
REUSABLE DESIGN METHODOLOGY FOR SWITCHING SOFTWARE

Yoshinori HORI Shi gekatsu KIMURA Hiroyuki MATSUURA
堀 好徳 木村 重勝 松浦 洋征

NTT Electrical Communications Laboratories

Reusability offers tremendous potential for

si gnificantly improvi ng switching software

productivi ty. Of the two roughly divisible

reusability technolo gy approaches, source program code

and desi gn information, this paper focuses on the

latter. Specifically, it describes a reusable

desi gn methodology and a design support system

which f aci 1 i tate the reuse of desi gn inf ormation

being used during the desi gn process. The paper also

presents a desi gn example produced through this reusabl e

desi gn methodolo gy .

1. I n troduc tion

I n a number of coun tri es where tel ecommunicati ons technol og ies

are particularly advanced, integrated services digital networks

(ISDNs) of one form or another are being constructed to usher in

the informatlon-intensive society of the future.
(1)

ISDN

implementation requires increasingly capable and expansive

switching software, which, in turn, necessitates that switching

software devel opment productivity receive considerably greater

1

数理解析研究所講究録
第 618 巻 1987 年 76-96

77

attention.

It is clear that reusability is a central key to the

si gnificant improvement of switching software development

productivi ty. The presently used methods as well as those being

res earched for faci 1 i tating sof tware reuse can be roughly divided

into two approaches dependi ng upon the nature of the obiects

being reused: the source program code, which represents the final

output of the desi gn process, and the design information used

during the desi gn process. The reusable desi gn methodology

presen ted here aims at f aci 1 i tating a broader reuse of all types

of desi gn information.

This reusable desi gn methodolo gy is based on three concepts.

First is the division of desi gn information necessary for

designing switching software into four knowledge specification

types: service, si gnaling system, hardware structure, and

hardware detail specifications. The former two constitute

switching system architec ture-independent knowledge, while the

latter two involve switching system arChiteCture-dependent

knowl ed ge .
Second is the performance of program design by successively

applying these four types of knowledge specifications to the

desi gn process, whereby four types of programs are derived. Of

these, an abstract program and two types of intermediate programs

are the intermediate phase outputs of the design process, while a

concrete program for a target swi tching sys tem is the final

Ou tpu t .
Third is the derivation of reusable components, which include

2

78

various kinds of desi gn information, from t he four program types.

For example, reusable components derived from the abstract

program include only the desi gn information of service

specifications. This is because the abstract program is derived

using only service specifications. On the other hand, reusable

components derived from the concrete program include all types of

desi gn information.

Additionally, the classification of the desi gn knowledge in

coniunction with the stepwise application of this knowledge to

the desi gn process enable the natural introduction of knowledge-

based processing technologies into this reusable desi gn

methodology. This should, in turn, facilitate computer-aided

des ign .
This paper first outlines the trends in software reusabili ty

technologies. Next, it describes a reusable desi gn methodolo gy

and a desi gn support sys tem which faci 1 i tate the reuse of design

information. Finally, it presen ts a speci fic example describing

how programs are derived using this desi gn methodolo gy .
In this paper, we broadly define “desi $gn”$ to also include the

requiremen ts defini tion as well as the manufac turing in the

conventional so f tware 1 ife cycle. We also use information and

knowledge interchangeably.

2. Trends in software reusability technologies

(1) Ou $t1i$ ne

Considerable attention has recently been paid to reusabili ty

as a principal method for improving software development

(2)
productivi ty. Along these lines, various approaches have been

3

79

studied and attempted. These have included one for providing

reusable source program code components, and one which enables

programs to be derived semi-automatiCally or automatiCally f rom
(3), (4)

speci fications.

Up to the present, however, no single $agreed-upon$ approach to

reusability exists. The existing approaches, however, are

classified into the reuse of the source program code, which

represents the final output of the desi gn process, and the reuse

of the desi gn information used during the desi gn process itself.

It should be remembered that program code reuse is subdivided

into the reuse of program code modules and that of similar

program systems in the same application area. In line with this,

Table 1 shows the principles of reuse, the teChnological levels,

and typical methods applicable according to this classification.

(2) Switching Software

Since switching software depends directly on the target

switching system hardware architecture, many data structures and

procedures are resultantly dependent on the actual hardware

structure and details. Thus , the chance is relatively small that

a program code module in one type of switching software will

coincide with another program code module in a different type of

switching software. Program modul arization as well as

standardi zation of both switching system architecture and

swi tching so f tware archi tecture is essen tial f or f aci 1 i tating the

reuse of program code modules. On the other hand, new program

desi gn methodologies need to be es tabl ished to faci 1 i tate the

reuse of desi gn information. In general, switching architecture

is determined with a view toward upcoming technological advances.

4

80

Facilitating design information reuse is considered to be the

most promising approach because it is uninfluenced by switching

system architecture.

3. Reusable desi gn methodolo gy through program transformation

To ensure the complete desi gn information reuse f aci 1 i tation

necessary for desi gning switching software, a desi gn methodolo gy

placing greater emphasis on reusability must initially be

established. Following this , three additional processes are

important. First is the desi gn of switching software using this

desi gn methodology. Second is deriving reusable components from

the desi gn information being used during this desi gn process, and

from the programs output. Third is the desi gn of other switching

software types using these reusable components.

3.1 Model of switching software desi gn

The model underlying our reusable desi gn methodolo gy is based

on five specific principles.

(1) Switching knowledge necessary for desi gning switching

software can be divided into switching system archi teCture-

independent knowledge and -dependent knowledge. The former can

be subdivided into service specifications and signaling system

specifications. The latter can be subdivided into hardware

structure specifications and hardware detail specifications.

Here, hardware structure specifications are concerned both wi th

the functions of such hardware components as the trunk and

switching network, of which a switching system is composed, and

with the phys ical connective relationship between them. On the

5

81

other hand, hardware detail specifications involve the control of

each hardware component toward the realization of a certain

f unc tion.

(2) Switching software can be considered to be the desi gn resul t

in which the two knowledge types are reflected.

(3) The desi gn of switching software can be performed through

s tepwi se program trans formations by successive appl ications of

these knowledge types.

(4) The result of program transformations in each step can be

considered to be the program derived by applying the knowledge

necessary in this step to the result of program transformations

in the immediately preceding step.

(5) Reusable components can be derived from programs derived in

each step.

3.2 Outline of reusable desi gn methodolo gy

The reusable d\’esi gn methodolo gy based on the above model can

be outlined based on five key points as indicated in Fig. 1 and

Table 2. Essentially, then:

(1) An abstract program (level l), which is independent of

switching system architecture, is desi gned using only the desi gn

knowledge derived from service specifications.

(2) An intermediate program (level 2), which is also independent

of switching system architecture, is derived from the abstract

program of levell through program transformations in which the

desi gn knowledge derived from si gnaling system specifications is

applied to the abstract program of leve 11.

(3) An intermediate program (level 3) for a target swi tching

6

82

system is obtained from the intermediate program of level 2

through program transformations in which the desi gn knowledge of

its hardware structure specifications is applied to the

intermediate program of leve 1 2.

(4) A concre te program (level 4) for the targe t swi tching sys tem

is derived from the intermediate program of level 3 through

program transformations in which the desi gn knowl edge of i ts

hardware detail specifications is applied to the intermediate

program of level 3.

(5) Reusable components, which are independent of switching

system architecture, can be gotten from the abstract program of

levell and the intermediate program of level 2 , while reusable

components which are dependent on a target switching system can

be obtained from the intermediate program of level 3 and the

concrete program of level 4.

This reusable desi gn methodolo gy can also be considered to be

a kind of operational approach rather than to be a conventional
(5)

software life cycle approach to software development. A

comparison is made in Table 3 and Fig. 2 between this reusabl e

desi gn methodology and the conventional desi gn methodolo gy .

3.3 Program reusability of each level

The reuse of desi gn information is es s en tially equivalent to

the reuse of the programs derived. That is , an abstract program

of levell is one which reflects only service specifications. An

intermediate program of level 2 is one which reflects si gnaling

system SpeCifiCations in addition to service speCifiCationS. An

intermediate program of level 3 is one which reflects hardware

7

83

structure specifications in addition to service and si gnaling

sys tem Specifications. Finally, a concrete program of level 4 is

a final desi gn resul t which reflects all the des ign information

including hardware detail specifications.

Essentially, the lower the level number of the programs is,

the lower is its dependence on switching sys tem architecture.

Accordi ngly, the reuse of levels 1 and 2 programs is generally

possible between different switching system architectures. Such

is the cas e , for example, in the desi gn of swi tching sof tware,

which satisfies the s ame service and signaling system

speci fications, for a differen t swi tching sys tem archi tecture. On

the other hand, the reuse of levels 3 and 4 programs is

generally possible within the s ame switching software,

particularly in the case of functional addi tions. The reuse of

the level 4 program is no other than that of the source program

code.

3.4 Reusable desi gn support system

Fi gure 3 outlines a reus able desi gn support system example,

which aims to facilitate computer-aided desi gn by introducing

knowledge-based processing technologies, based on the proposed

reusable desi gn methodolo gy . The desi gn results database in the

system accommodates such desi gn process outputs as the programs

of each level as well as desi gn hi s tory information. The

components database is an assembly of reusable components derived

from the programs of each level. The desi gn knowledge database

contains the switching knowledge mentioned previously as well as

the programmi ng knowledge used for desi gning the programs of

8

6 q

each level.

3.5 Effect of reus able desi gn methodolo gy

Four impor $tant$ ef f ec ts wi 11 resul t f rom the appl ication of

this reusable desi gn methodolo gy .
(1) Enhanci ng the reus ability of all types of desi gn

information is possibl e_{*} especially that of design inf ormation

independent of switching system archi tecture.

(2) Facilitating computer-aided desi gn is possible through the

positive utilization of knowledge-baSed processing technologieS,

which, in turn, improves desi gn efficiency and quality.

(3) Desi gn his tory in f ormation such as desi gn knowledge appl ied

during the desi gn process can be documented, which serves to

enhance program underStandabili ty.

(4) Maintenance is possible on such programs as the abstract

program in which only hi gh level specifications are reflected,

rather than on the concrete program, by automating the program

transformation process in the future.

4. Program design exampl e

This section concentrates on the desi gn of state transition

diagrams and the generation of tasks from the diagram necessary

to perform state transitions through the proposed reusable desi gn

methodology . It also takes a look at $intra-office$ connection as

a targe t service f eature, and at a function-dis tributed di gi tal

switching system as a target switching system.

4.1 State transition diagram desi gn and task generation

In state transition diagram desi gn and task generation, a

g

85

state transition diagram is first desi gned which indicates

service specifications and which is independent of both the

si gnaling sys tem type and the switching system architecture. The

state transition diagram is then refined stepwise incorporating

such desi gn knowledge as si gnaling system and hardware structure

specifications. The state transition diagram is finally

parti tioned using the desi gn knowledge of functional dis tribution

into several state transition diagrams each of which corresponds

to each subsys tem of the func tion-dis tributed di gi tal swi tching

system. From each of these diagrams, tasks can be generated

using such desi gn knowledge as programming specifications.

4.2 State transition diagram desi gn

At this point a closer look at each of the above steps

beginning with the actual state transition diagram desi gn is

important. The call state of a state transition diagram is

specified by a set of resources, each of which performs a

particular function. These resources are considered to be

abstract resources in the state transition diagrams of levels 1

and 2. On the other hand, they consist of such hardware

resources as trunk, speech path and tone sender, and such

software resources as timing supervision and metering in the

state transition diagram of 1 evel 3. In a simpler sense, these

resources can be considered to be “objects”. This allows us to

define a call state as a set of these obiects along with their

own states.

The CCITT Specification and Description Language (SDL/GR) is

used to represent the state transition diagram. Also adopted is a

10

86

text ual expres s ion 1 ike PROLOG, which is sui t able for s tate

transition di agr am refinement and task generation.

In terms of state transition di agram refinement, stepwise

refinement is accomplished through the transformation processes,

consisting of locating the part to be refined using the desi gn

knowl edge, and of modifying or replacing it wi th more detai led

information. The knowledge of si gnal ing sys tem speci fications is

used to refine the state transition di agram of levell into that

of level 2. An example of the knowledge used in this case is that

of the digit receiver (DR) in the digit-receiving state being

classified into a PB receiver (PBR) and a DP receiver (DPR). The

knowl edge of hardware structure specifications is used to refine

the state transition diagram of level 2 into that of level 3.

Examples of the knowl edge used in this case are the switching

network consisting of concentration and distribution st ages,

and a subscriber line connected to the distribution stage via a

line concentration trunk (LCT).

With respect to partitioning of the state transition diagram,

three subsystems consisting of call control, subscriber line

control. and trunk control, cooperatively perform call processing

based on their own state transition diagrams in this type of

function-dis tribu ted di gi tal swi tching sys tem. Thus, the level 3

state transition diagram mus t be partitioned into the state

transition diagrams of these three subsystems. This is achieved

by firs t clari fying the obiec ts wi th which each subsys tem deals

based on the knowledge of function distribution. The state

transition di agram of each subsystem is then derived by

extracting all objects and their state deSCriptionS associated

11

87

with the subsys tem.

4.3 Task generation

The tasks for performing state transitions can be generated

from the state transition diagram of each subsystem through three

main procedures utilizing the knowledge of programmi ng and of

hardware specifications particularly related to task generation.

In terms of these procedures, it is assumed that a task is

generated for a state t ransi tion f rom a cer tain present s tate to

the next state.

(1) The state change of each obiect between the present state and

the next state is extracted. Such changes include the

appearance of a new object, the disappearance of an unused object

and so on.

(2) The task $macro-instruction$ which performs the state

transition correspondi ng to the state change of each object is

selected from a set of previously prepared t ask macro-

instructionS. When a new object appears in the next state, for

example, a task macro-instruction is necessary to initiate the

search for a new object from a pool of idle obiects of the same

type.

(3) The correct execution sequence among all selected task

$macro-instructions$ is determined.

Fi gure 4 is a desi gn example of a s tate transi ti on di agram

consisting of both the digit-receiving state and the ringing

state of the $intra-office$ connection, and the generation of its

level 3 task based on the above procedure.

12

88

5. Co ncl us ion

To meet the growi ng demand for the swi tching sof tware

essential to efficient and effective ISDN implementation,

reusability has surfaced as a potential key to improving

switching software development productivity. Along these lines,

this paper specifically described a reusable desi gn me thodolo gy

f or f aci 1 i tating the reuse of the desi gn information used during

the desi gn process. This is accomplished by dividing the design

information into switching system architecture-independent

knowledge and -dependent knowledge.

The method was shown to have two central features. First, it

permits the derivation of two types of switching system

$architecture-independent$ programs, such as an abstract program,

and two types of switching system $architecture-dependent$

programs, such as a concrete program. Second, it enables

derivation of reusable components, which are independent of

s wi tching sys tem archi t ecture, f rom the former programs, whi le

allowing derivation of reusable components, which are dependent

on a targe t swi tching sys tem, f rom the lat ter programs. The

paper also presented an example desi gned employi ng the present

reusable desi gn methodolo gy .
Experimental results confirmed that the proposed reusable

desi gn me thodolo gy is ef f ective in f aci 1 i tating swi tching

software reuse.

To firmly est ablish this reus able desi gn methodology, three

ch ief probl ems rema in:

(1) Desi gning an abstract program and developing program

transformation methods of refining a program of a certain level

13

89

into a program of the next more concrete level.

(2) Expressi ng desi gn knowledge and organizing a desi gn

knowledge database f or f aci 1 i tating the appl ication of knowledge-

based processing technologies to program transformations.

(3) Es t abl ishing a cri terion f or dividing a program of each level

into reusable components.

Acknowl edgmen t

The au thors would like to thank Nobuo Araki and Katsumi

Maruyama for their helpful suggestions and discussions.

${\rm Re} f$ er e nces

(1) $\cdot Y$. $Kitahara$, “Telecommunications for the advanced information

society – INS (Information Network Systems) “, Telecom 83 Forum,

Part 1, VI. 2, Geneva, 1983.

(2) E. Horwitz and J. B. Munson, ”An expansi ve view of reusabl e

software”, IEEE Transactions on Software Engineering, Vol. SE-10,

No. 5 , pp. 477-487, 1984.

(3) R. G. Lanergan and C. A. Grasso, “Software engineering with

reusable desi gns and code”, IEEE Transactions on Software

Engineering, Vol. SE-10, No. 5, pp. 498-501, 1984.

(4) T. E. Cheatham, “Reusability through program transformati ons” ,

IEEE Transactions on Software Engineering”, Vol. SE-10, No. 5,

pp. 589-594, 1984.

(5) P. Zave, “The operational versus the conventional approach to

software development”, Communications of the ACM, Vol. 27, No. 2,

pp. 104-118, 1984.

14

 9 0

 Switching system independent

^

Dependent

 architecture: < ―~ *""*" ~" *

 -̂
/Intermediata ― >f Concrete ＼

 ^
^ (program J

/
 ̂ 1 program)

 .̂ ＼a evel 3)/ / U Leve! 4V

i

 Service

 specifica tions

― j
/
A b s t r ac t

 ＼―
>
f
＼n te rme d ! a te＼― T; f― ^ /I nte rm e d ia te

^
･ f ̂

/
C o nc re te

＼

 ＼ (
p ro g r a m

) ＼ I
p r og ra m I V I

 I
p rog ra m

J
/
/ t

p r og ra m
 J

 ＼ ＼ /i i i ＼ / ＼ W i ≪≫,A! *A / ＼ / ＼/i £,x/£,i -̂ / / / ＼ f ＼ ≪v
i^i /iN / ＼ ＼ ＼ Ij V^ V ≫≪･ ≪ JL S / ＼ >X t-t** V ･+* I mm s f i

. xx
 *･" " ≫ -V i ･v s S f S ＼.＼ ≪-≫ *̂ ≫ V* I J. X X

 ^

-
^
.,

 ^

^

^
^
- ^

^
P P
l i c a t i o n

 o
f
^
^ -
-
^
^
^

 /
/

 "
^

^
^ ^

 ^

x

^ ^
d e s i g n k n o w l e d g e

 ;
*
C

/

/ ^

 Abstract
 switching
 system

 ^ ＼ Design /
 ^ ^^" knowledge
 base

 T a r g e t

 s w i t c h i n g

 s y s t e m

 Target
 switching

 system

 Objects of Reusable if service Reusable if signaling Reusable if hardware Reusable if hardware
 reusability ! specifications are system specifications structure specifications detail specifications
 the same are also the same are also the same are also the same

 Fig.l Outline of reusable design methodology through program transformation

Conventional

des i gn

methodology

 Requirements

 definition Design Manufacturing Test
 < =- : ･ K ･ ― -X ･･ .―-―-――_ K __
 rs*. : ･ ._. .Lservice
 specifications] 1 -1 1 -2 r ＼ 1 -3
 r ,. ,
- . .
. , , _ _

/ /

 L.3 1 gird lin g s ys te m
 s pec ifica tio ns] 2 - 1 2 -2 / 2 -3

 r ' ･ / /
 L n a .r u w a r e

 s t r u c t u r e

 ･ f ･ i ･ i

 3 -1 / 3 -2 / 3 -3

I O f-SW V* I I I S≫M > V I V I 10 J I / 1 / I

 [Hardware detail

 !^! ._J? I

 4 -1 4 -2 / . 4 -3

 O f-≪̂- v- I I I v.≫* v t v i i*j j -＼. >r -y - .s - iy

 Reusable

 design

 methodology

 Conventional requirements definition, design and manufacturing are
 distributed for the respective design of each level program, and
 are repeated during the design process of each level program.

 Note:

 1 -1 2 -1 fl 3 -1 4 - 1
 ― * - rrogram design

 process flow

 ＼ ＼ ＼ ＼

 1 -2 ＼ 2 -2 ＼ 3 -2 ＼ 4 -2
 ＼ ＼ ＼ ＼

 ＼ 1 -3
 1 ＼

 2 -3 ＼ 3 -3 ＼. 4 -3
 ≪ : * ･ * x __* _

 Design of Design of Design of Design of Test
 abstract intermediate intermediate concrete
 program (Level 2) (Level 3) program
 program program

 Fig. 2 Software life cycle based on reusable design me thodology

 /Switching program ＼ / Components ＼ / Knowledge ＼

 Idesigner / I designer / I engineer I

 V
 1

/

 Man-Machine Interface

 /

 X

＼ /

/

＼ / s,

/

 S tepwise design

 support system

 /

 ＼

 / ^ / ＼

X ＼/ V/ ＼J N

 Design resul ts DBMS Components DBMS Design knowledge DBMS

 /

 ＼

 T /
 ･Output, renewal 'Entry, modification

 and reference of and retrieval of

 design results components

f ＼if

＼

 ･Entry , modifica tion

 and retrieval of

 design knowledge

i
f .
__

 ― ･≫ ― ~
^ J

-' ･- -
^
,

 Design results Components Design knowledge

 DB DB DB

 "Program of each level ･Program components 'Knowledge of switching

 'Design history of each level "Knowledge of programming

 information

 Fig. 3 Configuration of reusable design support system example

93

Fig.4 Example of state transition diagram(STD) desi gn and task generation

18

 Table 1 Trends in reusability technologies

 Reusable

 object

 Source program code

 Design information
 Similar program

 systems

 Source program

 code modules

 Principle

 of reuse

 Development of a

 concrete program by

 modification of a

 similar program

 Composition of a

 concrete program

 from reusable

 components

 Generation of a concrete

 program from reusable
 components

 Technological

 level

 Level of practical

 use

 Level of par tial 1

 practical use

 In general, level of

 research

 Typical

 me thods

 Modifications 'Applica tion

 component 1ibraries

 ^Organization and

 composition

 principles

 ･Very high-level languages

 ･Applicat ion generators

 ･Program transformations

 Table 2 Program level model

 Program level
 Program model

 Dependency Program Level S p e c i f i c a t j o n s

 Swi tching

 sys tem

 archi tecture-

 i ndependent

 Abs tract

 program

 L e v e I

 1

 Se rvi ce

 s peci f ic a tI ons
 Description of behavior of switching system which
 realizes service specifications in the most
 abstract level independent of switching system
 architecture and signaling system type.

 I n termed i a te

 pr ogra m

 Level
 2

 S i g n a l i n g

 s y s te m

 s p e c i f i c a t i o n s

 Description of above behavior in the level
 dependent on si gnaling sys tem type and independent
 of switching system archi tecture.

 Sw i tchi ng

 sys tem

 archi tecture-

 dependent

 Level

 3

 Ha rdwa re

 s tructu re

 s peci f ica t i ons

 Description of above behavior in the level
 dependent on the target switching system
 architecture which considers hardware s tructure
 specifications.

 Description of above behavior in the most concrete
 level fully dependent on the target swi tching system
 architecture which considers hardware detail
 spec i f i cat i ons.

 Concrete

 program

 Level
 4

 Hardware

 detai 1

 specifIca t i ons

 Table 3 Comparison of reusable design and conventional design methodologies

Conventional design

methodology

 Reusable design

 methodology

 Ai ms of reusable design

 me thodology

 1.Reusable object Source code Desig n i nf or ma tio n * improvement of reusability

 2 .Development method Based on conventional

 I ife cycle model

 Based on operational approach ≪Confirmation of user requirements

 at an early period

 ･Automation of program transformation

 from specifications

 3 .Management of

 design knowledge

 Individual management

 by each designer

 Common management

 using knowledge base

 ･Joint ownership of design

 knowledge

 4.Appl ication of design

 knowledge to design

 process

 No standard Stepwise application of

 design knowledge from

 service specifications

 to hardware detaiI

 specif i cations

 ･Improvement of reusability

 ･Standardization of design

 5. Design efforts Person-based design Computer-aided design * Improvement in design work

 eff ici ency

 ･Improvement in design quality

 6.Documentation

 of design process

 insufficient Documentation of

 design knowledge used in

 design processes

 ･Im provement in program

 understandabi1i ty

