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AN OPTIMAL SELECTION OF A LEADER
‘ éfaf\g‘ﬁ«%%ﬁ%’?) @g;{:g}(bﬁtsushi Tamaki)
ABSTRACT

There are n periods to go and n options appear one by one at the
head of each period. Each time an optibn appears, we observe the value
attached to the option and then decide, based on the observed value,
either to stop(accept the largest value observed so far) or continue
observing. Once an option is chosen or the final time is reached, the
selection procedure terminates. Satisfaction 1eve1¥is assumed to be
1 or 0, depending on whether the chosen value remains the largest. If
satisfaction level q(q=1 or 0) lasts for t units of time, reward qt is
earned. Thus we are led to the problem of finding a procedure that
will maximize the expected reward. The models considered here are
distinguished according to the two aspects: (1) Value attached to the
option(FI case and NI case), (2) Selection procedure(recall case and
no recall case). Thus there are four possible combinations of models.
In each of these models, we derive the optimal strategy and the maximal

expected reward.



In this paper, we present some stochastic models of optimal selection
which can be cast in the following form. A mumber of options or
opportunities appear sequentially over a fixed-finite horizon. Each time
an option appears, we observe the value ( randam variable attached to the
option ) and, based on thé observed value, decide either to select or
reject the option. The value may be the effectiveness number of the
option. If some option is selected or final time is reached, the
selection procedure terminates. An option is referred to as a leader if
its value attains a new high. When the value only represents the rank of
the option relative to those preceding it, relatively best option is
called a leader. When a leader appears, we say that a lead time starts.
That is, each leader initiates its lead time. It ends when a new leader
arrives, whereas it lasts until the final time if no fu:ther leader
appears in the remaining periods.

It is sometimes natural to assume that the chosen option gives
complete satisfaction ( satisfaction level 1 } as long as it remains a
leader but the satisfaction level decreases each time a new option
appears which is better than the current option. If satisfaction level
q ( 0%q<l ) lasts for t units of time, reward qt is earned. This
setting seems to B; appropriate to some cases of technological choice
problem, job search problem and marriage problem.

In this paper we confine ourselves to the simplest case in which the
satisfaction level is i or 0 depending on whether the current option is
a leader or not- It then turns out that maximizing the expected reward
is equivalent to maximizing the expected lead time. Thus we are led

to the problem of finding a procedure that selects an option (leader)
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whose expected lead time will be maximized.
The models can be distinguished according to the following three

aspects.

(1) vValue attached to the option

The typical problems concerning the value are the ' full-information
problem ( FI problem ),in which the value is sampled from a known
contimious distribution F, and the ' no-information problem ( NI
problem ),in which the value is only the rank of the option relative to
those preceding it. In the FI problem we can assume without loss of
generality that the underlying distribution F is uniform on [0,1].

(2) Selection procedure

Our problem is considered both in the case where once an option is
rejected, it may not be recalled later ( no recall caée ) and in the case
where such recall‘of previous option is allowed ( recall case ). It
should be noted that since, in the recall case, we evidently recall the
latest leader ( including the present option ), our aim is to maximize
the expected residual lead time of the chosen option, where residual
lead time is defined as (1ead time)- (time duration elapsed without being
choser). It may be possible that we came to the final time without

choosing an option, in which case the lead time is of course zero.

(3) Arrival process of the option

Two arrival procéSseS considered here are regular arrival( equal-
paced arrival ) where there are n periods and n options appear one by
one at the head of each period, and Poisson arrival where options appear
in the interval [0,T) according to a Poisson process which is independent

of the values of the options.

As each aspects has two cases,FI or NI, recall or no recall, and



regular or Poisson, there are eight possible combinations of

models. However, due to the limit to the mumber of pages for a

paper, we only. consider the regular arrival case and treat four possible
combinations in Sections 1 and 2. Our problems deal with
optimization of time, but they have the similar structure as that of the
so called best choice problem concerning three aspects Stated above (b see
s €.8., Cilbert and Mosteller 1966, Sakaguchi 1973, Cowan and Zabczyk
1978, Bojdecki 1978, Yang 1974, Smith and Deely 1975, Petruccelli 1982,
and Tamaki 1986 ).

1; FI Problem with Regular Arrival

There are n periods to go and n options appear one by one at the
head of each period. Let Xj’ j=1,2,...,n, be the value attached to the
j-th option and assume that X;» 'XZ, -.-» X are random sample from a
uniform distribution on [0,1].

Let I..kqnax(xl? X ,...,Xk) , then in the recall case we are said at
time k, to be in state (k,x) if Lk=x If we select the leader in this

state, its expected residual lead time is

n 2 1o _
m 0 = 2 GO Q0 andr )
=i+l

n-k. .
=2, x, 1k, (1.1
3=0

which clearly holds regardless of when the leader has appeared. (1.1)

follows since the probability that the next earliest leader appears in

the j-th period is ¥ 1(1-x) and the probability that no further
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leader appears in the remaining periods is K,
In the no recall case, naturally all decisions will take place only
at the occurrence of a leader. Therefore in the no recall case we are

said to be in state (k,x) when Lk=Xk=x It is easy to see that if the

leader is selected, its expected lead time is also given by (1.1).
1.1 Recall case

Here previously rejected option ( leader ) can be freely recalled
at a later time. Let Vk(x) be the maximal expected residual lead time
starting from (k,x), then we obtain, using {1.1), the following

equation from the principle of optimality

1
Vk(x) = max {mk(x), ka+1(x)i Vk+1(y)dy} , (1.2)
Isk<n, V_(x)=l.

The second term in RHS of (1.2) follows since when we decide to take at
least one more observation state makes transition from (k,x) into
(k+1,x) with probability x, and into (k+l,y) with transition density

1, xcys<l.

let

n=1¢ 1 7
G ==k\=Jl {(k,x): o (x)>xm, 4 (x)+ y mkﬂ(y)dy}U{(n,x): Oéxglj (1.3)

be the set of states for which, stopping ( making a selection ) is at
least as good as continuing exactly one more transition and then
stopping. Now define the one stage look ahead ( OLA ) policy as one
that stops as soon as the state enteré G. It is knowr} that roughly

speaking if G is closed, i.e., Pr{state leaves G at some finite
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future time | state belongs now to G} = 0, and realizable, i.e.,
Pr{state eventually enters G} =1, then the OLA policy is optimal. The
OLA approach plays an important role not only in Sections 1.1

and 1.2, but also in Sections 2.1 and 2.2. For a rigorous

proof, see for eXample Cowan and Zabczyk (1978) and Bojdecki
(1978). |

We return to (1.3). Simple calculation leads to

J’l A r%—:k ; E’,k 3
(x) + (y)dy = 22 x° + (1-x7)/3.
el X Te+1 =1 =1

Hence, G in (1.3) can be written as

n-1 n-k . ‘
6= U{&xx: 2 a=x)/isU{m,x: 0cxc1} . (1.4)
k=1 =1

n-k . n-k :
Since J}3=1(1-x3)/_-] is strictly decreasing in x, from j§11/j at x=0

to 0 at x=1, the inequality in (1.4) is equivalent to x2S, 1o where

s k21 , is the unique root, in Ogxg¢l, of the equation

k .
2 (1-=x)/j = 1. (1.5)

‘J:l
Therefore, if we let so=0, we can rewrite G as
n .
G = Ll)l{(k’X): sn_kgxgl} (1.6)

and have the following result.
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THEOREM 1.1. The optimal policy stops as soon as the state enters

G in (1.6). And the expected residual lead time E(RLT) is given by

n 1 n_l 1 .
E(RLT) = 35+ & —.513( . (1.7)
=13 j=2 k=n-j+1J

Proof. skis evidently non-decreasing in k. This monotonicity

property of {Sk}’ combined with the fact that our process " goes to

the right and upwards ', immediately establishes that G is closed

and realizable. See Appendix 1 for calculation of E(RLT).
It is of interest to see the following limiting relation hold

LEMMA l.v2. let ak=k(l-sk)/sk, then lim a = * (~1.3450 ),where

ko
a* is the unique root a in (0,%) of the equation
1 -au '
( l'ﬁ )du = 1. \ (1.8)
0
Proof. By definition, Sic satisfies
k .
2 A-sh/j=1. | (1.9)
j=1
Thus writing (1.9) as
K j
-k —
Z Ll ;-k) y kil -

o

and putting j/k=u and then letting k?® immediately yield (1.8).
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1.2. No recall case

Here, previously rejected option cannot be recalled at a later time
and all decisions must be made irmediately after-a leader has appeared.
let Vk(x) be the maximal expected lead time starting from state (k,x),

then we have the following equation

n . 1
v k-1 : v
V, (x) = max {mk(x), .—Z_xJ J Vj(y)dy}, (1.10)
j=k+l X
l<k<n, V_(x)=1.
. = n
The second term in RHS of (1.10) follows since, when we take at least
one more observation , state makes transition from (k,x) into
j-k-1

(j,y) with transition density x sfor k<jen, x<yzl. Let

n s k-1 1
Mk(x) = 3 xJ m, (y)dy,
j=k+1 x 3

then the OLA stopping region is given by from (1.10)

n-1

- U {,0: mrm @IU{mx: 0xa} . 1D

Straightforward caleulation leads to

n s (10
K = 5 ¥ k lj (Z yHdy

j=k+1 x 1i=0
n s 1 1] .
- » Sy aadthasn (1.12)
j=k+1 i=0
n-k n-i+l . .
=3 > Skhaxhs
i=1 j=k+1
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n-k . .
= 101 bk (1.13)
i=1

j&n—k-rl

Hence, from (1.13) and mk(x)=(1-' )/(1-x), the inequality mk(x) Mk(x)

turns out to be equivalent to

j’n_k(x5 <1,

where
k i k+1-1 k+1
S = 2 (1xM(1=x )/i(1-x7),  for k1. (1.14)
i=1

F}((x) is strictly decreasing in x€(0,1). To show this, define for 1gigk,

Fi 10 = A ATy

). (1.15)
Then since both 1-x* and (1-xk+1-i)/ (1—xk+l) are strictly decreasing,

jf( i(x) is also strictly decreasing and so isj’k(x) through the form of
Jk 1@

k
F ) =2 = (1.16)
i=1

k
The monotonicity property off"k(x) and the fact thatfk(0)=i§ll/ izl)
and j"k(l)=0 assure thatj’k(x)=1 has the unique root t in [o,1).

G in (1.11) now becomes
n
G = kLil{(k,x): tn_kgxgl} R (1.17)

where ty is interpreted as zero.

THEOREM 1.3. The optimal policy stops as soon as the state enters

G in (1.17). And the expected lead time E(LT) is given by
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n n-1 .
1
E(IT) =c_ +2.% .- D, 1.18)
‘n jélJ k_-Zn:_j (Cn-J “k-n+j Aen ¢

where

i
1/3, if i21

c; = J= ' (1.19)
O, if i=0 Py

Proof. To prove that G is closed, it suffices to show that te is
non-decreasing in k. We show this by establishﬁlgfk(x>g jf{_l(x).

But this can be proved by showing that
T 1 =Sy 12 0 for 1gizk-1, (1.20)

because from (1.16)

1 1
Fx) - F 10 =2 0+ =1 O ALY ARRCODN

(1.20) follows from (1.15) since
= 1D {5 Q- - KDY A K
- ¥ 110 a-hH 2 a5 Q)

2 0.

Realizability is self evident. For calculation of E(LT), see

Appendix 2.

As in the recall case, we have the following limiting relation.
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LEMMA 1.4. let a —k(l -t, )/t , then linm a, = a** (=2.1198 ),
AN ek

where a** is the unique root a in (0,%) of the equation

1 _-auy 4 __-a(l-u) o .
f (1-e )(Eae ) qu = 1. (1.21)
0 (l1-e “)u

Proof. From the definition of T and (1.14), we have

k+1 -1

(1ot Z(l ) a-g5 19y = (1.22)

j=1

Thus writing (1.22) as
. 3
k{4 S &,k By~ (k+1) k}
2;131 -((1+ ) }{1 (I+ g7 k)) n

{1-(1+ iﬁ)’(k‘“l)}

and putting j/k=u and then letting ks yields (1.21).

Remark (1). Another expression for Mk(x) is given by

n-k
M x) = 1§O (e 1-17C4 Yt . (1.23)

since (1..12) is wriitten as

10
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n-k-1 n-k-1-i n-k i-1
DI G 1/(j+1))x - 32 (XA 1/(3+l))x .
i=0 3=0 i=1 3=0

Therefore from (1.1) and (1.23),t,, k21, can be defined as a unique

root x in [0,1) of the equation

k

2. NI Problem with Regular Arrival

n options appear one at a time in random order, with all permutations
equally likely. As the option appear in order, we observe the rank
of each relative to those preceding it. As noted previously, in ‘the
NI problem, an option is referred to as a leader if it is best among
those that have already appeared.

In the recall case, we are said to be in state k when we have just

observed the first k options. If we select the leader among those,

its expected residual lead time is

b8!
k k
m, = j§1 (G- 550y + (kD o

.M:
Cnto} b=t

il
=

=k
J

. Igken. 2.

This follows since the probability that the next earliest leader
appears in the j-th period is k/j(j-1) and the probability that no
further leader appears in the remaining periods is k/n. In the no
recall case, we are said to be in state k if we have observed the first

k options and found that the k-th option is a leader. The expected

11
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lead time when we select the leader :'LS also given by (2.1).
2.1. Recall case

Let Vi be the maximal expected residual lead time starting from

state k, then we evidently have

Vv, = max ( B Vi ),

Ick<n, Vn=1

This suggests that the OLA stopping region is given by

n-1 n-l . n
G = U 3k: Wn = ks - 1/341 (2.2)
k=1{ MM 1Un kl;‘1{ j=2:‘k+1 U

We have the following theorem.
THEOREM 2.1. Let s* be the smallest integer s such that

n .

2 1jg1, (2.3)
j=s+1

then the optimal policy observes the first s* options and then recalls

the leader among those The expected residual lead time E(RLT) is

given by
E(RLT) = Mo (2.4)

and the limiting relations are given by

lim s*/n = lim E(RLT)/n = e % . (2.5)

nyx n-+

‘Proof. Since G in (2.2) is written as )G={k:s*§k_,<_n} and since k
does not decrease as time progresses, G proves to be closed and

realizable. (2.4) and (2.5) are straightforward from (2.1) and (2.3).

12
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Remark (1). Note that s* attains the peak of the unimodal function

mo.

2.2. No recall case

let V, be the maximal expected lead time starting from state k, then

k
we immediately have

n
Vo =max{m, 2, (k/j(j-1)V.},
k %%'jﬂwl 34
1<k<n, Vn=1 .

The OLA stopping region is given by from (2.6)
U 2 JUn = U (i ¥, 20}
G = k: m>k > m./j(3-1)Un = k: /,20:Un,
1t g k=1 g’
where

,n'l 31
Y- 21a- 2 5, 1.

ik * j=i+l

We now have the following theorem.

THEOREM 2.2. Let t* be the smallest integer t such that

Y20,

- then the optimal policy passes over:the first t*-1 options and then

(2.6).

Q2.7

(2.8)

(2.9)

chooses the earliest leader that appears. The expected lead time E(LT)

is given by

1
3-1

™Mo
R b
o

n
E(LT) = (t*-1) 25
j=t*

o
Lll.

(2.10)
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and the limiting relations are given by

lim t%/n = e 2,  lim ELT)/n = 2¢°2 . (2.11)

n- oo n- oo
Proof. Since G in (2.7) is written as G={k:t*cken} and since k
does not decrease as time progresses, G proves to be closed and
realizable. (2.10) comes from E(LT)=V1=(t*—1) fi m./j(i-1). (2.11)

=]
J_t:\
is straightforward from (2.9) and (2.10).
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~ APPENDIX 1.

Let k be the time at which the maximum value observed so far initially
exceeds the critical mumber, i.e., k=min{j: Lj_g Ej} , where §j=s n-i°
Then the event L= for k22 can be distinguished into the following

two cases (i) and (ii), depending on whether L=l ; or not :

(1) L =L, (>X) and 5, < L 1<8 >
(11) Ly <L (=X) and L, 1<, ; -

Therefore we have conditioning on Lk=x

E(RLT)

E{E(RLTIL, =x)}

1
( E(RLTiL1=x)dx
/51

n gk-l
+ Z{f_ E(RLTIL, =L, =x)P(L =L, ,=x)dx
k=2 S
S-1/1
+ [ / E(RLTIL,_;=y,L =X, =0P(Ly_1=y,L, =X, =x)dxdy

Sk (1
" E(RLTIL, ,=y,L =X, =x)P(L, ;=y,L, =X, =x)dxdy}, (A.1)
ﬁ) J 5, 7O A P e S N A R v}

where the third and fourth terms correspond respectively to the cases

B <ly<Byg ad L <5 -

Substituting
k-1 o
and
P( - - k-2 (A.3)
L 7L X =x) = (k-1)y .

15
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into the respective expressions in (A.l) and considering that, for
x;El, E(RLT|L1=X)=IH1(X) and for x;’ék, E(RLT!Lk=Lk_1=x)

=E(RLTII_k_1=y,Ik=Xk=x)=mk(x), we have

E(RLT)

1 v n Sk_lkrl
= m (x)dx + % {kj 7l (xdx + X } (x)dx
Ll 1 & 1k e k1) M ¥

k

1 Sk+1 ' 1
n;2 n-k- 1 n-k-1
= ) my (x)dx + Zo(n—k) X m 4 (x)dx + Z Sk+1 m_ (KIdx . (A.4)
Sk Sk+1

The first term of (A.4) becomes
s 1_ 5 1] (A.5
% 3- Z; 3 siq - A.5)

The second term of (A.4) becomes

n-2 k . .
n-k n-k+j _ _n-k+j
1% _-'12;0 n-k+j (Sk+1 Sk )
n-2 n-1 ‘ s n-2 n-2 .
= > 5 ( -k, __1_.)n-_]_ Z.Zn-l_in-g
j=0 k=j+1 n-J n"J i Sk j=0 k=j n-j k
_ 2‘-‘:;3 12 ok an ol 14 (4.6)
SIm 8% T8l

The third term of (A.4) becames

n-2 k
n-k-1 _gHl
1(4::‘() Skl JZO j+ a Sk+1)

16
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= ( =) s - s I . (A.7)

noy n n-1 1 n-1 k 1 X
ERLT) = 25, T+ 2, -rsk+Z(Z—)sE
j=13J 52 k=n-j+1 J k=2 j=2J
j=2 k=n-j+1 3k %k
212 F L4,
=13 =2 k=n-j+1 J

(2 %) =
k=2 j=2 3 K j=2 k=n-j+13n+ksk
APPENDIX 2.

As in Appendix 1, let k be the time at which the maximum value
observed so far initially exceeds the critical mmber, i.e.,
k=min{j:Lj_>:'Ej}, where —sztn-j' It is noted that (A.1) still holds
for E(LT) with s, replaced by T, . Now that hor x 2%y, E(LT|Ly=x)=m; (x)

and for x;'Ek, E(LTiLk=I1(_1=x)=b’&((x), E(LT]Ik_lw,Lk=Xk=x)=mk(x), we
have using (A.2) and (A.3)

17
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E(LT)

1 tk-
=£_:1 my (x)dx + 5:\ {f (k D Mk(x)dx + ftk X 1mk(x)dx

1 n-2 [+l | e
=/ my (x)dx + 2 [ { (n-k-1)M (%) +m (x)} SR
t : t:k

n-k-1 [ 1
t 4 / m_ k(x)dx:l . (A.8)
k41

By the way, we find from(1.1) and (1.22)

1 no j
[t m (dx = ¢ - 2, 71

j=1

1 k+l 4 j
[tk m (O =g - 35 Tt

j
+1 3=1

and

Y1
[ fn-k-1M_, (x) +m_, (x)}x KKy
5

k tﬂ+11(+3-t§ K K k-1 n-k+j__n-k+j
= j{',o R + Jé_;_'.o ke ] (ck )(t:k tk ) .

- Applying these results to (A.8) gives

-k+j_ . n-k+j
n . k -
1 +1 tk
E(LT) =c_- 3% =t .+ 3% 5, —

n A j n-1 i=0 5=0 n-k+j

18



The third term of (A.9) becomes

[
N

_]=2 k=n-j

DR ey

k

—ZZ

k=0 §=0

n2
=0

n-k+j
Bl

n-

&

-1
_,n-k+j 3 n-k
B él?ktk

k+j

n-k+j

n—k

Zt'k
e

_ i o3
(n-k 1)(Cn-j ck-n+j)(tk+l tk) .

(A.9)

(A.10)

(A.11)

Now the second sumation with respect to k of (A.11) is simplified to

n-1
2

k=n-j+1

n-1
= 2 {nk)X
k=n-j+1

Ck-n+j %k-1-n+j )+

19

J k- - j
(n-k)(c _ 5™%-1 n+J)tk Z (n-k 1)(cnj ck—n+j)tk

k=n-]

(cn-j-ck-n+j)}tk - (3-De, 5t -j n j

141



n-1
_ . 1 1 _ j . 1 3
= k=nZ:j+1 {J( m—j )+(Cn_j Ck_n_'_j)} tk - jC1 —3- )Cn-jtn—j' (A.12)

Substitute (A.12) into (A.11), then the fourth term of (A.9) reduces to

25 (L2l B j
(-3 + 2 3 (e -c ..
j=2 k=n-j+1 jom+k ] K j=2 J k=n- j+1 n-j ck-n+_'j Y%
an J Zn; 1 j
- .t + /2, =
) cn-J n-j 522 3 Cn-_] n-j
n n-l tl-]{ n n-l tﬂ
=2, 2. = -2 2=
J:Z k=n‘j+1 J—n+k j=2 k= _J+1J
n n-1 . n-l '
1 J d n-k
+ 2§ L (e o )y - 2 : (A.13)
13k i e T G ‘K

Substituting (A.10) and (A.13) into (A.9) immediately yields (1.17).
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