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Subordinate families to convolution kernels

of logarithmic type

Masayuki ITO (Nagoya Univ.)
bz (FK. #E)

§ 1. Let X be a locally compact abelian group with countable
basis, MK(X) the usual topological vector space of all real Radon
measures on X with compact support and let ME(X) = {u e MK(X);

Sdu = 0}. A real convolution kernel N on X means a real Radon
reasure on X. We say that N 1is a convolution kernel of logarithmic
type (resp. a Hunt convolution kernel) if for any u e ME(X) (resp.

u o€ MK(X)), Ny 1is of form
(1.1) N#u = oo *udt,

where (ut)t>o is a semi-transient convolution semi-group (resp.

a transient zonvolution semi-group) on X. In this case, (ut)t>o is
uniquely determined (see [1] and [6]) and called the convolutzon
semi- group of N. Evidently Hunt convolution kernels are always
convolution kernels of logarithmic type.

Let Hb(R+) be the set of all Hunt convolution kernels on R
supported by RT = {t e R; t > 0} whose convolution semi-groups are
sub-Markovian, where R denotes the 1-dimensional Euclidean space.

For any Hunt convolution kernel N = f:atdt on X and for any
K € Hb(R+), fatdK(t) defines a convolution kernel on X and is

a Hunt convolution kernel (see [3]). Put

(1.2) HIN; X) = (N(y = Jogde(t); « e Hb(R+)}.
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Ve call H(N; X) the subordinate family to N. To determine Hunt
convolution kernels as a kind of the perturbation of N, H(N; X) plays
a fundamental role. |

Let N be a convolution kernel of logarithmic type, (at)t>o
the convolution semi-group of N and let «k € Hb(R+). It was aﬁquestion

if there exists a convolution kernel N(K) of logarithmic type on X

satisfying

— 3 a 3
(1.3) N(K)*u = iig fout*udK(t) ( fut*de(t))
for every u € ME(X) (see [5]). In the previous paper [8], we gave
an affirmative solution: .
Theorem. Let N be a convolution kernel of logarithmic type

on X and the convolution semi-group of N. Then for any

(e >0
K € Hb(R+), there exists a convolution kernel N(K) of logarithmic
type on X satisfying (1.3) for every u e ME(X).

The purpose of this note is to give a sketch of the proof and

to discuss an application of this theorem.

§ 2. Let CK(X) denote the usual topological vector space
of all finite continuous functions with compact support, Cb(X) the usual
Banach space of all bounded continuous functions on X and M(X)
the topological vector space of all real Radon measures on X with
the vague topology. We denote by CE(X), Cg(X), ME(X) and by M+(X)
their subsets of all non-negative elements, respectively.

A family (ut)t>o in M+(X) is called a convolution semi-group

on X 1if o, = the unit measure ¢ at the origin 0 of X, a ®og

t

= Oy for all t, s € R" and if R 5t » a, € M(X) 1is continuous.

We say that:
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(ut)t>o is sub-Markovian (resp. Markovian) if for any t > 0,
fdoct <1 (resp. fdut = 1).
- . . + 00
(ut)tio is transient if for any f ¢ CK(X), foffdutdt < o,
(ut)tio is recurrent if it is not transient.

(at)t>o is semi-transient if for any p > 0, the convolution
semi-group (exp(—pt)ut)t>0 is transient and if for any 1y e M?(X),
\

(fgus*uds)tio is bounded in M(X), where fgus*uds is the real Radon

measure on X defined by C(X) 5 £ + S.ffda_*uds.

For a convolution semi-group on X, we put

(@)

2.1 r = .
(2.1) Tle) = T SRR

Then F((at)) is a semi-group in X. Let (ut)t>o be a convolution

semi-group on X such that for any p > 0, (exp(—pt)ut)t>o is transient

Put Np = foexp(-pt)utdt for every p > 0, and (Np)p>o is called
the resolvent defined by (ut)t>o’ For any p >0 and q > 0,
the resolvent equation

2.2 N - N = - N_*N

(2.2) . q = (@ - PINS*N,

holds.
By using the resolvent defined by a convolution semi-group, we

obtain the following

Lemma 1. Let (ut)t>o be a semi-transient convolution semi-group
on X. If (ut)tzo is recurrent, then F((ut)) = X and (at)tzo is
Markovian.

Combining the above lemma and one of the main results in [5], we
have the following

Proposition 1. Let be a recurrent convolution seri-group

() es0
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on X. Then is semi-transient if and only if T((ut)) = X,

(@) t50

(at)t>o is Markovian and for any p > 0, Np is non-singular with
respect to a fixed Haar measure & on X, where [Np)p>o is the
resolvent defined by (at)tzp. In this case, (Np,s)p>0 is bounded

in M(X), where Np s is the singular part of Np with respect to &.

b

Proposition 2. Let (at)t>o be a convolution semi-group on X.

Then is the convolution semi-group of a convolution kernel

(at)tzo

of logarithmic type if and only if (at)t>o is semi-transient.

This follows from the above lemma and another main theorem in [5].

Let N be a positive convolution kernel on X and u e M+(X)
with N=xu € M+(X). For an open set w in X, a non-negative Radon
measure u' on X is called an inner N-balayaged measure of u to
if supp(p') ¢ w, N*¥p' < N*#p in X, N#p' = N*p in w and if for
any v e M (X) with N#v ¢ M'(X), N#v > N#u' in X whenever N#v
> N*#p  in  w.

Lemma 2 (see, for example, [4]). Let N be a Hunt convolution
kernel on X and 1y e M+(X) with N#p e M+(X). Then for any open
set w 1n X, there exists a uniquely determined inner N-balayaged
measure u& of u to w.

Lemma 3 (see [4]). Let be a convolution semi-group on

(at)tio
and assume that for any p > 0, (exp(-pt)ut)t>0 is transient. Let
N

(N,)

open set w 1in X and for yu e M+(X) with N=#p ¢ M+(X), we denote

be the resolvent defined by For any p > 0, any

p>o (ut)tio‘

by ué © the inner Np—balayaged measure of u to w. Then we have:

(1) . The mapping X > x ~> s% D,w e M(X) 1is Borel measurable,

that is, for any f € CK(X), the function ffdei “ of x 1is Borel

b b

measurable on' X, where € denotes the unit measure at x and where

g! = (e )! .
X,P,w X"p,w

X



(2) For any u e M+(X) with Np*u € M+(X), we have

(2.3) Hhw T T p, et (XD

that is, ffdué’w = fffdei’p’wdu(x) for every f € CK(X).

(3) For any p >q >0 and any u e M+(X) with Nq*u € M+(X),
we have
(2.4) u! = U

+ (p - q)(Np*(u ~ ué’w))é,w-

Let (ut)t>o be a Markovian convolution semi-group on X and

(Np)p>o the resolvent defined by (at)tzo. For any p > 0, any

u e ME(X) and for any open set w 1in X, the positive mass principle

of Np 1) gives fduﬁ,w < fdu. Since (ué,w)p>o increases as p

decreases, lim u' exists 1in M+(X). Putting u' = 1lim y! , we call
>0 PoW w p+0 pw

it the inner balayaged measure of u to w with respect to (at)t>o'
Furthermore, for any u e M (X) with Jfdu < » , it can be defined
by the usual 1limit process. Lemma 3 gives the following

Lemma 4. Let be a Markovian convolution semi-group

(e e>o

on X, (Np)p>o the resolvent defined by (ut)tio and ®w an open set

in X. Then for any u € M+(X) with Jfdy < « and any p > 0,

=
(2.5) N fsg’wdu(X),
where e'v = (e¢_)'" and
. X, W0 X’ w
(2.6) b= uﬁ,w + p(Np*u - N_#yu! '

P poww’

1) This means that for any p, v e ME(X), Np*p < Np*v on X implies

Sdu < Jdv.
5.
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To prove our main theorem, the following lemma will plays

in essential role.

Lemma 5.  Let be a semi-transient and recurrent convolu- .

(qt)tzo

:ion semi-group on X. Then for any to >0 and any p > 0,
[0} [oe]

;upp( z exp(—pnto)oant ) = X and z exp(—pnto)unt is non-singular
n=o ) n=o o
vith respect to &.

For 1y e M+(X), supp(u) denotes the support of .

It suffices to show our conclusion in the case of t 1. Let

o]

r s ' ] =
*Np)p>o be the resolvent defined by (ut)tio. Put Np

v gl .
and Nb = foexp( pt)atdt. Then

exp(—pn)un
0

o8 0

o]

2.7 N'%N" = N_.
(2.7) pp

3y (2.7), the recurrence of and the Choquet-Deny theorenm ([2]),

(e t)e50
ve obtain that supp(Né) = X for every p > 0.

Let w # ¢ be an open set in X. By Lemma 4 and the Choquet-Deny

theorem ([2]), we obtain that

2.8 1im N'x(e - €") = -3 in W
( ) . p+0 P ( m) (A)(E

with some constant a, 2 0, where eg is the inner balayaged measure

of € to w with respect to the convolution semi-group (Bt)t>o which

1 ‘
(p+1NiOg(p+1))p>0'

is also Markovian and recurrent. Furthermore, putting um

defines the resolvent We remark here that (Bt)t>o

= 1lim N'=x(e - e&), we obtain that
p=o P

(2.9)

™8

K3 - " =
op*le - e = m

w
n

and
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and that
(2.10) N#(e - e&) = Ng*nw,

where N 1is the convolution kernel of logarithmic type on X whose

convolution semi-group is equal to Assume that there exists

(ut)tzo'
p > 0 such that Nﬁ is singular with respect to §&. Then for any

n>1, un*(e - ea), is singular with respect to §&. By (2.8) and

(2.9), we have a, = 0, so that Ny 2 0 in X. Therefore (2.10)
gives N#(e - e&) >0 in X. Since w is arbitrary and fdea =1,
we have N > N*ex in X for every x € X, so that for any x e X,
N = N*ex, which is a contradiction. Thus Né is non-singular with
respect to & for every p > 0.

Lemma 5 gives the following

Proposition 3. Let be a seri-transient and recurrent

(@) ¢>0

convolution seri-group on X. Then there exists t, > 0 such that

for any t > to’ supp(ut) = X and oy is non-singular with respect

to €.
In the same manner as in Proposition 32 in [7], we have the
following

Lemrma 6. Let be a semi-transient and recurrent

(@) t>0

convolution semi-group on X and let « € Hb(R+). Denote by (Yt)t>o
the convolution semi-group of «k and by (Kp)p>o the resolvent

defined by Assume that the convolution semi-group

(Yt)tio-

(fasdyt(s))t>o is semi-transient and recurrent. Let be

N
(x)
the convolution kernel of logarithmic type on X whose convolution

semi-group is equal to (fasdy(s))t>o. Then for any 1y e M%(X),

(2.11) N y#u = éi’;‘ N(Kp)*u: %ion; rla sude(s) (=fa *udk(t)).
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§ 3. Let us give a sketch of the proof of our theorem. We may
issume that (ut)t>o is semi-transient and recurrent. Let « be
: + - . .
in Hb(R ), (Yt)tzo the convolution semi-group of «k and (Kp)p>o

the resolvent defined by It suffices to show our conclusion

(e ts0-
in the case that (fusdyt(s))t>o is recurrent. Hence it suffices

to show that (fusdyt(s))t>o ;s semi-transient (see Lemma 6). By

the usual method,iit suffiZes to assume that « 1is elementary, that 1is,
¢ = c(e + ; (G)n), where ¢ 1is a positive constant, o € M+(R) with
supp (o) < g;l and with fdo < 1, (0)1 = o and where (0)n = (O)n_l*O
for every n > 1. By the recurrence of (fanYt(s))t>o, fdo = 1 and

5((0, ©)) > 0. Hence there exists t_ > 0 such that denoting by o,

o
the restriction of o to [to, «), we have 9, # 0, fdco < 1 and
supp(oo) > t,- Put
- _C z 1 n
(3.1) “o,p ~porTl® * I (Gert®o) )
for every p > 0. Since Kp > Ko’p, it suffices to show\that N(Ko,p)
is non-singular with respect to & (see Proposition 1). Since for any
n>1,
n
(3.2) supp((So do (t))7) » supp(unto),

Lemma 5 shows that supp(N(KO p)) = X for every p > Of Furthermore,

. )

Proposition 3 shows that N(Ko,p) is non-singular with respect to £.

Thus ,(fasdyt(s))t>o is semi-transient, which proves our main theorem.
§ 4. Let N _be a convolution kernel of logarithmic type on X

and the convolution semi-group of N. Put

(@t)tzo

Hy(N; X)) = Ny = Jogde(t); « e Hb(R+)},

-8-
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Hy(N3 X) = (N (g5 Ny e HY(N; X), e B (RD)),

(A1) ,

o)
=
~\
=
5
N~
!
—
~
=,

I . +
N ;e H (N; X),c e H(R)I,

Then for any n > 1, Hn(N; X) 1is a family of convolution kernels

of logarithmic type on X and Hn(N; X) ¢ Hn+1(N; X). Put

(4.2) H (N; X) = 3

Hn(N; X),
n=1

where the closure is in the sense of the vague topology. We call
H_(N; X) the generalized subordinate family to N.

Proposition 4. Let M e’Hm(N; X). Then M 1s a convolution
kernel of iogarithmic type if and only if M 1is non-periodic, that
is, for any 0 # x e X, M*ex # M,

Let M be a given convolution kernel on X. To get a conclusion
that M 1is of logarithmic type, it is very useful to find out
a certain convolution kernel N of logarithmic type satisfying

n

M e H_(N; X). For example, let R be the n-dimensional Euclidean

space (n > 1) and put

- x| dx on R!
N, =4 (-log|x[)dx on R?
{x|2_ndx on R" (n > 3)

where |x| denotes the distance between x and O and where dx denote
the Lebesgue measure. By discussing precisely Hw(NO; R™), we can
obtain several concrete conditions to be Hunt convolution kernels

on R” or convolution kernels of logarithmic type on R
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