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Some results restricting the mutual position

of the components of a nonsingular

1 1

real glgebraic curve in RP X RP

Sachiko MATSUOKA

Bi4IK B 1A %F

In this article we study nonsingular real algebraic curves

lem?l. We apply some of the techniques used in the recent

2

in TRP

investigations of algebraic curves in RP° (ef. [5], [6]) to our

alzebraic curves in;mplx:mpl. The main results of this article
‘are Theorems (1.14), (1.15), (1.19), (1.20); (1.21), and (1.23%).
These theorems correspond to Rokhlin's congruence, Kharlamov-
Gudkov»Krakhndv's cOngruénce, Arnol'd's éongruence, Marin-
Kharlamov's congruence, Petrovskii's ineqﬁality, and Arnol'd's

inequalities respectively; which are important to algebraic

curves in ZBPZ (cf. [5]; [61).
$1. Formulation of our problem and statement of results

Let F(XO’XI;YO’YI) be a homogeneous polynomial of degree

d, r with respect to (XO,Xl), (YO,Y1) respectively, that is

‘ in 14 36§46
~ 0, 1,Y0,,Y1
F(XnsX13Yns Y, ) = E a, . s X~ XYY,
0’71’70’ "1 s ST .a iotiody 071 "0 71
071
jo+j1=r

where d and r are non-negative integers with dr ¥ 0, (d,r)

= (0,1), or (d,r) = (1,0); the a are real numbers, at

16iyJd0dq
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1east oné of which is non-zero. We set

{([onxl],[YO:Yi])éEPleII F(Xogxlfyo,ylj = o}' and

{([%5:%,][¥4:¥,]) € P

A

R4

.l
X RP™ iF(xo,Xl;YO,Yl).zo},

1 . . s .
where P means the one-dimensional complex projective space

cpl. We assume that‘ A 1s nonsingular, then it is well knownb

(ef. [2]) that A  1is g compaét connected one-dimensional complex

" manifold of genus

(1.1) g(a) = (d-1)(r-1).

The topology of A depends only on the degree (d,r). But the
same is not true of the real curve RA, and ’the vair ]RAC]RPlx IRPl.
In any case IRA 1is a closed manifold of real dimension one,

hence diffeomorphic to a disjoint union of circles. Our problem

can now be formulated as follows.

Problem. Describe which arrangements of circles can be

realized by an algebraic curve of degree (d,r).
We write XA for the number of connected components of IRA.

Lemma 1.2. ("Harnack-Thom type" ineguality) For a curve

of degree (d,r), we have
2, £(a-1)(r-1) + 1.

(1.2) is an immediate conseguence of (1l.1) by the theorem of
Harnack (cf. [6]). Note that there exist curves having precisely

(d-1)(r-1) + 1 components of evefy degree (d,r) (see [2]).

2
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Definition 1.3%. We call curves having (d-1)(r-1) + 1 - VL

ccemponents M - L curves.

Let E; (i:l,..,,IA) denote the components of TRA.

Then the isotopy type of the embedding Eicﬁ]RPleBPl is
determined by the homology class
[2.] = s, [exmp!] + ¢, [Re'xe] € ) ( BPIX RP; 2),
S5 ti € Z.
The following can be shown easily.
(1.4) If siti = 0, then (si,ti) = (0,0), ( 1.0), or (0, 1)

and if Siti % 0, then si and ti are relatively prime.

¢ T s <= s < - =
(1.5) - For i,j (1-1,3_2A), we have sitj tisj = 0.
From (1.4) and (1.5), we conclude

(1.6) if E; XOand E; X0 (14,j ,), then [E] =-_,l—_'[Ej].

1]
@]

Definition 1.7. We call components Ei with Ei

ovals, and otherwise components non-trivial.

“e write Q' and Q" for the numbers of ovals and non-
trivial components respectively. (¢, = g' + g")
1 1 .
For an oval Ei’ RP"X RP \.Ei consists of two connected

. . . . . 2
components, one of which is diffeomophic to an open disk Int D7,

Definition 1.8. For an oval Ei, we call the connected
component of ﬁEPIXZmpl\\Ei which is diffeomorphic to an open

disk the interior of the oval, and the other component the

exterior of that. We say an oval Eisurrounds an oval Ej’ if the
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interior of E; contains E, (FPig. 1.9).

Definition 1.10. An oval surrounded by even (odd) number
of ovals is called even (odd), and an oval surrounded by j (e€Z)
ovals is called a j-oval. In particular a O-oval is called an
outermost oval. The numbers of even, odd, even j-, and odd j-

«J

ovals are denoted by P, N, ;P» and jN respectively.

v

From now on we restrict ourselves to the case of even degree -

(d,r) = (2k,22). In this case we can say whether the value of

1 1

the polynomial F at a voint of TP "X RP™ is positive or negative.

The two sides of IRA are given by F>0, F<O0; we set

. 1 1 X
8" = {([%g:%, 15 [%:Y;]) € BRI BPY | F(Xo,%)5¥,,7) 2 0}
- 1 1 .
37 = {([Xy:%,15[¥y:¥;]) € RO X RP™ | (X, X, 5Y,Y;) £ 0}
Convention 1.11. (i) In the case " = 0, we make the

convention that F<O0 in the intersection of the exteriors of all
the ovals of 1RA. (ii) In the case 2" > 0, wWe write Ei (i=1y404,

) and Ey (i=R'+1,...,'+2") for ovals and non-trivial

1 1 :
X IRP \(Ex,+1v...v

) consists of Q" components, each of which is diffeomorphic

components of IRA respectively. TbeﬁrﬁmP
Ek"+£"
to Stx Int I. We write R, (i=1,..,,2") for the closures of
these components; and make the convention that F<O in the

intersection of 1Int R, and the exteriors of all the ovals in Ry»
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& = ! v = o i -
EgregnV By = 9%y Bp gV B n =9R5seeey B s VI3 =

OR; qs5eves and ER'+2"—1\/EQ'+£" = 3E2ﬂ,+1". Then it turns out
that 2" is even. (See Fiz. 1.12.)

z 5 1 5 >

BE AR AN A LS R L) TR -2 [T+ -1

Rl RZ R3 T RR"_I R_ﬂ" Fig. 1.12.

The numbers of even, odd, even j~, and odd j-ovals in Ri are

denoted by Pl, Nl, 1.’Pl, and iNl

- %

respectively.

Note 1.13. In the case %" = 0, we have
#{components of BY} = »,
#{components of B"} =1 + N,

X (BY) = P - N, and
X (B7)

and in the case ¢" > 0, we have

N - P:

1]

4 ) ZZ i Z: i "
,{components of B } = 5 504a PT o+ i ave NT + 5
# B - Z: i 'i £"
,{components of B } = i Sve P+ =odad NT o+ 5

X (3%) ‘?(—1‘}1+1(Pl - '), and

X (37

il

i

= (-1yiet ooyl

Now we state our main results. First for M curves and ¥-1

curves we obtain the following congruences.

Theorem 1.14. ("Rokhlin type" congruence) For an M curve

of degree (4,r) = (2k,22) with " = O, we have

X(é+) (=P -0N) = %E (mod 8).
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Theorem 1.15. ("Kharlamov-3udkov-Xrakhnov type" congruence)

For an M-1 curve of degree (d,r) = (2k,22) with g" = 0, we have

X(3*) (=P -N) = 9221 1 (mod 8).

Next, we consider the embeddinzg RidcA.

Definition 1.16. We say RA is a dividing curve if

AN IRA is not connected.

We write T : PXP1sPXPL for the complex conjugation. Since
F is a real polynomial, we have <T(4A) = 4., The following lemma

is basgic.

Lemma 1.17. (i). an M curve is always a dividing curve.
(ii) For a dividing curve IRA, AN TRA consists of two connected

components, which are interchanged by T , and we have
’QA = (d-1)(r~1l) + 1 (mod 2).

. . . . -+ - .
For a dividing curve IRA, we write A and A for the
closures of components of ANITRA. The natural orientations of At
determine on IRA, as on their common boundary, two opposite

orientations.

Definition 1.18. For a dividing curve WA, its two

opposite orientations as stated above are ecalled complex.
In the case " > 0, we set

2 = #{i:even Any orientation of aRi induced by an

orientation of Ri does not coincide with

6
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any complex orientation of aRi.}

Theorem 1.19. ("Arnol'd type" congruences) For a dividing
curve of degree (d,r) = (2%,242), we have

(mod 4) (if A" = 0, or 2" > O and 3
X(B") = dr is even)

(mod 2) (if Q2" > O and 2 is odd)

Theorem 1.20. ('"Marin-Kharlamov type" conzruences) If RA
is a not dividing M-2 curve of degree (d,r) = (2k,2RQ) with &" = O,

or an M curve of degree (d,r) = (2k,28) with £" > O and g is odd:

X (B*) = '9251 + 0,t2 (mod 8).

Theorem 1.21., ("Petrovskii type" inequality) For a curve

of degree (d,r) = (2k,24), we have
IX(8%)] £ (k-1)(8-1) + 2k4.

To formulate our last theorem we divide the ovals into three

classes.

Definition 1.22. An oval is called vositive (zero,

negative) if the Euler characteristic of the intersection of its
interior and the exteriors of all the ovals surrounded by it is

1 (0, negative). The numbers of positive, zero, and negative

even (odd) ovals are denoted by P, (N+), PO (NO), and P_ (V)

respectively, and we define the notations Pi, Pé, Pi, Ni,

Né, and Ni in the same way.
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in the case A" > 0O we may assume that

[Ei]= (s [ooxBP ]+ t [RPIxed])

for every non-trivial component Ei. (Recall (1.5).) We set

m — 4l . ' ' .
Xeven = ,{1.even lRi contains some oyals}
" _ 453, : .
jodd = ”{1.odd lRi contains some ovals}
Theorem 1.23. ("Arnol'd type"binequalities) Let RA be a
curve of dezree (d,r) = (2k,24). We consider the following

inequalities.

(1) P_ + Py = (k-1)(X-1)
(2) P, + Py £ (k-1)(£-1) + 2kL + (P = N)
(3) N_ + 1 + Ny S (k=1)(2-1)

(4) N, o+ N, S (k-1)(L-1) + 2k2 - (P - W)

P_i_+ Z i, X i, X Ni+:§n

i:even "= * i:0dd 0 * i:even Mo ‘
| S (k-1)(®-1).
Zoopt X gt X et XD g 2 e
(21) i:odd P+ ¥ i:even N, ¥ itodd T0 * ifeven No + 2 Loven
< (k-1)(£-1) + 2k + Z(-1) e o wh)
A Rt I &
N Py +

0t iseven 2

[}

(1')-i3§%d

H-

.,

-t i:even

(3!

+d

22 i
) iJoud - 7 i:0dd
S (x-1)(2-1)

(a) (B B et 2 w21 el LT e

+'+'i;even s i:odd "0 i:even "0 2 dd
< (k-1)(2-1) + 2kg = (-1 et v

(ij If TRA is noﬁ dividing and " = 0 (4" > 0), then (1),'(2),
(3), and (4) ((1%), (2'), (3'), and (4')) are correct.

(i1i) If A is dividing, k gnd £ are even, {"= 0, and B* (B )
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has a component whose Euler characteristic is not zero; then (1)
and (2) ((3) and (4)) are correct.

(ii') (2) If T]RA is dividing, k and X are even, g" > 0, § is
even, - and 3* (B7) has a component whose Euler chargcteristic is
not zero: then (1') and (2') ((3') and (4')) are correct.

(b) If WA is dividing, " > 0, s = k (mod 2), t = & (mod
2), % is odd, and B® (B”) has a component whose Euler characteris-
tic is not zero: then (1') and (2') ((3') and (4')) are correct.

(iii) In the case " = 0 (" > 0) (1), (2), (3), and (4) ((1'),
(2'), (3'), and (4')) are correct if we add one to the right-hand

side of each of them.

This completes the statement of our main results. Owing to
limited space we give only the proofs of our coﬁgruences in the
following sections. 1In §2 we prove (1.14), (1.15), and (1.19) by
usinz a double covering Y of plx pl branching along A. In §3
we prove all our congruences simultaneously by using another
method (Marin's method). In 84 we try classifying curves of

dezgree (4,4) by aponlying our results to them.

82. Proofs of conzruences I

10. A double covering Y of Plel branching along A. Let
Py ¢ P¥XPI—3P1'(i=1,2) be the vrojection to the i-th component.
In the case (dsr) = (2k,282), we have

[4] = 01%6,1(d) @ p,*Gp1(r) = (py*Gp1(K) ® p,*0,1(8) 2,
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. . 1 . :
where [A] is the line bundle over P;XP“ associated to A. Hence

A can be the branch locus of a double covering of P¥XP1. In

fact such a covering is obtained as follows. We set E =

{[Xo%,:%,] €69 [ X, % 0, or X, \{o}x{yoyl v,]ecp? |y, % o,

or Yl X O}. Let Ek;k bg the set of equivalence classes of E
with respect to the equivalence relation ([Xo: 71 [Y Y1 YZ])
o ([\c' x'.x2] [Y"Y"Y']) if ([on-xl],[yozyl]) = ([x('):x 1,

ply pl
[Yé:Yi]) in P"XP", and |

x2k3(2£=x2'1“¥é‘Q ,_

— |\ — || (i,j = 0,1).

1 1

Xi Yj X! Yj

We write T : k 2——>Plx p for the natural projection. ' This is
s . .

nothing but the line bundle pl*[%l(k) ® pz*(Qpl(z). Now we set

‘ 4
Y = {F(xo 130 Yy) + XS

r
7 o} (S By o)

Then Y 1is a compact connected 2-dimensional complex manifold,
and the restriction € : Y¥—>P%XP1 is a required double covering

of P%KPI branching along A. We write © : Y=Y for the covering

= .

transformation, which is a holomorphic involution. The complex
conjugation on E induces an anti-holomorphic involution on Y,

which is denoted by T . (Note that F is a real polynomial.)

* 2 080T (= T o 8), then 7meTt =~wox. Let ,Y;'

denote the fixed point sets of Tt, which are closed manifolds of

We set T

real dimension 2. We obtain double coverings branching alonz I RA:

+
7T Y2 —>B

. + . . .

Since  B= gpre orientable, Y§ are orientable and regarded as

the doubles of B*. 6 : vE—Y%¥ are orientation reversing.

R R

10
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Next we consider the tovolozy of Y. From the branched

. 1
covering Y—ﬁi’XPl we get

{xlm =0, X(¥) =5+ 2(d-1)(r-1), and

the siznature ¢ (Y¥Y) = -dr.
Hence Y 4is torsion free, and we have

4 + 2(d=1)(r-1).

(2.2) rank ¥, (Y ; 7Z)
29, pProofs of Theorems (1.14) and (1.15).

Definition 2.73. Let X be an almost complex manifold,
and T be an anti-holomornhic involution on X. We say (X,T) is

an M-l manifold if

;?Z?)=dimH (X :Z,) -2L,

dim H*(XR 1,
where XR denotes the fixed point set of ’T.
Theorem 2;4 (Rokhlin). (See [5].) Let (X,T) be an M mani-

fold of real dimension 4n. Then
X(Xg) = 6(X) (mod 16).

Theorem 2.5 (Kharlamov,‘@udkbv, Krakhnov). (See [6].)

Let (X,T) be an M-1 manifold of real dimension 4n. Then
XX )E €(X) £ 2 (mod 16),
The relations between IRA and (Y,Ti) are as follows.
Lemma 2.6. In the casé A" = 0, the following three

11
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conditions are equivalent. (i) ]RA is an M=Vlcurve. (ii) (Y,T)
ijs an M-L manifold. (iii) (Y,T+) is an M-{\+2) manifold. And
in the case 2" > 0, the following three conditions are equivalent.
(i') RA is an M=l curve. (ii') (Y,T7) is an ¥-(L+2) manifold.

(1ii') (¥, T") is an M=(L+2) manifold.
(2.6) is shown by the arzument of 1°.

Now we give the proofs of (1.14) and (1.15).

If TRA is an M curve of degree (d,r) with g" = 0, then by
(2.6), (¥,T7) is an M manifold. By (2.4), we have X(Yg} = §(Y)
(mod 16), where X(Y3) = 2 X(B7) = 2(N - P) and ¢(¥) = -dr (see

(2.1)). Hence we have P - N = %? (mod 8). This completes the

proof of (1.14). (1.15) is shown by (2.5) in the same way.

3°,  Proof of Theorem (1.19). Recall that for a dividing
curve IRA, AN RA cqnsists of two connected components, which are
interchanged by T, and the closures of these components are
- + - +

denoted by AY and AT, A , A7, B, and B~ have the common

boundary IRA. We set

(2.7) W= atv BT (¢ Pxpl).

W is a closed PL submanifold of P%(Pl, and orientable if and
only if an orientation of 3% determine a complex orientationm.

The proof of (1.19) rests on the next lemma.

Lemma 2.8. We have
kfoxPt] & 2[plxool] if g =0

(] = e -
(k+fs)ooxP] + (R+3t) [P xee] if 2" > 0

12
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ool 1
1nr%(?x? ,ZQ).

(2.8) is shown at the chain level. We fix a triangulation
of Plel such that (i) the various subspaces arising are all
subcomplexes (ii) Tis a simplicial map. We shall allow the
following abuse of notation : 4 (for example) may denote either
the space A or the corresponding ( Z-, or 222—) chain (sum of 2ll
the 2-simplexes contained in A).

We now 1lift our triangulation of P%(Pl to a triangulation of

the double covering Y. We define the transfer
11
tr : (chains of PxP ) — (chains of Y)

as follows : if 6 is a simplex of A (the branching locus), trd
is twice the corresponding simplex in ¥Y: if ¢ is not in A, then
tr 6§ is the sum of the two simplexes lying over it in Y. Then tr

is a chain mapn. We set (MXPI)Y = tr(xX?l), (PlxM)Y = tr(P;xw).

Lemma 2,9, We have

(8] = x[expt) ] + 2[(pPxw) ] in B (¥ 5 2).

From (2.8) and (2.9) we get the next lemma.

Lemma 2.10. In HZ(Y ;222) we have
[Y+] } [A] if g" =0
R [a] + fés[(DoXPl)Y] gt [(txm) ] if g > 0.

Now we prove (1.19). We define the unimodular integral

symmetric bilenear form
(o2t (Y5 Z)xH,(Y 5 Z) > Z

by

13
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{a,b) = ae0,Db,
where o is the intersection form of Y. Then for any element a,
(2.11) | (a,a)EE (a,[A]) (mod 2).
If " = 0, or " > O and § is even, then by (2.10) there exists
an element L of H2(Y'; Z) such that |
[vi]=[2]+ 20 ir = (v ;2).
Hence we have <[Y§],[Y§]> = {[41,[2]) + 2{t,[4]) + 4{1,L), and by
(2.11) we obtain
(][] = <Ll (81D (mod 8),
where <[Y§],[Y§]>-= - [YE]@[Y%] =‘XKY;) (Poincaré-Hopf Theorem.),
and ([2], [2]) = [2]e[a] = Z(2ar) = ar. Thus it follows that
X_(3+) = %—ri (mod 8).
In the case " > 0 and § is odd, the reguired result follows from

Lemma 1.17 (ii). This completes the proof of (1.19).
3. DProofs of congruences II

In this éection we proVe‘all our cogruehces at once, First
we give an outline of the proof. We consider the guotient space
Plel/'t and its subspace W = a/t Bt (ef.(2.7)). We shall
define the elemeﬁt' &(PIXPl/t,W) of Zg forvthe pair (é%(?lft,W)

and show the following lemmas.

Lemma 3.1. For a curve IRA of degree (d,r) = (2k,2R),
1
we have xX(3") - L = (expla,W) (mod 8).
Lemma 3.2, In‘the case 2" = O

1) If TRA is an M curve, then d(PlXPl/C,W)'= 0

14
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. - b 1
2} If TRA is an Y-l curve, then (P XP /x,W) =11

3) If WA is an M-2, not dividing curve; then

X(pixple, i) = 0, 22
4) If R4 is a dividinz curve, then
K(D¥Kpl/t,iﬁ) =0, 4
In the case " > © |
1') If RA is an ¥ curve, and
i) g is even, then M(P%x?l/t,W) =0, 4
ii) 2 is odd, then X(Px2 /e, W) = 0, £2
2') If WA is a dividing curve, and
i) § is even, then N(P1XP1/C,W) = 0, 4
ii) g is odd, then M(PIXPl/t,W) is even

Then (1.14), (1.15), (1.19), and (1.20) follow from 1), 2),

4) and 2'), and 3) and 1') - (ii) respectively.

1°. Definition of R(®XPl/c,w) and Proof of (3.1). First
the quotient P;XPI/t is, as Plel, a naturally oriented smooth

manifold without boundary. The following fact is known ([3]).
1, .1 \ . . , 4
(3.3) P°XP /t is diffeomorphic to the 4-sphere S7,

Next A/t 1is also, as A, a smooth manifold, whose boundary is

rezarded as IRA. The following is obtained.

(3.4) A/t 1is orientable if and only if RA is dividing.

Now we set W = A/n\/B+. Then W is a connected PL closed
submanifold of PlXPl/c, which is orientable if and only if A/x
is orientable and an orientation of BY determine a complex orien-

tation.
15
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Remark 3.5. Although W 1is possibly non-orientable, IRA

ig embedded in W two-sidedly.

By (3.3) we can define the "Rokhlin form" (see 1 )
1 B (W3 Z,)— 72,

1.1, ‘
for the pvair (P xP /r, W). Let D((P1XP1/*[:,E~I) denote the "Brown
jinvariant" (see[l]) of g, which is an element of Zg - Then by

the formula of Rokhlin-3uillou-Marin ([l]) we obtain

1, .1 - — 1,1, .
(3.5) (P XP /T) -.(Wow)Plxpl/t: 2 X(P"XP /t,W) (mod 16),
1,1 . . 1,1 .
where (P XP /t) denotes the signature of P XP A, that is zero
by (3.3), and ~(W°W)Plel/t denotes the self-intersection number

of W in PIXP]‘/‘:. And "2" means the homomorphism ZS——>2216

such that 2(1) = 2. Since (WeW)pl pl, = (Aeoffe)plpl . +
= Flaea) Lol + 2(-X(8%) = ar - 2 X(E%), (3.1)

+ 4
(B'eB )plipl

follows.

2.  The subspace L. To calculate o((PIXPl/-c,W) we consider

the following subspace L of Hl(w 5 Z,) -

' <[E] €H, (W 5 Z,) |Z is a component (oval) of ]RA>Z

(3.7) L =1 2
| if 3 =0
<f2’Ri]éHl(w ; ZZ?.))Z? + <[EI] GHl(‘w’ ;ZZ) l':? is an
oval of IRA‘>z9 . if 3> 0

Lemma 3%.8. The Rokhlin form q 1is zero on L.

Proof. The foliowing equality is easy to verify.

74

L= <[QB;]eH (W3 ZZ) l B; is a component of B'_> '
: 2

16
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B. is a membrane ([1]) for W. Hence by the definition of g (see

1
[1]), we nave
a([23]]) = ($+ 2#((Int BDIAW)), 4 4

where (# denotes thé obstruction number to extend the projective
normal bundle of DB; in W to a subbundle of the projective normal
bundle of B} in plxpl/r. ihereas B] is embedded in W two-sided-
1y (recall (3.5)), hence we have & = 2 hs where 6% denotes the

obstruction number to extend a nowhere zero section of the normal

bundie of BB; in W to a section of the normal bundle of B; in

Plxpl/t. Sincevﬁv = 2(-X(3;)),and #((Int B;)f\W)v= 0; we have
| 2[aB]) = (A0XBIN, 5 4 = 0 2.E.D.

The Brown invariant has the following properties. (cf.[l])
(%3.9) Let V Dbe a finite dimensional vector space over Z,s

ot VOV —Z be a inner product, and ¢ : V—2Z, be a

)

quadratic function (cf.[ll).
(1) If V = VléB V, 1s a orthogonal decomposition,then for
the Brown invariasnt 6 (#) we have ¢ (&) = dGqV Yo+ Gﬂqv ).
1 2

(2) If dim,_, V = 1, then ¢{¥) =+ 1.

V74
2 ,
(3) If the matricial representation of o is (? é), then
6(‘?) = O) 4.
Remark 3.10. Let o :"Hl{w 2 ZZ?_))( Hl(w s ZZZ\——} Zz be

the intersection form. Then our Rokhlin form g has the following

proverty. qlu+v) = q(u) + a(v) + 2uov,;where 2 :IZ?—ﬁZA, 2(1)=2.

After the arguments in the following subsections 39——80, we

17
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ghall obtain the following lemma.

Lemma 3.11. There exist elements Usy Vg (i=1,..,dimL)

such that {uy, v, |i=1,..,dinL} is a basis of L, the matricial

. . . 01 01
representation of e with respect to {ui, vi} is (1 O)’ or (1 )(~

"~

10 >~ _® ' . ) s 4s ‘ .
(O 1)), L = i<ui’ vi>Z@, is a orthogonal decomposition, and L is

g- orthogonal summand.

By Lemma 3.8, Remark %.10, and the definition of the Brown

invariant ([1]), we have G1qkp v >) =. 0. -Hence from (3.9) and
i? i
Lemma 3.11 we conclude

(3.12) 0((P1XP1 /T4W) = d(qli’) + ((qlnﬁ"') = ((qh:-;-'-),

39, ~To investigate the aspect of W we decompose it into

gome handles, First we consider A/xr. We assume that IRA is an
M-l curve. From the double covering A-—A/r, which is branching

along TRA, we get. X(A/e) = 2-quﬁ. Hence by classical arguments

we get a handlebody representation of the triad (AA; #, TRA) as
follows.

0 2
(3.13) h v (h, v ...»zhg(A)+1)\/h1,

1
? 1
1

where ho, hj’ and h mean a O-handle D2, a l-handle (D?)(Dj,dj),

2
1

We say a 1l-handle hi is attached orientably (non-orientably)

and a 2-handle D] respectively.

if hov hi is orientable (non-orientable).
.'Thenk(l) if A/ is orientable, our way of attaching the

handles is as follows.

to 2D” orientably, h

First we attach‘h to the

1 2
boundary component which contains Dix{l}orientably so

18
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(3.14)4 that D%x{l} and Déx{-l} will be in the same boundary

component, and h3""’hL in the same way.
_ 5
Next we attach h,  (j=1,...,5) to Dix{tl} orientably so
] i
that {£1}xD]  will be in D%xttl} respectively.

7+

And we attach hL+1 to the boundary component which contains

1

L+1x{-l} will be in the

D_x{1} orientably so that Dy x{1} and D
2 2

same boundary component, and hL+2’ hL+3""’hg(A)+l in the same

way. (cf. Fig. 3.15)

Last we attach h% to the boundary component which contains

1
D, X {-1}.

—2-+l

(2) If A/ is non-orientable, our way of attaching the

handles is as follows. First we attach hl,...,hL (h1+1,...

"’ho(a)+1) non-orientably (orientably) to the same place as

(3.14). (cf. Fig. 3.16) Last we attach hi to the boundary

component which contais Dix{-l}.

hx+t - . hyg
B v 2a
,___/\___“ A A
L4 ™ ¥
hy . ... h,
1 ‘3_‘ h]. [} s o hl. }lZf‘[".halAﬂ-’
Fiz. 3.15. Fig. 3.16.

4°. Now we introduce new notations for the ovals El""

"’ER" We assume that 2" > 0. ( The case 2" = 0O can be

19



31

rezarded as 2 sneclal case of that., ) First lat
i i
(3.17\ iEl’...’jES..
N 13
denote the j-ovals in Ri, where 1 - j =1 (mod 2). For such a

oval, the closure of the intersection of the interior of it and
the exteriors of all the ovals surrounded by it is a component cf

8t. TNext let

i ' i
(3018) ° E 5 e 0 ey E
jk~1 jk Pijk
denote the j+l-ovals surrounded by iEi. Last let
=27 27 ’
(3019) -—11 9 o e 0 9 iJ Dz_j
Al

denote the O-ovals in R?j'

Now we order all the components of IRA in the following

order. (cf. Fiz. 3.21)

i i, -
ikEi,...;ikEP P 5T (1 - J=1 (mod 2), &k = 1,..0,8, )
o - u "k . . o
(3.20) LIk
. @2l w2 J . 1"
Eﬁl+2‘j_1 * S seees 'p21 ’ 2'*‘2,]. (J = 1’-0012 )

O O

odd ovals

even ovals

even oval odd oval

in Ry (1:0d44d) in R, (i:even) O-ovals in R,

Fig. %3.21. The components of B .

In the case where A/t 1is orientable (i.e. RA is dividing)

we make the following convention for the order (3.20).
Convention 3.22.° We fix an orientation of B* and a
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comnlex orientation of R4, and divide the comoonents of IR2 into
two classes: (1) the comoonents on which the orientation of B*

determines the complex orientation (2) the otherwise components.

et C.. (C.) denote the class which contains .E ) ).
L ijk i ' = ik ( QX+27
We gather up the 1,KE;'S which belong to >Ciik’ and push thenm
. : i i "
backward. We write *kml”"’jkha for the forward components,
: iik .

A - 21 .
where 0= a,. =r.. . Similarly we gather up the Ef~t's which
ijk iik = s o)

X . . =21 23
pelong to Ci’ and push them backward. We write z%“,...,EbU

. X 2
for the forward comoonents, where Oéb?,' éOP“J.

We may accevnt the followinz assumpntion.
For the handlebody (3.13); the boundary component

. . 1 . . 1
which contains Dl+lx{1}’ that which contains D1+2x{1),.

++es and that which contains Di(A)+1x{l} correspond to

the components of TRA orecisely in the order (3%3.20).

5° By attaching some handles to the handlebedy (3.13) in

the following way, we shall obtain a handlebody decomposition of

W The l-handles attached anew are denoted by ﬁ+ = (Dtx.Dt,at},

iV e
v

where the t's gsatisfy the following condition.

(3.24) \+22t22(1)+1 and D%x{—l}is’ in neither .E,:; nor Ei_,+2j.

3
o

We attach %, to Dix{£1} so that {#1}xD} will be in Dix{t1f

respectively. In the case where A/t 13 orientable (i.e. IRA is
dividing) we attach the handles in the following way. If t

atisfies the condition that

(3.25) D%x{-l} is in ., " E-~ , or E +9i_1(with the proviso

3
ik"a. ., 7 Tb..
¢ ijk 2]

that Ex}+2j-1 belongs to Cj and b2jé;1); (cff 3.22)
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~s

then we attach ht non-orientably. For an otherwise t, we attach
'ﬁt orientably. (cf. Fiz. 3.25)
Last we attach some 2-handles in the trivial way.

neon-orientably

n
don't attach z don't attach

S { ! [ (Ff\‘_"— Fiz. 3.25.

T O =
B aEna Byl

o) : . . .
67, Next to study Hl(w 3 Z,), we consider some embedded

circles in W. PFirst in the case where A/ is orientable, for

each t (1§_t.ﬁ_%'-, w1l £t2z(12)+1), we choose a embedding L

I- [-1,1]—>D>(the O-handle) such that £, (1) = (£1,0) (in

D%XD%, and ft(I) aré mutually disioint, and we set
bl
(3.27) S, = £.(I)wD.x{0}.
For each t ( Ll<'t$LJ, we choose a embedding ft : T —>
DY \xDl \ such that £, (*¥1) = (£1,0) (in D}_XD‘) and £, (T)
-5 t-—= -5 t "7t t
intersects Sf L a2t cnly one noint transversely, and we set
.~—§ ‘
(3.28) Sy = f.(Iv Dtx{O}. |
Tor each t which satisfies the condition (3%3.24), we choose a
_ . ~ 1.1 . ~ _ g g}
embedding ft : I——eDtth such that ft(tl) = (+1,0) (1n Dtth)
and ?;(I) intersects St at only one point trarsversely, and we
set
(3.29) 3, = T (DvBix{o}.

Next in the case where A/t is non-orientable, for each t (L2t=

g(2)+1), we choose a’embedding f. in the same way as (3.27),

22



34

and we set

o« _ 1
(3.30) Sy = ft(I) D, O.

For each t which satiafies the condition (3.24), we choose a

embedding ?; in the same way as (3.29), and we set

_ o - )
(3.31) S = ft(I)th O,‘

Then we have the following lemmas.

Lemma 3.3%2. We can adont the following elements as a
i H ¥ e . S S ° 2 ":/
basis of Hy(W 3 Z,). [S,] (12t 2L) ; [otl, [bt] (for all t
which satisfy the condition (%.24))

Corollary 3.3%3. We have
dim-l(w ZQ) = L+ 2N if 4" =0
v+ 2(, 2. 1 2 Ni + § )

i:even P+ isodd
if g* > 0

Lemma 3.3%4. (1) If A/ is orientable, then
L — @
AW Zy) = agsl [3¢] - [ t+— Z, [3 E /z,

is a orthogonal decomposition, and we have )
*): "which

[5.]° [St] =0 (15 t5L), ?%t;ii;;z
[52] [30.8] = 1 asesy,
[st]o[st]"} 0 [st]o{’é't] = 1 (t which satisfy (3.24)),
[§;]°[§;] =<0 (t which satisfy (3.24) and do not satisfy

(3.25))
1 (t which satisfy (3.24) and (3.25)).

(2) If A/ is non-orientable, then

B (W 3 7Z,) = 15tSL< >z @*) [S¢] [gt]>zzz |
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is a orthogonal decomposition, and we have

hJoﬁd =1 (1St 2L,
[St]o[st] O,'[St]o[§;] = 1, and [§£]°[§£] cannot be

determined (t which satisfy (3.24)).

7°. In this subsection we consider the subspace L. We see

(3.35) L = <[1kE;']>7ZZ @(<[E§J']>ZZZ+ <[aai] B odd}zz), and

’

[0171] [31.2]
01°1 S 142
wk -
[0142] = SL+2] + [31+3]
1] E
(0255 = [Sus] + [Siad]
r ﬂl _ >
LOlmrlol] - ES‘+P101] * {S‘+r101+1}
34T 17 ]
(3'36)<.O2E1_ = 1+r101+3‘
- | [ o ] a
| 0272 = L+r101+3 [ L+r101+4
. )
,OZEB - 1+r101+4 [°L+r101+5]
[O El ] = {S + +l] + [SL r +r +2]
2100 Wr101*T102 L Y101t 102

N . L3
Hence dim <P El],..., P gt ]> = r..._, therefore,
Zz jk1 ik Pijk ZZ2 ijk

2 i

: i _ _ i i 2.
dim Z7<[jkEa]>222 T ijk rijk - i;even(P OP )+ J'.-:oddN :

In fact, the following is a basis Of<{ikE;]>Z .
b 2

) pl 411, and satisfies (3.24)}
i:even O

(3.37) {[st] [ W+2S ES e L1, 2 P

24
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Aind we see

(1.2 [ :
E S D pi 9].+ [S - i J
[ 1] tr £ jseven 0O° ** & i:%%%n OP +3
[72] [S i ] + [S i ]
° L+9'_i?%;%n 0% 3 2= . &en o°

oooooooooooooooo

2 .1 : i
[E ‘Pz_-l - [SL?!Z'—. I Dl+l] * [314- /LI Zen OP1+2:]

0 iseven O i:ev
' iz 4 iz4
[E ]+ [E } = s i
t LI + ' -
21+2 2'+3 [ L L i?g%en OD +2
iZz4

i:even O “i:even O
i26 )
g, Ep.sl =|Stip.. 32 ot
L 2 +4] + 2'+5 [ 1+ & i:8ven OP +4
iZzA

oooooooooooooooo

[E'Q"l"]= [S ] + [g ]
OD l.+' lq_l z_+ 'QA

iseven O

L[ERM,Q.”] * [El‘+1] = [SL+,QA} * [Sl+£'—. > Pi+2]'

25
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gence if we remove [E 2"] [“2, 1] from (3.38), then the

1
premainder is = basis of < E v >ZZ +—< 231] >%5' Hence,

. 23 ~ .. _ i £H
dim Z,)<<[Eb ]>ZQ +<[aRi] 1'Odd>29> = jieven 0° * 35 -~ 1.

Thus we have

(3.39) dim L = {N | | . if v =0
PIEGEEES D T v\wi+§"-1 if Q" > 0.

iseven - isodd -

o0 . ' ' .
37, Now we prove Lemma 3,11. To do this, we let

[31] * [32]’ 18]+ [Bs]seee [’SM-ll * [__’gm]

denote the right-hand sides of (3.38) in order respectively,
i:even O 2"
let [ﬁi] denote [St].
We can adoot (3.37) and (3.38) from which we remove

[Eﬁj$1"] + [Ex,+1] asb{ui}; and adopt

(3.40) {[é‘;]]u% té_u,u-.:z: v‘?i

where we set m = , 2% ot L L' ang ir [Xi]' denotes {St]’

+1, and satisfies (3.24).}

Uzl, . a’p

[¥)

cn{(, 220 8]) - (B2 8] ersna )

a3 {Vl} .

From Lemma 3.3%4, we get the following.
[)gilo[xgi] -0, [)gi]_o[,xi] =1 for all i (1<i<m); and

408 - BF(E] - [BME] - o

for a1l i xk (1

lin

i, k=m).
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(5=1,_.E{J>8J): then (3.42)—(%.44) are not chanzed, but (3%3.45)

is changed into "= 0 (if oS p-1)".

Thus we obtain L and

i=l,..,m-
[’gj]"[za
Hence Hy(W 3 Z,) = TeT, and
(3.47) aim TT = {0 (if 4" = 0)
{L+ 2 (if 2" > 0)

This completes the proof of Lemma 3.11. (cf. Fiz. 3.48)

(A= ooc

<(E§}]§ZZ+ <[9R,;] [ (e odd>Zz/

Fiz. 3.48.

)
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Moreover we have the following lemma,

Lemma 3.49. In the case where A/r is orientable and

£ > 0, the matricial representation of o with respect to {Iﬁ%],

T L&) (=‘1§:m[m>}ls

J i

-1, 3
[:Qv ]°[§j]=1

(g é) (if ¢ is even) (g %) (if g is o0d4d)

Proof. The self-intersection number of the second element
is as follows.

21 [jl]c’[/’gg] = (#{j 1L£jsSm, [EJ]°[EJ] = 1})mod 2

‘j:’l,..,m . I v
_ (#{t [+ g __iZ. — Op1+g 2t=1+%, and satisfies (3.25).})mod 5

90. Proof of Lemma 3.2. Recall (3.12). In the case where

~L
" = 0, since dim L~ =1 by (3.47),

1) if 1]RA is an M curve (i.e. L 0), then O((Plel/t,w) = 0.

2) if RA is an M-l curve (i.e. L = 1), then by (3.9)-(2)
X(Px Pl /e W) = £1.

3) if 1RA is an M-2, not dividing curve (i.e., L= 2 and A& 1is
non-orientable), then by (3.34) and (3.46) a2 matricial reoresen-
tationrof o oOn EfLisv(é g). Hence by (3.9)-(1), (2) N(P%KPlft,w)
= 0, x2,

45 if TRA is a dividing curve.(i.e.lﬁ/t is orientable), then by
(3.34) and (3.46) a matricial representation of o on'f'L is (g é>'
@..‘.@(g é) Fence by (3.9)=(1), (3) «(p]xpl-/c,m - 0, 4.

In the case where " > 0, since dim'fd'= L+ 2 by (3.47),

1') if TRA is an M curve (i.e. 1 = 0), then by‘(3.49) and (3.9)
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we have the reauired result.
2') if TRA is a dividing curve (i.e. Afc is orientable); then
by (3.34), (3.46), (3.49), and (3.9) we have the required result,

This completes the oroof of Lemma 3.2,
§4. Curves of degree (4,4)

In this section we try classifying curves of dezree (4.4) by
avplying our results stated in §1.

Definition 4.1. We call a set of ovals of ZEA totally
ordered by the relation of inclusion (Def. 1.8) a nest. A nest
which contains m ovals is called a nest of deoth m.

By considering the intersection form of P%<P1, we get the

following lemma.

Lemma 4.2, Let TRA be a curve of degree (4,4).
(1) Tf 2" = 0, then the depth of a3 nest of IRA is at most 2,
hence N_ = NO = 0,

(11) If 2" > O, then 2" = 2, or 4. And if 2" = 2, then (s,t) =
(£1,0), (0,#1), (*1,x1), (x2,%x1), or (¥1,t2). If Q" = 4, then
(s,t) = (£1,0), (0,%1), or (£1l,¥1). If Q' = 2, then the depth of
a nest of TRA is at most 1, hence N = P_ = Py = 0. If Q" = 4 or
(x2,+1), (¥1,%2): then 1RA has no oval, i.e. L' = O.

| Now we write down the restrictions which are obtained anew
from (1.2), (1.14), (1.15), (1.19), (1.20), (1.21), and (1.23). "

(4.3) ("Harnack-Thom type" inequality) QA £ 10 (Hence an M
curve has 10 components. )

(4.4) ("Rokhlin type"rcongruence) For an M curve with 2" = 0,
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we have P = N = 0 (mod 8).

(4.5) ("Kharlamov-Gudkov-Xrakhnov type'" congruence) For an V-1
curve with 2" = 0, we have P - N=+1 (mod 8).

(4.6) ("Petrovskii type" inequality) If g" = 0, then P = 9.

(4.7) ("trnol'd type" inegualities) (i) For a not dividing

curve, we have P_ + P, S 1 (if g@" = 0) and Q" = 2 (if Q" > 0).
(ii) For a dividing curve with £" = 0 and B has a component
whose Euler characteriétic is not zero, we have P+ PO £ 1.
(iii) For a curvé,withli" = 0, we have P_+ PO = 2.

(4.8) ("arnol'd type" conzruencses) (1) For a dividing curve

with g" = 0, we have P - ¥ = 0 (mod AY., (2) For a dividing curve

with 2" = 2 and § = 0, we have Pl -'#25 0 (mod 4). (%) For a

2

'dividing curve with " = 2 and § = 1, we have Pl - P"= 0 (mod2).

(4.9) ("Marin-Kharlamov type" congruences) (1) For an M-2, not

dividing curve with " = 0, we have P - N = 0,2 (mod 8).
(2) For an M curve with 2" = 2 and § = 1, we have Pl - PZE: 0,2
(meod 8).

Remark 4.10. (1) If g&" = 0 and P_'%.l, then P_ = 1 and

PO = 0. (FPig. 4.11) (2) If 2" = O and PO:E.I, then P_ = O.

(3) If " = 0 and Py = 2, then TRA is dividing and P+ = 0. (Fiz.

oo @@
" ,

Fig. 4911. P- = l’ PO = O Fig. 4.12. P- = o, PO = 2

4.12)

Owing to limited space we give the table of possible isotooy

1

tyoes of TACsRPLXRP' only in the case 2" = 0. (Table 4.13) In

the table, =n and '%

T mean the isotopy types of Fig. 4.11 and

(-
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9 ‘ 5, 1.%
M T T4 78
(-8) (0) (8)
d. d. d.
: 8 5 4 1%
M-l T T 7 9
(-7) (-1) (1) (7) (9)
n.d. . n.d. n.d. n.d. n.d.
3 7 5 5 4 3 2_ 1% *
=2 T T T T T T 8
(=6) (-4)Y (-2) (0O) (2) (4) (5) (8)
n.d. d. n.d. n.d. d. n.d.
6 5 4 3 2 1 *
M-3 T 1 ¥ T ™ 1 7
(=5) (=3 (=2 () (%) (5) (7)
n.d. n.d. n.de n.d. n.d. n.d. n.d.
(-4) (=2) (0) (2) (4) (6)
n.d. n.d. n.d.
4 * 3% o _* 1% *
=5 S O S E R
(=3) (=-1) (1) (3) (5)
n.d. n.d. n.d. n.d. n.d.
(-2) (0) (2) (4) (0)
n.d. n.d. d.
Vo7 ’ %* %1* 3%—
(-1) (1) (3)
" n.d. n.d. n.d
M-8 1 * 5%
M= T Z
(0) (2)
_ , n.d. Table 4.13%.
N _
M-9 . 1 an =0
' (1)
n.d.
M-10 ¢*
n.d.
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Fig. 4.12 respectively. The number in each parenthesis means the
muler characteristic of B". The notations d. and n.d. mean
ndividing" and '"not dividing" respectively. The asterigsked |
jsotopy types are realized by some curves of dezree (4,4). For
example the isotopy type % is realized iﬁ the following way.
First we choose real numbers ai. (i=1,2,%,4), bi (i=1,2,3,
4), di (i=1,2,%,4), and Bs (i=1,2,%,4) such that u1<fa1<:a2
<a3<o(2<ad<o(3<'o(4 and 1< by <b,<b<p,<b,<B<B,. e
set £y (XpsXyi¥ps¥) = (Xy= a,Xy) (Y=b,¥5),  £,(X,X

1Y Y, ) =

1°°0’°
(X;- MIXO)(Yl-ﬁlYO), and f3,if'= f; + g'f,. For a sufficiently

small &' % O, {fz g1 = O} is a nonsingular curve of degree (1,1)

with " = 1 and (s, t\ = (1,1). Next we set f(X l’YO’*l)

£5 E_,(Xo,xl,Y ¥, )X TI‘(X -, X)) x TE(Yl Bi¥o)- {r =0} is

singular curve of dezgrse (4,4). (Flg. 4.,14) Now we set
A.
F(Xy, X 5Y,,Y) = E}i(x -2 X, )x (Y -b;¥,) and F = F +ef.

V]

O} is a nonsingular

curve of degree (4,4) whose isotony type is %. (Fig. 4.15)

Then for a sufficiently small €x 0, {r

A ‘ ‘ fr——t—+%
4] — B3 ¥ : . =

Bz % + ¥ : .

' s .
[ ' \

[ ) ) )

i [ ' ,'
3 A ’

bz Vs ~ - - - - ~~
- - - r. - 7 N
. g4 -

Ky %y 3 fai: ay % ag ¥ %
Fig. 4.14. Fig. 4.15.
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