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Introduction. A classical result of Brelot [4] concerns
the limit behavior of bounded harmonic functions at an irreqular
boundary point. The result states that, giveh a bounded domain
in R™ and an irregular boundary point z of @, the fine limit

f - 1lim v(x)

X—z

b ()
exists for every lower bounded, superharmonic function v on Q.
In particular, this result applies to bounded harmonic functions
on Q. Many years later Brelot [6] improved this result by intro-
ducing the so-called maximal sequences. These are sequences (xn)
in @ converging to z (in the ordinary sense) in such a way that the

Green function Gy of 2 with a pole Yo € @ converges along (xn) to
o - ,

lim sup G (x).
X=7Z Yo
xX€U

Brelot proved that, for a bounded harmonic function u on @, the
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sequence (u(xn)) converges for every maximal sequence and that

one has
lim u(x.) = f - lim u(x).
n
n-e X~ Z

XEQ

Recently [3] I could prove that these results remain valid in
very deneral situatioﬁs, in particular for the heat equation. In
the case of the heat equation irregular boundary points appear
more naturally than for the Laplace equation. Even smooth domains
may have irregular boundary points for the heat equation. A typi-
cal example is the "center" of the heat ball which we will dis—

cuss shortly.

The purpose of this paper is two-fold: We intend to present
the main results of [3] in an expository form. At the same time
the main hypotheses of [3] will be loosened considerably. We
will show that it is possible to repiace Doob's convergence axiom,
predominant in [3], by the weak convergence axiom which is the
standard convergence property for harmonic spaces in the sense of
[8]. This improvement also follows from the more sophisticated
results of Hansen [11]concerning finely harmonic functions.
However, our techniques remain essentially the same as in [3] .
Finally we will improve some results of [3] concerning maximal

sequences for the heat equation.

Throughout this paper we will work within the following frame-
work: X is a P-harmonic space (in the sense of Constantinescu-Cor-

nea [8]) with a countable base. We study harmonic (or super-

harmonic) functions on an open and relatively compact set UcX

with topological boundary U¥* =3U. U?rr stands for the set of
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irregular boundary points. Hf==Hg denotes the generalized solu-
tion of the Dirichlet problem for a resolutive boundary function
f on U¥. Limits (including upper and lower ones) with respect
to the fine topology on X will{be denoted by f-lim, f-lim sup,
f-1lim inf , respectively. All other undefined notations will be

those of [3] and [8].

1. Maximal Sequences

In what follows z will denote a point in Uirr' When z is also

polar, Brelot's classical result holds in the form that

f-1lim v (x)
X~Z
XEU

exists for every hyperharmonic function =0 on U. Brelot's proof
given in [7], p.140, remains valid without essential modification.

However, we start in a different way and will not need the above

result.
Proposition 1. One has.
f-1lim uU = €CU
X z
X2
x€U

in the sense of vague convergence, i.e.
£-lim H, (x) = r£aclt
z
X2z

X€U

for all £ €C(U*).



The proof relies on the fact that
. (x) = AU (x) for all x €U
u¥* u

whenever u 20 is a real-valued continuous superharmonic function

U

A
on X and that R& is finely continuous as a superharmonic

function.

From this we easily obtain the well-known K&hn-Sieveking-Lemma

(10], [12]:

Corollary. There exist sequences (xn) in U suchAthat
(M) lim x_ = z and Lim w0 = (U
n X, z °

It will soon become evident that in the case of classical po-
tential theory these sequences are just those which Brelot [6]

had called maximal. Therefore we define:

Definition, A sequence (xn) is called maximal with respect to

the point z eU?rr if the above condition (M) is satisfied.

Consequently, the K8hn-Sieveking-Lemma states the existence of
maximal sequences for z. The following theorem characterizes

these sequences.

Theorem 1. A sequence (xn) in U converging to z EUﬁrr

is maximal with respect to z if and only if there exists a hyper-

harmonic function u 2o on X having the following two properties:



83

(1.1) ﬁgU(z) < u{(z):;
(1.2) 1im 20 x ) = 2 %)
) I & u :

The last condition is equivalent to

(1.2%) lim R& (xn) = lim inf Rﬁ (x).
Ny X=+7
xX€eU

The proof given in [3] remains essentially unchanged. However,

two observations have to be made:

1. The total masses “ug” of the harmonic measures ug , X €U,
are upper bounded. This can be seen by choosing a strictly posi-
tive potential p €C(X), e.g. a strict potential p €C(X). Then
there are constants o,B8 €R such that o<a <p(x) =8 for all x €U

due to the compactness of U. Integration then yields
U §)
allu ll = [pau, < p(x) = 8,

and hence

) < 2 (x €U) .

(In [3] we gave a proof which uses the existence of a strictly
positive harmonic function on an open neighborhood of U. It may

not exist under our weaker assumption.)

2. In [3] we used an additional condition, namely u|U¥* €C (U¥),
which together with (1.1)7and (1.2) characterized maximal se-
quences. However, as W.Hansen kindly has pointed out in a private
communication, this additional condition can be avoided by

means of the following argument: As in [3], consider a subsequence
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(xn } of (xn) such that (ug ) converges\vaguely to a positive
k n
k

Radon measure A on U*, As explained in [3], A has the form

A = ae_ + (1—a)s£U
Z Z
for some o € [0,1], and o =0 has to be proved. We have

' r

-{u . afu . ofu

R (z) = 1lim R¥* (x_ ) =z 1lim R*» (x_ ) = Ipdl
b ko 0 Pk kee POy

I

oap (z) + (1—a)§£U(z)

for every potential p<u in C(X). This implies

p
R'(2) > au(z) + (1-a)RL(2)

~[u
u
since u is the 1limit of some increasing sequence of such poten-

tials p. The claim a =0 then follows from condition (1.1).

As an example, let U be a bounded domain in Rp, p=3. (The
case p =2 demands some simple modifications.) Consider the
P-harmonic space X =RP with respect to the sheaf of solutions
of the Laplace equation. Choose a pole Yo €U and choose for u}in

the above theorem u =Ny the Newtonian kernel
lo) .

= |y ||2=P P
Nyo(x) = ||x yo“ (x €ERT).

Then it is an immediate consequence of the theorem that a se-

quence (xn) in U converging to a point z EU?rr is maximal if and

only if

lim G (xn) = lim sup G_ (%)
Nesxo o) X7 yo
€U
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where G is the Green function of U with pole

v N
o) o) yo

Yo €U. This, however, is Brelot's original definition of a

maximal sequence given in [5].

2. Fine boundary limits of generalized solutions

Proposition 1 tells us that‘the generalized solution Hf has a
fine limit at z EUﬁrr for every £ €C(U¥). Furthermore, this
limit is identified Wiﬁh the‘integral jfdsgu with respect to the
swept-out measure EEU. This behavior of Hf remains unchanged if
we replace the continuous boundary function £ by an arbitrary
bounded resolutive boundary function f as we will see now. In
order to obtain this result we have to assume that the point
z GUir

r is polar.

Theorem 2. Under the assumption that the point =z eU?rr is
polar, every bounded resolutive function £ on U¥ is egU-integrable
and Hf has IfdegU as a fine limit at z:

2.1 £-Lin K () = jfdng.

The proof of this theorem given in [3] made use of Doob's conver-
gence axiom in an essential way in order to derive the egU—inte—
grability of f. However, only mild modifications of the original
proof have to be made in order to prove the theorem»under the

present assumptions.



Proof. As in [3], pp. 347-348, we can see that (2.1) holds
when the bounded function £ is upper or lower semicontinuoué on

U* and vanishes in a neighborhood of =z.

Suppose now that f (besides being bounded resolutive) vanishes
in a neighborhood of z. Then we observe that for every bounded
lower semicontinuous function ¢ =f on U¥ there exists a lower
semicontinuous function ¢' on U¥ which also vanishes in a neigh-
borhood of z and satisfies ¢9=29¢'=2f. In fact, we choose a closed
neighborhood V of z in U¥ such that £ vanishes in a neighborhood

V' of V in U*, Then ¢' =91 has all desired properties since

v

¢
p(y) 2f(y) =o for all y €V'. Consequently, I*fdeéu is the infimum
of the integralS‘f¢degU where ¢ 2f is bounded, lower semicontinuous
and vanishes in a neighborhood of z. Since (2.1) holds for this

type of functions we obtain - by applying this argument to f and

wf -

U X U
f*fdsg < f-lim infH, (x) < f-lim supH (x) < f*fdeg .

This, however, proves that (2.1) is valid for all bounded Borel
functions f on U¥% which Vénish in a neighborhood of z. This
observation enables us to treat now also our bounded resolutive
function £ which vanishes in a neighborhood of z. Resolutivity
of f is equivalent to the uo-integrability of £ for all x €U.
Hence, given x €U, there exist bounded Borel functions 9. and hX

on U¥ vanishing in a (fixed) neighborhood of z such that
(2.2) g, = f=< h,
and

(2.3) fg au) = ffdug = fhdug.
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Now we can use a trick which was also used by Hansen [11]:

We choose a countable dense subset DcU and choose the functions

Iy ,hx for each x €D as before. Then
g: =sup g and h = inf hx
x€D X€D

are again Borel functions on U¥ vanishing in a neighborhood of =z

such that

(2.4) g< f<h

and

(2.5) Jodu) = [fau) = [hdu) (x €D).
But

, u -
X - jgdux = Hg(x) and x - fhdux = H (x)

are harmonic, hence continuous functions. Therefore (2.5) im-

plies the equality

Hg(x) = Hh(x) for all x €U.
Finally we can pass to the fine limit which yields

(v _ : _ . '_ U
Igdez = f-1lim Hg(x) = f~1lim Hh(x) = Ihdeg .
X=7Z X=Z

This together with (2.4) proves that f is egu—integrable and

that (2.1) holds.

The rest of the proof given in [3], for an arbitrary bounded

resolutive function £, remains unchanged.

It is not clear what can be said about unbounded resolutive

functions (with or without Doob's convergence axiom). Even for



classical potential theory this seems to be an open question.
We also do not know whether Theorem 2 holds in full generality
without assuming the polarity of the point z. However, the
following weaker version of the theorem holds\without the
polarity of z. This observation, based on a preliminary version

of [3], is due to Mrs. Ursula Schirmeier:

Remaréi Assume that f is a bounded resolutive function on U¥%*

which is continuous at =z €U§rr. Then £ is EEU—integrable and

(2.1) holds.

Proof. As in the proof of Theorem 2.4 of [3] one can see

that

(2.2) jfdegU < f—lix}x;-.izanf (x) = f-lir}r;qszupr (x) = J‘fdez[U\{z}

holds for all bounded lower semicontinuous functions f 2o which
vanish in a neighborhood of z. We choose a sequence (¢n) of

functions 2o in C(U¥*) such that wn tf on U¥, Then

f-1im supr(x) f-lim supr_ (x) + £f=1im H (x)
X=Z X=2Z *n %=z ’n

i

. (u
£-lim supHe_ (x) + f¢ndez
X=Z n

since Proposition 1 holds without the polarity assumption
about z. (2.2) can be applied to each function f._wn’ n € IN. So
we have

. ' fu\{z (u
f-1im sup He (x) = J (£ -0, )de, Mzl f¢nd€z

X=Z

for every n € IN. For n=-« this gives



o
(g}

f-lim supH, (x) < ffdegu.
Xz

Consequently, (2.1) holds for bounded lower semicontinuous

functions f 20 vanishing in a neighborhood of =z.

Then we continue with the argument of step 3 in [3], p.348, and
continue as above in the proof of Theorem 2 in order to obtain
(2.1) for all bounded resolutive functions f which vanish in a

neighborhood of z. From this we can proceed as follows:

We may assume f (z) =o by passing from f to £-f(z). Then we put

1 . 1
fn = sup(f,ﬁ) + 1nf(f, —H) (n €M) .

The continuity of f at z (where f(z) =o) implies that {]f]‘<%}
is a neighborhood of z on which fn vanishes. According to the

result obtained so far, we have

f-lim He (x) = J‘fndsCZU ' (n € IN) .
X=Z n

From this the final result follows since

g - £l <1 on U*,

so that (fn) converges uniformly to £ on U¥*.

Let us also point out again that in classical potential theory
Theorem 2 is due to Brelot [4],[5]. However, when Brelot studied
the maximal sequences in [6] he did not not recognize the key

r8le of his result.

This key r8le becomes evident from the following result:

Lemma 1. Assume that the point z GUirr is polar and that (xn)



o
(o)

is a maximal sequence in U with respect to z. Then, for every
bounded resolutive function £ on U*,'the generalized solution
He of the Dirichlet problem has a limit along the sequence (xn),

namely

: U
(2.6) lim Hp(x ) = ffdeg

n-s®

Let us point out immediately that it is crucial to formulate (2.6)
in this form and to combine (2.6) only after having proved it
with Theorem 1. The proof itself can be copied from [3]. It
remains valid in the new framework and is similar in spirit to

the proof of Theorém 1.

Next we could make the combination of Lemma 1 and of Theorem 1
and state (2.6) in the more appropriate form:

(2.7) iig Hf(xn) = f-1lim Hf(x)
- X-Z

for all bounded resolutive functions. However much more is true

and the proof goes via (2.7):

Theorem 3. Assume that the point =z EU?rr is polar'and that
(xn) is a maximal sequence in U with  -respect to z. Then for every
bounded harmonic function u on U the following two limits exist
and are equal: |

(2.8)  1lim u(xn) = f-1lim u(x).
n=—e X=Z

Again the proof can be copied from [3]. In the case of classical

potential theory this theorem was proved by Brelot [6] with
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totally different methods.

3. Applications to the heat equation

We consider the harmonic space given by the solutions of the

heat equation
- ou _
(3.1) Au ST o
p+1 __p . . :
on R =RY xR, p=1. In order to avoid confusions, harmonic

(superharmonic) functions with respect to this new harmonic

structure will be called caloric (supercaloric) functions.

The fundamental solution W of (3.1) with pole at the origin

is given by

P/y
(41 ) exp ( - ﬂ—ﬂ— , T>O
(3.2) W(x) = { T

fe} ;, TSSO

where x = (£,7) €RP xR and where |¢|| is the euclidean norm of .
We denote by ord x the time coordinate t of x. By translation

we obtain the fundamental solution

W (x) = W(x—xo) (x € Rp+1)

with pole X ERP+1.

In [2] we have studied the relatively compact domain

pP/5
L }

= p+1 | -
2(z ,c) {x€eR : Wiz -x) > (4th

where zO ERP+1 and c >o. Q(xo,c) is called the heat ball with
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"center" zg and "radius" c¢. The center z, turns out to be the
only irregular boundary point of Q(zo,c). The corresponding

[2(zg,c)

swept-out measure € is explicitely known in this case;

()

it is the co-called Fulks measure as we have shown in [2].
Furthermore all siﬁgletons of Rp+1 are polar. Consequently,
Tﬁeorem 2 can be applied to this situation: the fine limit of
Hf can be calculated by integration f with respectito the Fulks

measure whenener £ is a bounded resolutive function for Q(zo,c).

Let us now improve two results of [3] by means of a different
approach. We consider a relatively compact open subset U of
p+1 ’
’

R an irregular boundary point z of U and for Yo €U the corre-

sponding Green function on U:

(3.3) G =W - H .

Here H is the generalized solution of the Dirichlet problem

W
Yo
with W, |u* as boundary function.
)
Lemma 2. For arbitrary Yo €U one has
(3.4) lim supG_ (x) = £-lim G (x) = W_ (z) - [W_de U.
x=z Yo x»z <o Yo Yo

Proof&E. We choose a relatively compact open neighborhood Vo
of z (in Rp+1) such that Yo QVO ; put V'=U11VO and define a

function f on V#*# as follows:

Yo

G, (y) , y €v¥nu
(3.5) fly) = {

o, Yy EV¥NU¥,
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Obviously, we have f 20 and f(y) =o in a neighborhood of z,
namely for all vy €U* ﬂVo. Furthermore, £ is a bounded Borel
function. From [3], Proposition 2.1 we know that we have

(3.6) f-lim H¥(x) = lim supH‘f’(x)
X=Z X=Z

for the corfesponding generalized solution Hg. [The proof given
in [3] remains valid even under the general assumptions of the

previous paragraphs.] We denote by u the restriction of Wyo to

U¥ and consider on V#* the function

Hu(y). y EV¥ NU
(3.7) v(y) = {

uly), y EV¥ NU*,

Then by the well-known restriction lemma [1], p.130, we know
that v is a resolutive function for V and that the corresponding
generalized solution HX equals the restriction of Hu to V. But

we have

(3.8) f =W -V on V#

as one can easily check. Consequently, for all x €V

(x) - HY(x) = H (x) - H_ (x)

Yo Yo

i
jas

Hg(x)

WYO(X) - Hu(x) = GYO(X),

since W is caloric (in particular continuous) on [{yo}, hence
o

in a neighborhood of V. An application of (3.6) now yields

lim supG_ (x) f-1im G (x) = f—lim(Wy (x) - Hy

X=Z o X7 o X2z o Yo

(x))

W, (z) - f-1lim H_ (x)
W
Yq Yq



= - |‘ [U
W (z) w dez

according to Theorem 2.

We are now able to give a simpler proof of [3], Proposition
4.2. It characterizes maximal sequences for the heat equation in
a similar way as Brelot's original definition of maximal se-

quences for classical potential theory.

Proposition 2. Let z be again an irregular boundary point of

U. Assume that the Green function Gy of U is strictly positive
o

in the trace WNU of a neighborhood W of z in Rp+1 for some
choice of the pole Yo €U. Then a sequence (xn) in U converging

to z is maximal with respect to z if and only if

(3.9) lim G (xn) = lim supG_ (x).
' ne Yo X=Zz ¢}
Proo€£, The positivity assumption about GY implies

o]

lim supG,_ (x) > o
Xz o

because otherwise Gy restricted to WNU would be a barrier
o)

for z. Hence z would be a regular boundary point of WNU and

hence also of U. So the preceding Lemma 2 yields the inequality

~{U _ (u
Ry (z) = jwyodez < Wyo(z).
o]

Consequently, the superharmonic function u =Wy on IRP-HF(Wy is
o o

even a potential) satisfies condition (1.1) of Theorem 1. According



to this theorem the sequence (xn) is maximal if and only if (1.2)

holds, i.e. if and only if

W n

Lim B, () = [W, deEU.
n=e Uy o

Due to the continuity of Wy in (:{yo} this is equivalent to
o

U
lim G, (x) Wwoo(z) - [w ael
n—oca yo n yo YO 2

lim supG (x)
X7 o

according to Lemma 2. So the result follows.

Finally we point out that the condition concerning Gy in the
o

preceding proposition is easy to verify by choosing the pole Yo
appropriately. It suffices to observe (cf. Doob [9], p.300) that

GY (x) >0 holds true for x €U if and only if there exists a
o

continuous path y : [0,1] =U in U connecting x =y (o) with

y_ =vy(1) in such a way that the function t-ord(y(t)) is

o
strictly decreasing.
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