goooboooobod
O 618 O 1987 O 76-96

76

REUSABLE DESIGN METHODOLOGY FOR SWITCHING SOFTWARE

Yoshinori HORI Shigekatsu KIMURA ‘Hiroyuki MATSUURA

] % & K ER M EIE

NTT Electrical Communications Laboratories

Reusability offers tremendous potential for
significantly improving switching software
productivity. Oof the two roughly divisible

reusability technology approaches, source program code
vand design information, this paper focuses on the

latter. Specifically, it describes a reusable

design methodology and a design support system
which facilitate the reuse of design information

being used during the design process. The paper also
presents a design example produced through this reusable

design methodology.

l.Introduction

In a number of countries where telecommunications technologies
are particularly advanced, integrated services digital networks
(ISDNs) of one form or another are being constructed to usher in

(1> 1gpN

the information-intensive society of the future.
implementation requires increasingly capable and expansive
switching software, which, in turn, necessitates that switching

software development productivity receive considerably greater

17

attention.

It is <clear that reusability is a central key to the
significant improvement of switching software development
productivity. The presently used methods as well as those being
researched for facilitating software reuse can be roughly divided
into two approaches depending upon the nature of the objects
béing reused: the source program code, which represents the final
output of the design process, and the dééign information used
during the design process. The reusable design methodology
presented here aims at facilitating a broader reuse of all types
of design information.

This reusable design methodology is based on three concepts.
First is the division of design information necessary for
designing switching software into four knowledge specification
types: service, signaling system, hardware structure, and‘
hardware detail specifications. The former +two constitute
switching system architecture-independent knowledge, while the
latter two involve switching system architecture-dependent
knowledge.

Second is the performance of program design by successively
applying these four types of knowledge specificatiqns to the
design process, whereby four types of programs are derived. Of
these, an abstract program and two types of intermediate programs
are the intermediate phase outputs of the design process, while a
concrete program for a target‘swifching system 1is the final
output.

Third is the derivation of reusable components, which include

8

various kinds of design iﬁformation, from the four program types.
For example, reusable components derived from the abstract
program include only the design information of sefvice
specifications. This is because the abstract program is derived
using only service specifications. On the other hand, reusabie
components derived from the concrete program include all typeé of
design information.

Additionally, the <classification of the design knowledge in
conjunction with the stepwise application of this knowledge to
the design process enable the natural introduction of knowledge-
based processing technologies into this reusable design
methodology. This should, in turn, facilitate computer-aided
design. |

This paper first outlines the trends in software reusability
technologies. Next, it describes a reusable design methodology
and a désign support system which facilitate the reuse of design
information. Finally, it presents a specific example describing
how programs are derived using this design methodology.

In this paper, we broadly define "design"” to also include the
requirements definition as well as the manufacturing in the
conventional software life cycle. We also use information and

knowledge interchangeably.

2. Trends in software reusability technologies
(1) Outline

Considerable attention has recently been paid to reusability
as a principal method for improving software development

2)

productivity. Along these lines, various approaches have been

79

studied and attempted. These have included one for providing
reusable source program code components, and one which enables
programs to be derived semi-automatically or automatically from
specifications.(S)’(4)

’Up to the present, however, no single agreed-upon approach to
reusability exists. The existing approaches, however, are
classified into the reuse of the source program code, which
represents the final output of the design process, and the reuse
of the design information used during the design process itself,
It should be remembered that program code reuse is subdivided
into the reuse of program code modules and that of similar
program systems in the same application area. In line with this,
Table 1 shows the principles of reuse, the technological levels,
and typical methods applicable according to this classification.
(2) Switching Software

Since switching software depends directly on the target
switching system hardware architecture, many data structures and
procedures are reéultantly dependent on the actual hardware
structure and details. Thus » the chance is relatively small that
a program code module in one type of switbhing software will
coiﬁcide with énother program code module in a different type of
switching software. Program ‘modularization as well as
standardization of both switching system architecture and
switching software architecture is essential for facilitéting the
reuse of program code modules. On the other hand, new program
design methodulogies need to be established to facilitate the
reuse of design information. In general, switching architecturé

is determined with a view toward upcoming technological advances.

80

Facilitating design information reuse is considered to be the
most promising approach because it is uninfluenced by switching

. system architecture.

3. Reusable design methodology through program transformation
To ensure the complete design information reuse facilitation
necessary for designing switching software, a design methodology
placing greater emphasis on reusability must initially be
established. Following this , three additional processes are
important. First is the design of switching software usiﬁg this
design methodology. Second is deriving reusable components from
the design information/being used during this design process, and
from the programs output. Third is the design of other switching

software types using these reusable components.

3.1 Model of switching software design

The model ﬁnderlying our reusable design methodology is based
on five specific principles.
(1) Switching knowledge necessary for designing switching
software can be divided into switching system architecture-
independent khowledge and ~dependent Knowledge. The former can'
be subdivided into service specifications and signaling system
specifications. The latter can be subdivided 1into hardware
structure specifications and hardware defail specifications.
Here, hardware structure specifications are concerned both with
the functions of such hardware components as the trunk and
switching network, of which a switching system is composed, and

with the physical connective relationship between them. On the

81

other hand, hardware detail specifications involve the control of
each hardware component toward the realization of a certain
function.

(2) Switching software can be considered to be the design result
in which the two knowledge types are reflected. |

(3) The design of switching software can be performed through
stepwise program transformations by successive applications of
these knowledge types.

(4) The result of program transformations in each step can be
considered to be the program derived by applying the knowledge
necessary in this step to the result of program transformations
in the immediately preceding step.

(5) Reusable components can be derived from programs derived in

each step.

3.2 Outline of reusable design methodology

The reusable‘design methodology based on the ‘above model can
be outiined based‘on five key points as indicated in Fig. 1 and
Table 2. Essentially, then:
(1) An abstract program (level 1), which is independent of
switching system architecture, is deéigned using ohly.the design
knowledge derived from service specifications.
(2) An intermediate program (level 2), which is also independent
of switching system architecture, is derived from the abstract
program- of level 1 through program transformations in which the
design knowledge derived from signaling system specifications is
apblied to the abstract program of level 1.

(3) An intermediate program (level 3) for a target switching

82

system is obtained from the intermediate program of level 2w
through program transformations in which the design knowledge of
its hardware structure specifications is applied to the
intermediate program of level 2.
(4) A concrete program (level 4) for the target switching system
is derived from the intermediate program of level 3 thréugh
program transformations in which the design knowledge of its
hardware detail specifications is applied to the intermediate
program of level 3.
(5) Reusable components, which are independent of switching
system architecture, can be gotten from the abstract program of
level 1 and the intermediate program of level 2 , while reusable
components which are dependent on a target switching system can
be obtained from the intermediate program of level 3 and the
concrete program of level 4.

This reusable design methodology can also be considered to be
a kind of operational approach rather than to be a conventional
software life cycle approaéh to software development.(5) A

comparison is made in Table 3 and Fig. 2 between this reusable

design methodology and the conventional design methodology.

3.3 Program reusability of each level

The reuse of design information is essentially equivalent to
the reuse of the programs derived. That is , an abstract program
of level 1 is one which reflects only service specifications. An
intermediate program of level 2 is one which reflects signaling
system specifications in addition to service specifications. Aﬁ

intermediate program of level 3 is one which reflects hardware

83

structure specifications in addition to service and signaling
system specifications. Finally, a concrete program of level 4 is
a final design resultrwhich reflects all the design information
including hardware detail specifications.

Essentially, the lower the level number of the programs is,
the lower is its depen@ence on switching system architecture.
Aécordingly, the reuse 0of levels 1 and 2 programs is generally
possible between different switching éystem architectures. Such
is the case, for example, in the design of switching software,
which satisfies the same service and signaling system
specifications, for a different switching system architecture. On
the other hand, the reuse of levels 3 and ‘4 programs is
generally possible within the same switching software,
particularly 1in the case of functional additions. The reuse 6f
the level 4 program is no other than that of the source program

code.

3.4 Reusable design support system

Figure 3 outlines a reusable design support system example,
which aims to facilitate computer-aided design by introducing
knowledge-based processing technologies, based on the proposed
reusable design methodology. The design results database in the
system' accommodates such design process outputs as the programs
of each level as well as design history information. The
components database is an assembly of reusable components derived
from the programs of each level. The design knowledge datanase
contains the switching knowledge mentioned previousiy'as well as

the programming knowledge used for designing the programs of

84

each level.

3.5 Effect of reusable design methodology
Four important effects will result from the application of
this reusable design methodology.

1) Enhancing the reusability »of all types of design
information 1is possible, especially that of design information
independent of switching system architecture.

(2) Facilitating computer-aided design is possible through the
positive utilization of knowledge-based processing technologies,
which, in turn, improves design efficiency and quality.

(3) Design history information such as design knowledge applied
‘during the design process can be documented, which serves to
enhance program understandability.

(4) Maintenahce is possible on such programs as the abstract
program in which only high level specifications are reflected,
rather than on the concrete program, by automating the program

transformation process in the future.

4. Program design example

This section concentrates on the design of state transition
diagrams and the generation of tasks from the diagram necessary
to perform state transitions through the proposed reusableidesign
methodology . It also takes a look at intra-office connection as
a target service feature, ‘and at a function-distributed digital

switching system as a target switching System.

4.1 State transition diagram design and task generation

In state transition diagram design and task generation, a

85

state transition diagram is first designed which indicates
service specifications and which is independent of both the
signaling system type and the switching system architecture. The
state transition diagram is then refined stepwise incorporating
such design knowledge as signaling system and hardware structure
specifications. The state transition diagram is finally
partitioned using the design knowledge of functional distribution
into several state transition diagrams each of which corresponds
to each subsystem of the function-distributed digital switching
system. From each of these diagrams, tasks can be generated

using such design knowledge as programming specifications.

4.2 State transition diagram design

At this point a closer look at each of the above steps
beginning with the actual stafe transition diagram design is
important. The «call state of a state transition diagram is
specified by a set of resources, each of which performs a
particular function. These resources are cdnsidered to be
abstract resources in the state trangition diagrams of le?els 1
and 2. On the other hand, they consist of such hardware
resources as trunk, speech path and tone sender, and such
software resources as timing supervision and metering in the
state transition diagram of level 3. In a simpler sense, these
resources can be considered to be "objects". This allows ué to
define a caIl state as a set of these objects along with their
owh states.

The CCITT Specification and Description Language (SDL/GRi is

used to représent the state transition diagram. Also adopted is a

10

86

textual expression like PROLOG, which is suitable for state
transition diagram refinement and task generation.

In terms of state transition diagram refinement, stepwise
refinement is accomplished through the transformation processes,
consisting of locating the part to be refined wusing the design
knowledge, and of modifying or replacing it with more detéiled
information. The knowledge of signaling system specifications is
used to refine the state transition diagram of level 1 into that
of level 2. An example of the knowledge used in this case is that
of the digit receiver (DR) in the digit-receiving state being
classified into a PB receiver (PBR) and a DP receiver (DPR). The
knowledge of hardware structure specifications is used to refine
the state transition diagram of level 2 into that of leéel 3.
Examples of the knowledge used in this case are the switching
network consisting of concentration and distribution Stages,
and a subscriber line connected to the distribution stage via a
line concentration trunk (LCT).
| With respect to partifroning of the state transition diagram,
threev subsystems consisting of call control, suﬁsnriher line
control, and trunk control, cooperatively perform call processing
based on their own state transition diagrams in this tybe of
function-distributed digital switching system. Thus, the level 3
state transition diagram must be partitioned into the ’state»
transition diagrams of these three subsystems. This is achieved
by first clarifying the objects with which each subsystem deals

" based on the knowledge of function distributioh. The state
transition diagram of each subsystem is then derived by

extracting all objects and their state descriptions associated

11

87

with the subsystem.

4.3 Task generation

The tasks for performing state transitions can be generated
from the state transition diagram of each subsystem through three
main procedures utilizing fhe knowledgekof programming and of
hardware specifications particularly related to task generation.
In terms of these procedures, it is assumed that a task is
generated for a state transition from a certain present state to
the next state. |
(1) The state change of‘each object between the present state and
the next state is extracted. Such changes include the
appearance of a new object, the disappearance of an unused object .
and so on.
(2) The task macro-instruction which performs the state
transition corresponding to the state change of each object is
selected from a set of previously prepared task macro-
instructions. When a new object appears in the next state, for
example, a task macro-instruction is necessary to initiate the
search for a new object from a pool_of idle objects of the same
type. | |
(3) The correct execution sequence among all selected task
macro-instructions is determined. |

Figure 4 1is a design example of a state transition diagram
consisting of both\the digit—receiving state and the ringing
state o0f the intra-office connection, and the gengration of its

level 3 task based on the above prdcedure.

12

88

b. Conclusion

To meet the growing demand for the switching software
essential to efficient and effective ISDN implementation,
reusability has surfaced as a potential key to improving
switching software development pfoductivity. Along these lines,
this paper specifically described a reusable design methodology
for facilitating the reuse of the design information used during
the design process. This is accomplished by dividing the design
informétion into switching system. architecture-independent
knowledge and -dependent knowledge.

The method was shown to have two central features. First, it
permits the derivation of two types of switching system
architecture-independent programs, such as an abstract program,
and two types of switching system architecture~-dependent
programs, such as a concrete ©program. Second, it enables
derivation of reusable components, which are independent of
switching system architecture, from the former programs, while
allowing derivation of reusable components, which are dependent
on a target switching system, from the latter programs. The
paper also presented an example_designed employing the present
reusable design methodology.

Experimental results confirmed that the proposed reusable
design methodology is effective in facilitating swifching
software reuse.

To firmly establish this reusable design methodology, three
chief problems remain:

1) Designing an abstract program and developing prograh

transformation methods of refining a program of a certain level

13

89

into a program of the next more concrete level.

(2) Expressing design knowledge and organizing a désign
knowledge database for facilitating the application of knowledge-
based processing technologies to progfam transformations.

(3) Establishing a criterion for dividing a program of each level

into reusable components.

Acknowledgment
The aunthors would 1like to thank Nobuo Araki and Xatsumi

Maruyama for their helpful suggestions and discussions.

References
(1) 'Y.Kitahara, "Telecommunications for the advanced information
society - INS (Information Network Systems)", Telecom 83 Forum,

Part 1, V1.2, Geneva, 1983.

(2) E.Horwitz and J.B.Munson, "An expansive view of reusable
software", IEEE Transactions on Software Engineering, Vol.SE-10,
No.5, pp.477-487, 1984.

(3) R.G.Lanergan and C.A.Grasso, "Software engineering with
reusable ‘designs and code", IEEE Transactions on Software
Engineering, Vol.SE-10, No.5, pp.498-501, 1984.

(4) T.E.Cheatham, "Reusability through program transformations",
IEEE Transactions on Software Engineering", Vol.SE-10, No.5,
pp.589-594, 1984.

(5) P.Zave, "The operational versus the conventional approach to
software development"”, Communications of the ACM, Ve1.27; No.2,

pp.104-118, 1984.

14

Switching system
architecture.

Service
specifications

Objects of
reusability ©

A

lndependent

Dependent

Abstract
program = |
(Level 1)

Abstract
switching
system

Reusahle if service
specifications are
the same

X

Application of
design knowledge

Design
“knowledge
base

—_ =

_fintermediate

b
7

A 4

Concrete
program
(Level 4),

_/

Reusable if signaling
system specifications
are also the same

Reusable if hardware
structure specifications
are also the same

Concrete
progran
(Level 4)

BV

Target | Target
switching switching
system system

Reusahle if hardware
detai] specifications
are also the same

~Fig.l OQutline of reusable design methodology through program transformation

[Service

Requirements ©
definition Design Manufacturing

Test

<&
<

X
A

X

Y

Conventional | specifications] 1-1
design
| methodology | [Signaling system

specifications] 2-1
[Hardware .
structure 3-1
specifications]
[Hardware detail
specifications]

Conventional requirements definition, design and manufacturing are
distributed for the respective design of each level program, and
are repeated during the design process of each level program.

Reusable , . | |
design Note:
methodology

—> = Program design
~process flow

wa

V)
- R

Design of Design of Design of Design of
~ abstract , intermediate intermediate concrete
program ~ (Level 2) | (Level 3) | program
program program

X

Test

v

Fig. 2 Software life cycle based on reusable design methodology

Switching program

designer

Components

designer

]

Knowledge

engineer

Man-Machine Interface

/]

N

Stepwise design

support system

K N

N

N

Design results DBMS

r\
*Qutput, renewal

and reference of

design results

Y

< >

Design results

DB

S~

*Program of each level

*Design history

information

Components DBMS

S
*Entry, modification
and retrieval of

components

Ny

< >

Components

DB
_//

*Program components

of each level

N

Design knowledge DBMS

N
*Entry, modification

and retrieval of

design knowledge

N
o

Design knowledge

DB

*____,.——f”’/)

*Knowledge of switching

-Knowledge of programming

Fig. 3 Configuration of reusable design support system example

Graphic expression Textual expression
state(digit-receiving,
[[subCa) 1 dialing],
[dr ! receiving],

/ Digit-receiving \

Level 1
DR]

l
Refinement of STD <---

J

/ PB-digit-receiving\

e

N

[timer | idt]D).

@---;.u

state(pb-digit-receiving,
[[subCa) | dialing],

[path(dr,suba))! connect],

2
W

Design knowledge used in this example

D Digit receiver is PBR in case of PB digit.
@ Switching network consists of concentration

and distribution stages.
@ Subscriber is connected to distribution stage
via LCT.
@ PBR is connected to distribution stage.
® Call control, subscriber line control, and trunk
control subsystems have their own diagrams.
® Rule for selecting a task macro-instruction
necessary for state change of each object.

level 2 _~ [pbr 1 receivingl, @ Rule for determining correct execution sequence
/A [path(pbr,sub(a))! connect], among selected task macro-instructions.
Ctimer 1 idt]1).
“ Symbols
Refinement of STD'*E:-@D"vC)—€>lL A :0riginating subscriber
i} B :Called subscriber Concentration stage
state(ph-digit-receiving, SUB : Subscriber \Distribution stage
Level 3/ PB-digit-receiving\ [[sub(a) | dialing], LCT : Line concentration trunk » \
~ Clct(a) | used], DR :Digit receiver /
[path(lct(a),sub(a))| connect], PBR : PB receiver
[pbr | receiving], RB : Ring-back tone
[path(pbr,lct(a)) | connect], t :Timing supervision
® [timer | idt]D). idt : Inter-digit timing
Partitioning of STD <--- B~----> (Note: Because the process for oblaining the ringing
state is the same as the digit-receiving state, it

/N

Subscriber line Call control subsystem
control subsystiem

/ PB-digit-receiving \ state(pb-digit-receiving, / Ringing \

is abbreviated here.)

state(ringing,

TPB-digit-receiving \ [Clctla) | used], [CictCa) | used],
N | LLET(A - [pbr 1 receivingl, [LeT® Cletb) | used],
AR Cpath(pbr, Ict(a))! CpathCict(a), lct(b))!
\ : ® [PgR_J connect]]). reserved)
\ Crbisend_toClct(a)ID).
generation of call control task <----®, @
Level 3 | Task Function of task macro instruction

hunt(ict(b))
hunt(path(lct(a),lct(b)))
disconn(path(pbr,lct(ad))
tone_send(rb,lct(a))
free(path(pbr,lct(a)))
free(pbr)

hunt LCT trunk resource
hunt path resource
disconnect path

send ring-back tone
release path resource
release PBR resource

Fig.4 Example of state transition diagram(STD) design and task generation

18

 Table 1 Trends in reusability technologies

Reusable Source program code
object | : S
, . Design information
Similar program Source program
systems code modules
Principle Development of a Composition of a Generation of a concrete
of reuse concrete program by concrete program program from reusable |
modification of a from reusable components
similar program | components | |
Technological Level of practical Level of partiall In general, level of
level use | practical use research
Typical Modifications *Application *Very high-level languages
methods component libraries *Application generators
+0Organization and *Program transformations
composition |
principles

Table 2 Program level model

Program level
Program model
Dependency Program Level Specifications
Switching Abstract Level ‘Service Description of behavior of switching system which
system program 1 specifications | realizes service specifications in the most
architectures abstract level independent of switching system
independent architecture and signaling system type.
I Intermediate | Level Signaling Description of above bhehavior in the level
program 2 ‘system dependent on signaling systiem type and independent
specifications of switching system architecture.
Switching Level Hardware Description of above behavior in the level
systenm 3 structure dependent on the target switching systenm
architecture- specifications | architecture which considers hardware structure
dependent specifications.
Concrete Level Hardware Description of above behavior in the most concrete
program 4 detail | level fully dependent on the target switching systenm
specifications | architecture which considers hardware detail
specifications.

Table 3 Comparison of reusable design and conventional design methodologies

Conventional design Reusable design Aims of reusable design
methodology methodology - | methodology
1.Reusable object Source code | Design information *Improvement of reusability
2.Developﬁent method Based on conventional | Based on operational approach «Confirmation of user requirements
| life cycle model | | at an early period

-Automation of program transformation
from specifications

3.Management of , Individual management Common management +Joint ownership of design
design knowledge by each designer using knowledge base knowledge '
4.App|i¢ation of design No standard Stepwise application of Improvement of reusability
knowledge to design | design knowledge from |
process service specifications Standardization of design

to hardware detail
specifications |

5. Design efforts Person-based design | Computer-aided design | *Improvement in design work

efficiency

*improvement in design quality

6.Documentation insufficient | Documentation of | ‘«improvement in program

of design process L , ‘ | design knowledge used in understandability
design processes

