Subordinate families to convolution kernels of logarithmic type

Masayuki ITÔ (Nagoya Univ.) 伊藤正之 (名大. 教養)

§ 1. Let X be a locally compact abelian group with countable basis, $M_K(X)$ the usual topological vector space of all real Radon measures on X with compact support and let $M_K^O(X) = \{\mu \in M_K(X); fd\mu = 0\}$. A real convolution kernel N on X means a real Radon measure on X. We say that N is a convolution kernel of logarithmic type (resp. a Hunt convolution kernel) if for any $\mu \in M_K^O(X)$ (resp. $\mu \in M_K(X)$), N* μ is of form

$$(1.1) N*\mu = \int_0^\infty \alpha_t *\mu dt,$$

where $(\alpha_t)_{t\geq 0}$ is a semi-transient convolution semi-group (resp. a transient convolution semi-group) on X. In this case, $(\alpha_t)_{t\geq 0}$ is uniquely determined (see [1] and [6]) and called the convolution semi-group of N. Evidently Hunt convolution kernels are always convolution kernels of logarithmic type.

Let $H_b(R^+)$ be the set of all Hunt convolution kernels on R supported by $R^+ = \{t \in R; t \ge 0\}$ whose convolution semi-groups are sub-Markovian, where R denotes the 1-dimensional Euclidean space.

For any Hunt convolution kernel $N = \int_0^\infty \alpha_t dt$ on X and for any $\kappa \in H_b(R^+)$, $\int \alpha_t d\kappa(t)$ defines a convolution kernel on X and is a Hunt convolution kernel (see [3]). Put

(1.2)
$$H(N; X) = \{N_{(\kappa)} = \int \alpha_t d\kappa(t); \kappa \in H_b(R^+)\}.$$

We call H(N; X) the subordinate family to N. To determine Hunt convolution kernels as a kind of the perturbation of N, H(N; X) plays a fundamental role.

Let N be a convolution kernel of logarithmic type, $(\alpha_t)_{t\geq 0}$ the convolution semi-group of N and let $\kappa \in H_b(R^+)$. It was a question if there exists a convolution kernel $N_{(\kappa)}$ of logarithmic type on X satisfying

(1.3)
$$N_{(\kappa)} * \mu = \lim_{a \to \infty} \int_{0}^{a} \alpha_{t} * \mu d\kappa(t) \quad (= \int \alpha_{t} * \mu d\kappa(t))$$

for every $\mu \in M_{K}^{O}(X)$ (see [5]). In the previous paper [8], we gave an affirmative solution:

Theorem. Let N be a convolution kernel of logarithmic type on X and $(\alpha_t)_{t\geq 0}$ the convolution semi-group of N. Then for any $\kappa\in H_b(R^+)$, there exists a convolution kernel $N_{(\kappa)}$ of logarithmic type on X satisfying (1.3) for every $\mu\in M_K^0(X)$.

The purpose of this note is to give a sketch of the proof and to discuss an application of this theorem.

§ 2. Let $C_K(X)$ denote the usual topological vector space of all finite continuous functions with compact support, $C_b(X)$ the usual Banach space of all bounded continuous functions on X and M(X) the topological vector space of all real Radon measures on X with the vague topology. We denote by $C_K^+(X)$, $C_b^+(X)$, $M_K^+(X)$ and by $M^+(X)$ their subsets of all non-negative elements, respectively.

A family $(\alpha_t)_{t\geq 0}$ in $M^+(X)$ is called a convolution semi-group on X if α_0 = the unit measure ϵ at the origin 0 of X, $\alpha_t*\alpha_s$ = α_{t+s} for all t, $s \in R^+$ and if $R^+ \ni t \to \alpha_t \in M(X)$ is continuous. We say that:

 $(\alpha_t)_{t\geq 0} \text{ is sub-Markovian (resp. Markovian) if for any } t\geq 0\,, \\ \int\! d\alpha_t \leq 1 \quad (\text{resp. } \int\! d\alpha_t = 1)\,.$

 $(\alpha_t)_{t\geq 0}$ is transient if for any $f\in C_K^+(X)$, $\int_0^\infty f d\alpha_t dt < \infty$.

 $(\alpha_t)_{t\geq 0}$ is recurrent if it is not transient.

 $\begin{array}{lll} (\alpha_t)_{\ t\geq o} & \text{is semi-transient if for any} & p>0 \text{, the convolution} \\ \text{semi-group} & \left(\exp(-\text{pt})\,\alpha_t\right)_{\ t\geq o} & \text{is transient and if for any} & \mu\in M_K^O(X) \text{,} \\ (\int_0^t \alpha_s * \mu \mathrm{d}s)_{\ t\geq o} & \text{is bounded in} & M(X) \text{, where} & \int_0^t \alpha_s * \mu \mathrm{d}s & \text{is the real Radon} \\ \text{measure on} & X & \text{defined by} & C_K(X) & \text{if} & \text{is for any} & \text{is the real Radon} \\ \end{array}$

For a convolution semi-group $(\alpha_t)_{t\geq 0}$ on X, we put

(2.1)
$$\Gamma((\alpha_t)) = \overline{\bigcup_{t \geq 0} \operatorname{supp}(\alpha_t)}.$$

Then $\Gamma((\alpha_t))$ is a semi-group in X. Let $(\alpha_t)_{t\geq 0}$ be a convolution semi-group on X such that for any p>0, $(\exp(-pt)\alpha_t)_{t\geq 0}$ is transient Put $N_p=\int_0^\infty \exp(-pt)\alpha_t dt$ for every p>0, and $(N_p)_{p>0}$ is called the resolvent defined by $(\alpha_t)_{t\geq 0}$. For any p>0 and q>0, the resolvent equation

$$(2.2) N_{p} - N_{q} = (q - p)N_{p}*N_{q}$$

holds.

By using the resolvent defined by a convolution semi-group, we obtain the following

Lemma 1. Let $(\alpha_t)_{t\geq 0}$ be a semi-transient convolution semi-group on X. If $(\alpha_t)_{t\geq 0}$ is recurrent, then $\Gamma((\alpha_t)) = X$ and $(\alpha_t)_{t\geq 0}$ is Markovian.

Combining the above lemma and one of the main results in [5], we have the following

Proposition 1. Let $(\alpha_t)_{t \geq 0}$ be a recurrent convolution semi-group

on X. Then $(\alpha_t)_{t\geq 0}$ is semi-transient if and only if $\Gamma((\alpha_t)) = X$, $(\alpha_t)_{t\geq 0}$ is Markovian and for any p>0, N_p is non-singular with respect to a fixed Haar measure ξ on X, where $(N_p)_{p>0}$ is the resolvent defined by $(\alpha_t)_{t\geq 0}$. In this case, $(N_p,s)_{p>0}$ is bounded in M(X), where N_p,s is the singular part of N_p with respect to ξ .

Proposition 2. Let $(\alpha_t)_{t\geq 0}$ be a convolution semi-group on X. Then $(\alpha_t)_{t\geq 0}$ is the convolution semi-group of a convolution kernel of logarithmic type if and only if $(\alpha_t)_{t\geq 0}$ is semi-transient.

This follows from the above lemma and another main theorem in [5].

Let N be a positive convolution kernel on X and $\mu \in M^+(X)$ with $N*\mu \in M^+(X)$. For an open set ω in X, a non-negative Radon measure μ' on X is called an inner N-balayaged measure of μ to if $supp(\mu') \subset \overline{\omega}$, $N*\mu' \leq N*\mu$ in X, $N*\mu' = N*\mu$ in ω and if for any $\nu \in M^+(X)$ with $N*\nu \in M^+(X)$, $N*\nu \geq N*\mu'$ in X whenever $N*\nu \geq N*\mu$ in ω .

Lemma 2 (see, for example, [4]). Let N be a Hunt convolution kernel on X and $\mu \in M^+(X)$ with $N*\mu \in M^+(X)$. Then for any open set ω in X, there exists a uniquely determined inner N-balayaged measure μ_{ω}^{\bullet} of μ to ω .

Lemma 3 (see [4]). Let $(\alpha_t)_{t\geq 0}$ be a convolution semi-group on and assume that for any p>0, $(\exp(-pt)\alpha_t)_{t\geq 0}$ is transient. Let $(N_p)_{p>0}$ be the resolvent defined by $(\alpha_t)_{t\geq 0}$. For any p>0, any open set ω in X and for $\mu\in M^+(X)$ with $N*\mu\in M^+(X)$, we denote by $\mu_{p,\omega}^{\dagger}$ the inner N_p -balayaged measure of μ to ω . Then we have:

(1) The mapping $X \ni x \to \varepsilon'_{x,p,\omega} \in M(X)$ is Borel measurable, that is, for any $f \in C_K(X)$, the function $\int f d\varepsilon'_{x,p,\omega}$ of x is Borel measurable on X, where ε_X denotes the unit measure at x and where $\varepsilon'_{x,p,\omega} = (\varepsilon_X)'_{p,\omega}$.

(2) For any $\mu \in M^+(X)$ with $N_p * \mu \in M^+(X)$, we have

(2.3)
$$\mu_{p,\omega}^{\dagger} = \int \varepsilon_{x,p,\omega}^{\dagger} d\mu(x),$$

that is, $\int f d\mu'_{p,\omega} = \int \int f d\epsilon'_{x,p,\omega} d\mu(x)$ for every $f \in C_K(X)$.

(3) For any p>q>0 and any $\mu\in \text{M}^+(X)$ with $N_q*\mu\in \text{M}^+(X)$, we have

(2.4)
$$\mu'_{q,\omega} = \mu'_{p,\omega} + (p - q)(N_p * (\mu - \mu'_{p,\omega}))'_{q,\omega}.$$

Let $(\alpha_t)_{t\geq 0}$ be a Markovian convolution semi-group on X and $(N_p)_{p>0}$ the resolvent defined by $(\alpha_t)_{t\geq 0}$. For any p>0, any $\mu\in M_K^+(X)$ and for any open set ω in X, the positive mass principle of N_p^{-1} gives $\int d\mu_p', \omega \leq \int d\mu$. Since $(\mu_p', \omega)_{p>0}$ increases as p decreases, $\lim_{p\to 0} \mu_p', \omega$ exists in $M_p^+(X)$. Putting $\mu_\omega' = \lim_{p\to 0} \mu_p', \omega$, we call it the inner balayaged measure of μ to ω with respect to $(\alpha_t)_{t\geq 0}$. Furthermore, for any $\mu\in M_p^+(X)$ with $\int d\mu < \infty$, it can be defined by the usual limit process. Lemma 3 gives the following

Lemma 4. Let $(\alpha_t)_{t\geq 0}$ be a Markovian convolution semi-group on X, $(N_p)_{p>0}$ the resolvent defined by $(\alpha_t)_{t\geq 0}$ and ω an open set in X. Then for any $\mu\in M^+(X)$ with $\int d\mu <\infty$ and any p>0,

(2.5)
$$\mu_{\omega}^{\prime} = \int \epsilon_{\mathbf{x},\omega}^{\prime} d\mu(\mathbf{x}),$$

where $\varepsilon_{x,\omega}' = (\varepsilon_{x})_{\omega}'$ and

(2.6)
$$\mu'_{\omega} = \mu'_{p,\omega} + p(N_{p}*\mu - N_{p}*\mu'_{p,\omega})'_{\omega}.$$

This means that for any μ , $\nu \in M_K^+(X)$, $N_p * \mu \leq N_p * \nu$ on X implies $\int \! d\mu \leq \int \! d\nu$.

To prove our main theorem, the following lemma will plays an essential role.

Lemma 5. Let $(\alpha_t)_{t\geq 0}$ be a semi-transient and recurrent convolution semi-group on X. Then for any $t_0>0$ and any p>0, supp $(\sum_{n=0}^{\infty}\exp(-pnt_0)\alpha_{nt_0})=X$ and $\sum_{n=0}^{\infty}\exp(-pnt_0)\alpha_{nt_0}$ is non-singular with respect to ξ .

For $\mu \in M^+(X)$, supp(μ) denotes the support of μ .

It suffices to show our conclusion in the case of $t_0=1$. Let $(N_p)_{p>0}$ be the resolvent defined by $(\alpha_t)_{t\geq 0}$. Put $N_p'=\sum\limits_{n=0}^\infty \exp(-pn)\alpha_n$ and $N_p''=\int_0^1 \exp(-pt)\alpha_t dt$. Then

$$N_{\mathbf{p}}^{\prime} \star N_{\mathbf{p}}^{\prime\prime} = N_{\mathbf{p}}.$$

By (2.7), the recurrence of $(\alpha_t)_{t\geq 0}$ and the Choquet-Deny theorem ([2]), we obtain that $\operatorname{supp}(N_p') = X$ for every p>0.

Let $\omega \neq \varphi$ be an open set in X. By Lemma 4 and the Choquet-Deny theorem ([2]), we obtain that

(2.8)
$$\lim_{p \to 0} N_p' * (\varepsilon - \varepsilon_\omega'') = -a_\omega \xi \quad \text{in} \quad \omega$$

with some constant $a_{\omega} \geq 0$, where $\epsilon_{\omega}^{"}$ is the inner balayaged measure of ϵ to ω with respect to the convolution semi-group $(\beta_t)_{t\geq 0}$ which defines the resolvent $(\frac{1}{p+1}N_{\log(p+1)}^{'})_{p>0}$. We remark here that $(\beta_t)_{t\geq 0}$ is also Markovian and recurrent. Furthermore, putting η_{ω} = $\lim_{p\to 0} N_p^{"} * (\epsilon - \epsilon_{\omega}^{"})$, we obtain that

(2.9)
$$\sum_{n=0}^{\infty} \alpha_n * (\epsilon - \epsilon_{\omega}^{"}) = \eta_{\omega}$$

and

and that

(2.10)
$$N*(\varepsilon - \varepsilon_{\omega}^{"}) = N_{o}^{"}*\eta_{\omega},$$

where N is the convolution kernel of logarithmic type on X whose convolution semi-group is equal to $(\alpha_t)_{t\geq 0}$. Assume that there exists p>0 such that N_p' is singular with respect to ξ . Then for any $n\geq 1$, $\alpha_n*(\epsilon-\epsilon_\omega'')$ is singular with respect to ξ . By (2.8) and (2.9), we have $a_\omega=0$, so that $\eta_\omega\geq 0$ in X. Therefore (2.10) gives $N*(\epsilon-\epsilon_\omega'')\geq 0$ in X. Since ω is arbitrary and $\int d\epsilon_\omega''=1$, we have $N\geq N*\epsilon_X$ in X for every $x\in X$, so that for any $x\in X$, $N=N*\epsilon_X$, which is a contradiction. Thus N_p' is non-singular with respect to ξ for every p>0.

Lemma 5 gives the following

Proposition 3. Let $(\alpha_t)_{t\geq 0}$ be a semi-transient and recurrent convolution semi-group on X. Then there exists $t_0 > 0$ such that for any $t \geq t_0$, $\operatorname{supp}(\alpha_t) = X$ and α_t is non-singular with respect to ξ .

In the same manner as in Proposition 32 in [7], we have the following

Lemma 6. Let $(\alpha_t)_{t\geq 0}$ be a semi-transient and recurrent convolution semi-group on X and let $\kappa \in H_b(R^+)$. Denote by $(\gamma_t)_{t\geq 0}$ the convolution semi-group of κ and by $(\kappa_p)_{p>0}$ the resolvent defined by $(\gamma_t)_{t\geq 0}$. Assume that the convolution semi-group $(f\alpha_s d\gamma_t(s))_{t\geq 0}$ is semi-transient and recurrent. Let $N_{(\kappa)}$ be the convolution kernel of logarithmic type on X whose convolution semi-group is equal to $(f\alpha_s d\gamma(s))_{t\geq 0}$. Then for any $\mu \in M_K^0(X)$,

$$(2.11) \quad N_{(\kappa)} * \mu = \lim_{p \to 0} N_{(\kappa_p)} * \mu = \lim_{t \to \infty} \int_0^t \alpha_s * \mu d\kappa(s) \quad (= \int \alpha_t * \mu d\kappa(t)).$$

is semi-transient and recurrent. Let κ be in $H_b(R^+)$, $(\gamma_t)_{t\geq 0}$ the convolution semi-group of κ and $(\kappa_p)_{p>0}$ the resolvent defined by $(\gamma_t)_{t\geq 0}$. It suffices to show our conclusion in the case that $(\int \alpha_s d\gamma_t(s))_{t\geq 0}$ is recurrent. Hence it suffices to show that $(\int \alpha_s d\gamma_t(s))_{t\geq 0}$ is semi-transient (see Lemma 6). By the usual method, it suffices to assume that κ is elementary, that is, $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$, where $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is and where $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$. By the recurrence of $(\int \alpha_s d\gamma_t(s))_{t\geq 0}$, $\int d\sigma_k = 1$ and $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$. By the recurrence of $(\int \alpha_s d\gamma_t(s))_{t\geq 0}$, $\int d\sigma_k = 1$ and $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$. By the recurrence of $(\int \alpha_s d\gamma_t(s))_{t\geq 0}$, $\int d\sigma_k = 1$ and $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$. By the recurrence of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ and $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ and $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k)$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^k$ is an analysis of $\kappa = c(\varepsilon + \sum_{k=0}^{\infty} (\sigma_k)^$

(3.1)
$$\kappa_{o,p} = \frac{c}{pc+1} \left(\varepsilon + \sum_{n=1}^{\infty} \left(\frac{1}{pc+1}\sigma_{o}\right)^{n}\right)$$

for every p>0. Since $\kappa_p \geq \kappa_{0,p}$, it suffices to show that $N(\kappa_{0,p})$ is non-singular with respect to ξ (see Proposition 1). Since for any $n\geq 1$,

(3.2)
$$\sup((\int \alpha_t d\sigma_0(t))^n) \supset \sup(\alpha_{nt_0}),$$

Lemma 5 shows that $\sup(N_{(\kappa_0,p)})=X$ for every p>0. Furthermore, Proposition 3 shows that $N_{(\kappa_0,p)}$ is non-singular with respect to ξ . Thus $(\int \alpha_s d\gamma_t(s))_{t>0}$ is semi-transient, which proves our main theorem.

§ 4. Let N be a convolution kernel of logarithmic type on X and $(\alpha_t)_{t>0}$ the convolution semi-group of N. Put

$$H_1(N; X) = \{N_{(\kappa)} = \int \alpha_t d\kappa(t); \kappa \in H_b(R^+)\},$$

$$H_{2}(N; X) = \{(N_{1})_{(\kappa)}; N_{1} \in H_{1}(N; X), \kappa \in H_{b}(R^{+})\},$$

$$(4.1)$$

$$H_{n}(N; X) = \{(N_{n-1})_{(\kappa)}; N_{n-1} \in H_{n-1}(N; X), \kappa \in H_{b}(R^{+})\},$$

$$\dots$$

Then for any $n \ge 1$, $H_n(N; X)$ is a family of convolution kernels of logarithmic type on X and $H_n(N; X) \subset H_{n+1}(N; X)$. Put

(4.2)
$$H_{\infty}(N; X) = \bigcup_{n=1}^{\infty} H_{n}(N; X),$$

where the closure is in the sense of the vague topology. We call $H_{\infty}(N;\ X)$ the generalized subordinate family to N.

Proposition 4. Let $M \in H_{\infty}(N; X)$. Then M is a convolution kernel of logarithmic type if and only if M is non-periodic, that is, for any $0 \neq x \in X$, $M*\epsilon_X \neq M$.

Let M be a given convolution kernel on X. To get a conclusion that M is of logarithmic type, it is very useful to find out a certain convolution kernel N of logarithmic type satisfying $M\in H_{\infty}(N;\;X). \;\; \text{For example, let} \;\; R^n \;\; \text{be the n-dimensional Euclidean}$ space $(n\geq 1)$ and put

$$N_{o} = \begin{cases} -|x| dx & \text{on } R^{1} \\ (-\log|x|) dx & \text{on } R^{2} \\ |x|^{2-n} dx & \text{on } R^{n} (n \ge 3) \end{cases}$$

where |x| denotes the distance between x and 0 and where dx denote the Lebesgue measure. By discussing precisely $H_{\infty}(N_0; R^n)$, we can obtain several concrete conditions to be Hunt convolution kernels on R^n or convolution kernels of logarithmic type on R^n .

BIBLIOGRAPHY

- [1]. C. Berg and G. Forst: Potential theory on locally compact abelian groups, Springer-Verlag, Berlin-Heidelberg-Newyork, 1975.
- [2]. G. Choquet and J. Deny: Sur 1'équation de convolution μ = $\mu*\sigma$, C. R. Acad. Sci. Paris, 250 (1960), pp. 799 801.
- [3]. M. Itô: Sur la famille sous-ordonnée au noyau de convolution de Hunt II, Nagoya Math. J., 53 (1974), 115 126.
- [4]. : Sur les noyaux de convolution conditionnellement sousmédiens, ibid, 75 (1979), 1 - 39.
- [5]. : Les noyau de convolution de type logarithmique, Théorie du potentiel, Proceeding Orsay 1983, Lecture Note in Math., 1096, 345 392, Springer-Verlag.
- [6]. : Une caractérisation des noyaux de convolution réels de type logamithmique, Nagoya Math. J., 97 (1985), 1 49.
- [7]. : Le principe semi-complet du maximum pour les noyaux de convolution réels, ibid, 101 (1986), 55 109.