{j}g = 0$$
 in B*.

Let $H_+(P,B^*,\{0\}) = \{u \in H_+(P,B^*); u | |x|=R = 0\}$. For u in $H_+(P,B^*,\{0\})$, define a generalized Kelvin transform κu by $(\kappa u)(y) = (u/q)(y/|y|^2)$.

Then κu is a solution of $P^1(\kappa u)=0$ in $B^{-1}\equiv\{y;\;|y|>R^{-1}\}$, where P^1 is an elliptic differential operator determined by P and g. We can show that

 P^1 admits an extension P^{\sim} to R^n such that (P^{\sim}, R^n) is subcritical.

Theorem. There exists an isomorphism from $H_+(P,B^*,\{0\})$ onto $H_+(P^*,R^n)$ such that for any u in $H_+(P,B^*,\{0\})$

$$(u/g)(y/|y|^2) \le Tu(y) \le C(u/g)(y/|y|^2)$$
 in $\{|y| > 2R^{-1}\}$,

where C is a positive constant independent of u. Furthermore, u is a minimal solution if and only if Tu is so.

<u>Hint of proof.</u> For v in $H_+(P^*,R^n)$, define $\mathbb{I}v$ by $\mathbb{I}v = v - Bv,$

where Bv is a solution of the boundary value problem: $P^{\sim}(Bv) = 0$ in B^{-1} , Bv = v on $\{|x| = R^{-1}\}$, and Bv is of minimal growth at infinity. Then Π is an isomorphism from $H_{+}(P^{\sim},R^{n})$ onto $H_{+}(P^{\sim},B^{-1},\{\infty\}) \equiv \{u \in H_{+}(P^{\sim},B^{-1}); u \Big|_{\partial B} = 0 \}$. We put $T = \Pi^{-1}\kappa$. Q.E.D.

We can also obtain analogous results starting with a subcritical operator in $\ensuremath{\mbox{R}}^n$.

3. I will give a few results concerning isolated positive singularities which I obtained by using the above theorem, although we could also show them directly.

Let $P = -\Delta + V_0 + \lambda V_1$ in $B^* = \{x \in R^2; 0 < |x| < R\}$, where $\lambda \in R^1$, V_1 belongs to $L_p(B^*)$ for some $p \ge 2$ and satisfy $\max(\pm V_1, 0) \ne 0$, and

$$V_0(x) = |x|^{\alpha_{2j}}$$
 for x with $\theta_{2j-1} \le \arg x \le \theta_{2j}$, $j=1,...,k$, $j=1,...,k$, otherwise,

where k is a natural number, $0 = \theta_0 < \theta_1 < \cdots < \theta_{2k} = 2\pi$, and $\alpha_{2j} < -2$ for $j=1,\ldots,k$. We put $\theta_i = \theta_i - \theta_{i-1}$ and $\theta_{i-1/2} = \theta_{i-1} + \theta_i/2$. Regarding λ as a parameter we have

Theorem. There exist a < 0 and b > 0 such that (i) (P,B*) is subcritical if and only if a < λ < b; and (ii) (P,B*) is critical if and only if λ = a or b.

Theorem. If λ = a or b, then $H_+(P,B^*,\{0\}) = \{Cp; C>0\}$, where the positive solution $p(r,\phi)$, with (r,ϕ) being polar coordinates of R^2 , has the following decay property as $r \to 0$:

$$p(r,\phi) = o(r^{-\pi/\theta}2j-1), \qquad \theta_{2j-2} < \phi < \theta_{2j-1},$$

$$= o(exp[-q_{2j}(\phi)r^{\alpha}2j/2 + 1]), \qquad \theta_{2j-1} < \phi < \theta_{2j},$$

where q_{2j} is a positive continuous function in $(\theta_{2j-1}, \theta_{2j})$.

Theorem. Suppose that a $< \lambda < b$. Then:

(i) The metric space

$$ExH_{+}(P,B^{*},\{0\}) \equiv \{u \in H_{+}(P,B^{*},\{0\}); u \text{ is extremal and} u(R/2,0) = 1 \}$$

is homeomorphic to

$$\sigma = \bigcup_{i=1}^{2k} \sigma_i,$$

where $\sigma_{2j} = \{ \psi \in [0,2\pi); | \psi - \Theta_{2j-1/2} | \le \Theta_{2j}/2 + \pi/(\alpha_{2j}+2) \}$ and $\sigma_{2j-1} = \{ \Theta_{2j-3/2} \}$.

(ii) The minimal solution $P(r, \phi; \psi)$ corresponding to ψ in σ has the following asymptotics as $r \to 0$:

(a) For
$$\psi = \Theta_{2j-1}$$

$$P(r,\phi;\psi) = C(\psi)\chi_{2j-1}(\phi)r^{-\pi/\theta}2j-1 \sin[\pi(\phi-\theta_{2j-2})/\theta_{2j-1}] + p(r,\phi;\psi),$$

where $C(\psi)$ is a positive constant, χ_{2j-1} is the characteristic function of the set $[\theta_{2j-2}, \theta_{2j-1}]$, and $p(r, \phi; \psi)$ has the same asymptotic property as in the above theorem.

(b) For ψ in σ_{2i} ,

$$P(r,\phi;\psi) = C(\psi)\chi_{2j}(\phi) \exp\left[-\frac{r^{\alpha_{2j}/2+1}}{\alpha_{2j}/2+1}\cos(\alpha_{2j}/2+1)(\phi-\psi)\right][1+o(1)] + p(r,\phi;\psi).$$

Of course, any positive solution is represented uniquely by integrating $P(r,\varphi;\psi)$ with respect to ψ by a positive Borel measure on σ .

An interesting open problem is: What is the Martin boundary over {0}?

I conclude this talk with a theorem concerning the Dirichlet problem at {0}. Put

$$g(x) = \sum_{j=1}^{k} \{\theta_{2j-1} P(x; \theta_{2j-3/2}) + \theta_{2j} \int_{\sigma_{2j}} P(x; \psi) \frac{d\psi}{|\sigma_{2j}|} \} + 1.$$

By convention, the second integral equals $P(x; \theta_{2j})$ when $\sigma_{2j} = \{\theta_{2j}\}$, and is zero when $\sigma_{2j} = \emptyset$.

Theorem. For any continuous function f on σ there exists a unique solution u of the following problem

Pu = 0 in B*,
$$u \mid |x| = R = 0$$
, $u/g \in L_{\infty}(B^*)$, $\lim_{r \to 0} u(r,\phi)/g(r,\phi) = f(\phi)$ for any $\phi \in \sigma$.

This theorem means, loosely speaking, the order of singularity is represented by that of g.

Finally, I should mention that there are several related results concerning the cardinal number of the set ExH₊ of all normalized extremal positive solutions obtained by M. Nakai and his collaborators.

References

- [1] Isolated singularities and positive solutions of elliptic equations in Rⁿ, Preprint, Tokyo Metropolitan Univ., 1986.
- [2] Structure of positive solutions to $(-\Delta+V)u = 0$ in \mathbb{R}^n , Duke Math. J., 53(1986).
- [3] Structure of positive solutions to $(-\Delta+V)u=0$ in \mathbb{R}^n , Proc. Internat. Conf. on Differential Equations and Mathematical Physics, held at Univ. of Alabama at Birmingham, 1986.
- [4] M. Nakai, Picard principle and Rieman theorem, Tohoku Math. J., Second Ser. 28(1976), 277-292.
- [5] M. Nakai and T. Tada, The distribution of Picard dimensions, Kodai Math. J., 7(1984), 1-15.
- [6] J. Serrin and H. Weinberger, Isolated singularities of solutions of linear elliptic equations, Amer. J. Math., 88(1966), 258-272.