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81 Introduction Interrelationship among different areas in

mathematics gives a plenty of beneficence to themselves as a number
of results support its justification. Concerning both geometry aﬁd
analysis especially, there is no doubt that Atiyah—Singer index
theory has a crucial role to develope their fields simu]{anequs]y.

Recently, ConnesC3] has initiated a new index theory for both
dynamical sygtems and foliated hanifulds, which is really useful to
cases with pathoiagical ambient spaces whereas the index theory of
Atiyah-Singer is no longer applicable to them. The main idea of his
theory is based an K~theory of bath C*-algebras and twisted vector
bundles. Its validity can be found in many manuscripts due to
Cannes; Kasparov, Pimsner-Voiculescu and Rosenberg etc. especially
concerning differential dynamics and foliated manifolds, Baum—Connes
[1] has conjectured the existance of a K—then;etic index formula
between geometric and analytic K-theory, uhicﬁ may be considered as
a ultimate one of a generalization of Atiyah—-Singer index theorem.
It has a quite important meaning involved as a central ingredient tﬁ
develop topology, differential geometry and C*-algebras etc.

Precisely, their conjecture says that the geometric K-group is iso-
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morphic tb the analytic one under the K-index mapping for foliated
manifolds or differential dynamical systems. If it is affirmative,
as corgllaries are deduced the conjectures due to Novikov, Gromov-
Lawson-Rosenberg and Kadison etc in topology, differential geometry
and C*-algebras respectively. 'As a matter of fact, no theorem from
general sigEts has been verified until now although various exampls
supporing the conjecture have been cﬁnstructed by éevera] peoples.
In this report, we shall state the construction, the results
obtained and some applications of the Baum—Connes conjecture, and uwe
shall especiaily illustrate its affirmation for generalized Anosov
foliations on infra-homogeneous spaces. The basic refferences are
due to Baum—-Connes[13,[231 , Connes[3], Kasparovié] and Rosenbergl%l~

C111.

§2 Constructieon - Let (M,F) be a foliated smooth manifeld and
1/2

G the holonomy groupoid of F. Let Q
1/2

be the half density bundle

over G tangential to F®F and CC(Q ) the *-algebra consisting of

1/2

all continuous sections of_Q over G with compact support by the

following algebraic operations:

(fg)(r) = IT=T'172 fry09(7,)
i.=-

FY(TY) = F(r’ D

/2y, Given any x in M, let H_ be the Hilbert

1/2

for all f,9 in CC(Q

" space consisting of all L2-cections of Q

the *-representation A of Cc(Ql'/2

over G. Let us consider
) on H, defined by
(r (£)6)(T) = J

T=T,7
172 v
for all £ in C_@'? and & in H,.  Applying ., a C*-norm I-I on

?(71)5(72)

CC(QI/Z) can be defined by

Il = sup .l ()1

1/2

for all f in CC(Q ). We dehnte by C:(N,F) the completion of

cccgl/2> uith respect to U+, which is called a foliation C*-algebra
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associated to (M,F). _ L

We nouw consider the K-theory K_(M,F) =VK(C;(N,F)),qF C:KH,F),'
which is called the analytic K-theory of (M,F). 0n»the,0ther»hand,
the following construction.is considered as a pure]? geometric one
of K-theory associated to (M,F): Let X be a proper G-manifold and D*
the dual bundle of the normal bund]e‘; ufvthe Fnliétion of X deter-
mined by the G-orbits. Let o be the canonical G-equivariant mapping
from X to M and P*(u*) the puTl back of the dual bundle u* of the
normal bundle v of F. UWe consider a pair (X,&) of X and a G-vector
bundle § over U*®p* (U*), which is called a K—énczc]e of (M,F). Let
I'(M,F) be the set of all K;cncycles of (M,F). We then introduce an
equivalence relatien ~ on F(M,F) by the follouwing fashion: _

(Xl,fl) ~ (X2,§2) if and only if theﬁe exist a proper G-manifold X
and G-mappings ¢j from Xj te X such that ; _

() o =, and (1) @ 16D = 8,06
where p,pj'are the canonical G-mappings from )(,X‘j to M respectively,
énd éj! mean the Gysin mappings from G—yector bundles over ;jép}(u*)
‘to those over U*ep* (*). Denote by Kg(H,F) =TU,F)/~ the set of
all equiva1ent classes in I'(M,F) with respect to ~ . Then it is an
abelian group equipped with the disjoint union of G-vector bundles.
We call it the geometric K-theory of (M,F).

In what follows, we shai] explain the K-index mapping 2 from
Kg(N.F) to K (M,F). Given any (X,€) in F(H,F),‘]et us consider the
G-mapping j from X to XxM defined by j(x) = (x,p(x)),xeX. Then it
implies that p ==xr+j uwhere n is the projection from XxM to M. Let
7 be the canonical G-mapping from ;;@P*(v*) to GQQnQK*(”*)° Then it
is a projection whose fiber has a G-equivariant spinc structure.
By the Thom—Gysin’s theorem, the group generated by all G-vector

bundles over 3;$p*(u*) is isomorphic to that by thase over
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5§XH91*(U*) under the Gysin’smapping J! of J. Suppose £ is a
G-vector bundle over 3;09*(v*) and put ¥ = J1(§). Then it is a .
G-vector bundle aver Sixnen*(u*)_uhich is G-isomorphic to §. Let 7

1wy of - 1em) (metd). Since z is a

T, be the cotangent buhd]e T*(x—
- submersion, the G-space 5;xnex*(u*) is the total space of the bundle
over T under the canonical projection % whose fibers are v*eu*.
}Therefnre, & can be considered as a G-bundle over T under the Gysin
mapping ! of X. Let ?m =¥ "r be the restrict{pn of ¥ over T
By the definition of Em’ there exist elliptic differential operators
D, on 2 1(m) such that § is the symbol (D) of D+ Let D be the
G-equivariant field of Dm,meﬂ. Then it is a G-invariant diFFeretial}
operator on XxM such that (i) D_ are elliptic onz '(m), and (ii)
¥ is the symbol o (D) of D. We nouw take the K-theoretic index ind D
of B in Ka(H,F) as fullous:k | |

| ind D = [Ker D1 - [Coker DI
where [+] means a C;(M,F)—madu]e generated by -. éut #(X,£€) = ind D.
Then & depends only on the -equivalence class of (X,§). Therefore it

determines a homomnbphism'Frum Kg(H,F) to Ka(H,F).' We now state the

first Baum—Connes conjecture as follows:

Baum~Cbnnes"conjecture 1. Given any foliated manifold (1,F),
the K-index mapping # is an isomorphism from Kg(H,F) to Ka(H.F).

On the other hand, suppase (M;G,a) is a differential dynamica1
system where a is free. Then the family F consisting aof all G-orbits
becomes a foliation of M, and its C*-algebra C:(H,F) is nothing but
the C*-crossed product C(N)xaG of C(M) by . Thus it follu@s that
Ka(H,F) = K(C(H)xaG). Moreover, Kg(N,F) is isomorphic ta,the‘abelian
group Kg(N,G) defined in the Fu]loqing manner: Let X be a proper G-
manifold and x.a G—mapping from X to M. Consider the set I'(M,G) of

all triples (X,§,x) for G-vector bundles § aver T* (X)ex* (T* (M)).
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Then it hés an equivalence relation as before. In‘nther words,
(X1,§1,x1).~ (X2,§2,x2)» if and only if there exist a proper
G-manifold X and G-mappings x,pj such that
i = . B | = 1
(i) x; TP and (iid pl.(fl) 92.(62) ,
where p.! are the Gysin mappings from the groups generated by all

J
G- vector bundles over T*(XJ)GRS(T*(M)) to the group generated by
those over T (X)ex* (T*(M)). Denote by KQ(H,G) the set aof all equi-
valence classes in I'(M,G) with respect to ~ . Then it is én abelian
group by the cangonical sum. Accnrding to the conjecture I, the neét

one is alsoc due to Baum—Connes{11]:

Baum—Connes conjecture II. Given any differential dynamical

system (M,G,a), the K-index mapping & is an isomorphism from Kg(H,G)-
to Ka(N,G) where the latter is defined as K(C(H)xaG).

Remark. Let BG be the classifying spacé of G and EG the total
space of {he universal principaf G-bundle nvér BG. Let us denote by
T the vector'bund]e over BG whose fibers are T*(M). If we define
Kr((EGxH)/G) by the K—-group K(Bt/St) of the quotient space Bf/SI of
the ball bundle Bt of T by‘its sphere bundle S7, thén there exists a
homomarphism 8 from K° ((EGxM)/G) to Kg(H,G) such that u«£+8 is the
Kasparov 8-mapping if M is one point. Moreover, if G is discrete,
then 4 is @-injective. If G is tarsion—-free, then & is bijective.

If the conjectures I and II are affirmative, then so are thaose
due to Novikov, Grumnv—Lauson—Rnsenberg and Kadison in topology,
differential geometry and C*-algebra theory respectively. UWe shall
explain them succeedingly:

Let M be a closed oriented manifold, and let P; be the rational
J—Pontrjagin class of M in Haj(ﬂ,ﬂﬁ. Namely, p,

J

cj is the rational j—Chern class aof T(H)GIR C. As a khoun fact, it

is a topological invariant due to Novikov whereas the integral class

= (—I)chj where
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is no longer topologically invariant by Milnor. Nérenver, p; are
without homutbpy invariance by Tamura, Shimada and Thom though they
are homotopy invariant for ambient manifolds with nonpositive curva-
ture, Let % be the fundamental group of M, and let us consider the

total Hirzebruch L=class defined by

""4 = . -_— 2 ° 0 e e
LU = Ekzo Lk(ﬂ) = 1 + p1/3 + 1/45(7P2 Pl) + .

By definition, the higher signature ax(M) of M for x € H*(Bx,Q) is

formulted as

ax(N) = LM vf*(x), M1 >
where f is the classifying mapping from M to Bz, f* is the 1ift of f
from H*(Br,B) to H*(M,Q) and [M1 is the fundamental homology class
of M. UWe then state the Novikov conjecture in the follouwing:

Novikov conjecture. Given any oriented closed manifold M and

xeH* (Bx ,D), the higher signature ax(M) is a homotopy invariant of M.
In fact, if the Baum-Connes conjecture II is affirmative for
M= pt, so is the NoQikov conjecture. UWe shall see it briefly in
what follows. It suffices to show that fu(L(M™) in Ha(Bx,B) is a
homotopy invaruant of M, wheré L(M”™ is the Poincare dual L{DALM]
of L(M) in He(M,@). We may assume that dim M is even if necessary
replacing M by NxSl. Let A (M) be the Grasshénn algebra of T* (M.

For any [£] in KO

(M), consider the signature operator D = d. + dg
on the tensor bundle A* (M)® § where d§ is the tensor product d @ 1
of the exterior derivative‘d of M and tBe trivial mapping 1 of §.
Since Dg is elliptic, we can défihe the analytic index indan of Df’
which is nothing more than the Kasparov product [§]ONEDJ € Z of [§1
and [D] for the signature operator D on A* (M), where the latter isv

2

defined as follows: let L“(A*(M)) be the Hilbert space consisting of

all L2—sectiuns OF'A*(N) and 2 the cancnical representation of C(M)
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2% (M), then [01 = C?A*an), 2, b1 + 05723 in KKM,O).

on L
Denote by inngE the geometric index of Dfs Then it is equal to
< LUDvch(CED), CMI > where ch is the Chern character from KOO to
Hév(ﬁ,ﬂ). "By Atiyah-Singer index theorem; it implies that
inda bf = ind Dg

which means that

[fJ@m[D] = < LMvch(CED, [MI >
-fbr all £¢1 in K%M . Since chg is an isomorphism from KO(H)@z @l to

HEY(M,@), it follouws that

ch&i(f*(x))-em D1 = < £%(x), LAD™ >
for all x in H®V(Bx,@). As a well-known fact, it follows that
ch&l- N ch&l and  f*(a)ey b = a @pf.(b)

for a in KK(P,R) and b in KK{(Q,R) where f is a continuous mapping .
from Q@ to R and f*, fx are the 1ifts of f from KK(P,R), KK(Q,R) to

KK(P,Q), KK(R,R) respectively. UWe then see that
S |
Q (x) an

for all x in H*(Bx,Q). Thus, the homotopy invariance of f.(L(M)™)

ch fFu (D) = < x , Ffo(LAD™Y >

is equivalent to that of f,([D1D in Ko(Bre, Q= lim XCBEKO(X)SZ C.
Let us now define the Kasparov homomorphism 8 from K. (Bx) to

Kﬁ(C?(n)) by the following way: Given a compact subset X of Bz, put

X = i;(Ex) for the,natural imbedding ix from X to Br. Then it is a

regular covering space with the property that X = ¥/z . Let EX be

the set of all continuous mappings f from X to C;(n) such that

f(gx) = 2(g)f(x) for all g in = and % in i. It becomes a Hilbert

C(X)ecﬁ(x)—mndule equipped with

o L (M, G0

for alf f, FJ € EX’ a € C(X)®C:(x) and x € X , where p means the

(fa)(x) = fGyap(X)  and <FNF >ep(X) = f

>prujectinn from X to X. We then denote by [Ex] the homotopy class

nf‘(Ex,o> which belongs to KK(&,c<x>eC;<x>> = Ko(C(X)eC¥ (x)).  Let
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By(€) = LEyd @y & for £ in Ky(X). Then it is a hbmomorphism from
Ko(X) to KO(C:(z)). Put 8 = lim XCBr Bxf Then it is a homomorphism

from Ko(B1) to Ko(Ch(x)) such that By = B by (yy - By Mischenko

¢

and Kasparovlél, the image BQ<?*(EDJS) of f*(tgl) under BQ =8 e 1@
is é hnmotopy invafiant of M in KO(BE)'BZ @ . Therefore, if ﬁﬂis a
monomorphism from KO(Bx)oz Q1 to KO(C:(x))Oz @, then f4 (LD is also
homotdpically invariant of M. Remembering the definition of 8,6 and
A, une‘can see that 8 =:ﬂ°6 +  Henceforth, if the,conjecturé 11 is
affirmative or kg is injective in more general, then so is BQ. This
bimplies that Nnyikov cdnjectube i§ affirmative (cf:[61,[91~[11D).

We shall next state the Grnmnv—Lausun—Rusenberg in differential
topology in connection with the Baum-Connes conjecture II. Let M be
an oriented closed\spin manifald and = its fundamental group. Given
the classifying mappihg f from M to Bx, consider the lift'F* of §
?ram‘H*(Bz,Q) to H*(M,0). Let us define the Hirzebruch A-class ACM)
of M by | '

2 - 0 % s
1 )

AMM =1 - p1/24 - 1/32‘45(_;:2 - 774 p
where pj are the rational Pontrjagin classes of M. We now consider

the higher A-genus p*(M) of M ?nr any x € H*(Bx,R) as follows:

‘px(ﬂ) =< AMvF* (x>, M1 >
where [M] is the fundamental homology class of M. It is of cource
differentially invariant of M. Let xm(ﬁ) be the scalar curvature of
Mat me M, in other words

KM= Ty 0 CROGLXD X b X >

uhére,{xj} is an orthonormal basis of Tm(H) and R’is the curvature
tensor of M with respect to a Riemannian metric. The conjecture is
given by the following fashion:

Gromov-Lauwson—Rosenberg conjecture. Let M be a closed spin

manifold. Suppose there exists a Riemannian metric of M for which
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‘the scalar curvature x is nnnnegative and x_ is positive for some m

m
in M, the higher A—genus px(n) of M vanishes for all x -in H* (Bx ,Q) .
This conjecture is affirmative if {he Kaspafdv‘mapping Bﬂ is
injective, which is satisfied if the Baum—Cohhes conjectue II holds.:
In fact, let ¢ be the flat Cﬁ(z)-bundle over M. In other words,
£ = M X Cﬁ(x) where M is the universal covering space of M. One
- may assume that dim M is éven by the same reason as before. ‘Since’ﬂ
has a spin structure S, there exist half spinor bundles S+, S of Sf‘
Let CT(S'® §), C°(ST® £) be the sets of all C -sections of S'e & ,
Sﬁelf respective]y. Denote bﬁ D¥ the Diréc operator from c”(s7e &)
to C (S ® £) with respecf to the flat connéction af £€. Then there
exists the conjugate operator D of ot from C(S® £) to C (ste £).
We explain the Chern character ch(f{) of § due to Miscenko-Solov’ev. -
Given a C:(x)-bundle § over H,‘its fibers have the structure of-
finitely generated projective left C;(x)—modules. Thenvfhe classes
L& of & by étabe equivalence generaié the K—group KO(C(M)QC?(E)),Of
>the C*—-tensor product C(H)@C:(z) of C(M) and C:(x). Using the
ordinally Chefn characterkand the Kunneth formula, one bbtains'the
Chern character ch(CL§1) of [£] as a homomorphism from KO(C(M)BCﬁ(ﬂ))
to HeV(M’Q)Q'KO(C?(ﬂ)) ® Hod(n,u)o KI(C;(I)); which is actually an

isomorphism modulo torsion. Since s’e ¢ and STe ¢ are’smnoth~t?(x)—

vector bundles aver M, and D+ is an elliptic bounded C;(x)noperatar

from a Sobolev C:{z)—mndule H* (s7e £€) of s*e £ to that H* (S ® §) of
S® £, there exists a,C?(x)—compact operator C from H*(S+é &) to
H*(S™® &) so that both CKer(D'+ €)1 and CCoker(D™+ C)1 are finitely

generéted projective C:(n)-modu]es‘ Therefore, one can define the

+

C:(m)-index indeu 5 D' of BY by
-r

indcz(x) ¥ = [Ker(D'+ C)1 - [Coker(D+ C)1 .

It follows from Hiscenko—Fomenkofid] that

-9 —
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1ndcﬁ( y D7 = < chea @HVIAAD,IT* (DI > in K (Chix))e, @,
where Td(N) is the Tndd class of M and CT*{M)] is the fundamental
class of T*(H). Since M has a spin structure, there exists the Thom

1sumorph15m Th from H*(M,Q) to H*(T*(N),ﬂ). It then follous that

ch(tf])vﬁ(n) = Th lchea@HvTd) .
Therefore,-one has that

On the Sobo]ev C*(x)—modu]e H* (s7e £), the operator p ot satisfies
the generalized Bochner-Weizenbeck formulas

DD" = V' o+ x/4 ,
uhefe Vv is the canonical flat connection OF.S+@ ff Simi]ariy,,D+D_
has the following equality:

D D = V¥ + k/4 .
By the assumption of &, it implies due to Kazdan- Uarner that there
exist a Riemannian metric of Mand a ¢ > o such that «x (M) > cl
for all m in M. Thus, DD' and O'D have bnundea inverse operatars,
which means that indc*(z)‘ﬂ+ = 0. Henceforth,’ane sbtains that

< ch(CEDHVvAM, IMI > = 0 ;‘

By the definition of 8 and ind Dg = ind Dg s, it follows fhai

-1
Ba(ph

. “1 e AUDAIHD

L% 3 %0, Chg

< ch([f]) , £, (AGDACMI >

+Fu (A ALMIY)

]

= f*.ch(C¥FDvVAGD , [HI > ,
where ¥ is the universal C?(x)-bund1é over Bt . Since § is the.f1at
C;(x)—bundle over M, it is the pull back f*(?i ofbg with respect to

f+ Therefore, it implies that

Bm(ch&1°f*(A(H)A£N])) - < ch(LEDVAM) , M1 >
= 0 . '
Suppose BQ is . 1nJect1ve, then one has that

ch -1

g cfx AGDAIMD = 0 ;
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Since chy is an isomorphism from Ki (Br)e,@ to He (Br,Q), it implies
that fx(AUDAIMI) = 0 . By the definition of px(ﬂ), one concludes

 that

PX(M); <AV (%), [ﬁ] >
= < x, f*(A(H)ACM]) > = O
for all x in H*(Bx,Q). 7 | ‘
Especially, if the Baum—Cocnnes conjecture 11 is éf?irmative,
then so is the Gromov-Lawson—Rosenberg conjecture. For instance, as

\pi(Ka) = 2 fﬂf the K3—sUr€ace K4,'there is no Riemannian metric of

K4 which induces a positive scalar curwvature.
As an application toward C*-algebras, we shall state the gene—f
ralized Kadison conjectUre cnncerhing the existance of nontrivial

projections in group C*-algebras:

Generalized Kadison canjecture. Suppose G is a torsion free

discrete group, the reduced group C*—algebra C:(G) of G has no non-
trivial prnjéctiuns.

In fact, let us consider the,géométric K-theory Kg(',G) for N =
pt. By the definition of fhe K-index mapping #, given a [(X,§)] in
Kg(',G), there exists a G-invariant elliptic differential‘operator
D§ on X such that |

| B{X,§) = ind_ DE and a(Df) = ¢ .
As G is torsion free, it acts on X freely. By Atiyah, it follous
that |
fr*(inda Dg) e Z ‘
where try is the 1ift of the canonical normalized trace of C;(G) to
K*(C:(G)). Suppose £ is onto, it implies that

tr, (K (C?(G)) C Z .

0
Therefore, C;(G) has no nontrivial projections.

— 11 -
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Summing up the argument discused until here, we have the follouwing

observation:

- Observation. 'Suppuse the Baum—Connes conjectﬁre 11 holds for
one point manifold, then affirmative are all the conjectures of
Novikov, Ghomuv—Lawsun-Rosenbehg and Kadison.

Remark. A{'tﬁe present stage,,Ka&ison cunjecturebis salved
affirmativé]y only for the free groups with finite generators due to

-Pimsner-Voiculescu.

§3 Miscellanegus results Let (A’Gg“) be a C*-dynamical
system where G is simply connected solvab]e-i By Iuésaua,vG is the
multi semidirect products of R . Using the duality for C*-crossed

,/prcdﬁcts, Connes has shown that Kj(AxaR) is isemorphic to Kj+i(A)
under ihe Thom isomorphism; Since crusséd products are compatible
uith sehidirec{ produﬁls, nne’obtains the following theuremé

ﬂTheorem 1. Let (A,G,a) be a-C*-dynamical system uhere‘G is
simply connected solvéblé. Then Kj(éxG) is isomorphic tanj+dimé(A}
under the Thaom isomorphism. " |

Given a differential dynamical system (M,G,9) where G is simpiy
connected solvable, it follows from Thearem 1 that Ka(M;G) is equal
to Kdim G(M) via ‘the Thom isumorphism.v On the other hand, sinﬂe G

“has no torsion, one can shou that Kg(N,G) is isomorphic to K(Br/St)
where T is the T*(M)-bundle over (EGxM)/G , and Br,St are the ball,
sphere bundles of 7 respectively (cf3C11)+ By tHe assumption aof G,

dim G

BG is homotopic to R Therefore, it follows from Bott perio-

dim G

dicity that Kg(N,G) = K (M) . Combining it with the previsus

argument, one has the following proposition:

Propusiiion 2. Let (M,G,0) be a differential dynamical system
where G is simply connected solvable. Then the conjecture II holds

for the triplet.
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Suppose G is a compact Lie group, the cdnjectufe II is haturaily»
affirmative by virtue of Atiyah-Singer index theoryé

Proposition 3. Let (M,G,0) be a differential dynamical system

where G is caompact. Then the same conclusion holds as Proposition 2.
Due to‘tﬁe above propasitians, we may restricts our interest
to the case where G is a noncompact semisimple Lie group in the next
stage; Let G be as above and let K be the haxima] compact subgbodp
of G. Supposé G/K has a G-invariant spin®-structure,it follows from
Baum—Connes[1] that Kg(M,G) = KgimG/K(M,K) . By Prnpositian 3, it
implies that Kg(M,K) = K (M,K) up to the K-index happing; Thus, it

suffices to shouw that Ka(n,g) = KgimG/K

(M,K) . The next resuli is
one exampie having the equality: | |

Proposition 4. Leth~bé a connected Lie group and let K be

the maximal compact subgroup of G with the property that G/K has a
Gfinvariantkspinc—structure‘ If there exists an amenable normal

subgruup H u? G such that G/H is locally isomorphic tao the finite
product of SOo(n,l) and compact groups, then ,Ka(H,G) = KglmG/K(ﬂ,KE
(cf3L7D).

Especially, suppose M is one point, the conjecture II is praoved

affirmative]y for more wider classes of G

>‘P50positiun S. Let G be the connected reductive Lie group

and K, G/K as in Propoéition 4. Then Ka(-,G) = KgimG/K

(‘,K) ®
When G is a discrete group, there is no theorem to support the
conjecture II affirmatively at the present stage. The only example

that one knows is the following case:

- Observation 6. Kg(',SL(Q,Z)) = Ka(v,SL(Z,Z)) (C151) .

In fact, the above result is deduced from the fact that SL(2,Z)
is the amalgamated product of 24 and 26 with respect to 22 » Since

SL(n,Z),n23 has no such fashion, one may ask the following question:



108

éuestiun 1. Is it true that KgiegSL(n,Z)) = Ka(o,SL(n,Z))
~for all n23 7?7 More generally, suppoée G is a discrete subgroup: of
'a connected Lie group, can one show that K28 = K (+,6) 2

Concerning tHe conjecture I, we list up several éxamples‘ie
satisfy it affirmatively in what follous.

Proposition 7. : The conjecture I holds affirmatively for the

Reeb foliations of 2-torus or 3-sphere ([161).

Proposition 8. The conjecture I holds affirmatively for the

Anosov foliations of infra—-homogeneous manifolds ([121).
Suppose a manifold has an Anosov foliation, its rank is one
automatically. The next example is the case uwhere the conjecture I

holds For a Fo]iated manifold with an-arbitrary rank:

Proposition 9. Given any n € N, there exists a foliated
manifold (M ,F ) such that ‘

(i) rank Mn‘= n and (ii) Kg(ﬂn,Fn) = K M ,F )
(cfi;Section 4). |

The foliations cited above have nontrivial holonomy in general
sinceithe-GodbiJlon—Uey invariant is nonzero in general. However,
the next two cases are without holonomy:

Propositiaon 10. The conjecture I is true ?or all foliations

of codimension one without hohonomy on any smooth manifold (L151).

Observation 11. The K—index‘mapping is injective for Anoéov
foliations derived from topologically transitive diffeomorphisms of
any compact smooth manifold.

- In order to verify the conjecture I, the next question is quite
fundamental:

Question 2. Given a K—uriented foliation whose leaves are

contractib1e,;does'the conjecture I hold affirmatively ?

- 14 ~
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S4 Annsnv actions In this section, we sha]l check the Baum-

Connes cunJecture I for general1zed Anosov fallatluns on aAlnfra—
homogeneous manl?ald. Let (M,G,$) be a d1fferentlab1e dynamlcal'
systém» The action ¢ is called Anosov if thgre exist an element g
in G and subbundles ES,EY,EC u#vT(ﬂ) such that |

() - Tan = E% e'% ¢, o &) = g, |

(i) Ef are all integrable, ES = T@(B) (j=s,u,c) and

(iii) Hddg(Er< 2UEN E<ES) ,  angu< Hdo3 (6 EegYy

AHENL Hdé (E)H< riél (¢€E®) for some OA<1I<z o

Then there ex1st Fu]1at1ons F5,FY,FC of ﬁ such that T(Fj) = E‘j for

j=s,u,c. Each leaf u; in Fi <j=s,u,c>'is’given by the following

fashion:
Up = Oxe Ml d@gG0,00mIRTT = 0 (n = =),
u;'= { xen| d<¢;”<x>,¢;“<m>>g” — 0 (n — =),
us = $Em .

Let us nou take a noﬁcompact semisimple Lie group G with finite'
center and K its maximal compact subgroup. We denote by G; the Lie U
algebra of G. Let G* = K' + P’ be é Cartén decqmpositionhof G’ ahd
A’ a maximal abelian subspace of P’. Suppose Akis the root systém
with respect to A’; then we have the root space decomposition of G’
in the following manner: |

| & =Mmea o3, 6 ,
where M* be the centralizer of A’ in K’ and Gi the 1-eigen subspace

of G*. Given a regular element a € A = exp A’, define two subsets

+ -
Aa R Aa, as follows: | , _
c={2eAl2oga>0) ,A,=(2eh | roga <o),
where log a is the element of A’ such that exp(log a) =a . Let us

define N, , N. as the direct sum of Gi 1 = A; , A;) respectively.



110

Concerning the diffeomorphism &, of G/M (M = exp M') such that

¢ (oM = gal (g e 8 » one can see that
= : -2(log a) - . ' , -
d¢a(£) = ZZGA; e fl (¢ = ZZEA;}‘ fl & N.j ? J—‘v""—’) ’
d¢a(§) ='f (f € A’) .

Therefore there'exisfs a constant ¢ > O such that

hdd_ () < e € EN C & e Ny, Ndo_ (620 > e nEm & « N2

As the tangent space TN(B/M) of G/M at M is N> @& A’ @ N;, it implies
1hét ¢ is an Anosov action of A on G/M .
" Remark. If a € A is singular, then the decomposition of G*/M

with respect to a is obtained in the following way:

G’

.G’/H’ = N_o A” & N\ ® 2 1 .

» A(log a)=c
~ Hence, dé_ is without Anosov condition.
_ Let ' be a torsion free uniform lattice of G»Q We define an
action ¢ of A on I'\G/M by wacrgn) = F¢a(gﬂ) =TgaM (a € A,g € G).
Then we have the following ]emmaf
Lemma 1 The action ¢ is an Anosov -action of A on I'\G/M .
Except the foliations F var\G/” with respect to ¢ (j=s,u,c),
there exist other foliations FJ,(j=cs,Cu) such that
T(F® =0 E¢ , T =" E® .
Each‘leéf Ui € Fjﬁ(j=cs,cu) has the following form:
U;S = Uxéé(G)m ui ’ U;u = 'Lkeé(G)m
We now check the structure of leaves in FJ (j=s,cs) on I'\G/M . For

ug .

any gM € U; ,» there exists a smooth curve g(it) in G such that

_ ' e : s
g(0) = e , g(1)M = gM and d/dt(g{tIM) e Eg(t)ﬂ E

It follows that putting

1

X(t) = d/ds(g(t) g(s)ﬂ)lszt‘/e- NL (t e R,

d/dt (g ()M = do X<ty , gOM =M1 .

g(t)
If one defines one parameter family h(t) of NT = exp N} by

h(t) = exp fé X(t) dt
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"h(t)M (t € R) . Thus it means

then one easily checks that  g(t)HM

that

.

(gft)K,g(t)P)-= (h{(D)K,h(1)P) (h(t),P) € (NYK/K) % (P)
for all t € R uwhere P = MAN® , Which implies that |
| Wi € R x (PY
Similarly, one obtains that.
| Wg® C (67K x (P} .
.Canversely, given é gl € G/M (g € P), there are a é A and n € N such
that gaM = nM . Thus, gaM < W inplies g « WG . The leaves Uy
and U;u.are also determined by the same way as U; and Uﬁs concérning‘
6 =NAK, P = NAM uhere N = exp N’ . Let A be the canonical
projection from G/M tu.F\é/H « Identifying G/M with (G/K)x(G/P)
G—equivériant1y>by taking the mapping gM — (gK,gP), we obtain the
"following lemma: ;
Lemma 2 The Anosov dynamical systeh ('\G/M,A,¢) gifts five
foliations F of I\G6/M (j=s,u;c,cs,cu) Qhose leaves Ugg“ are given
by | |
| Wgm = 2 CN'K/KIx(aP)) = INCNTK/KIx(aP))
u;g”v= NN KK x{gP} U;gﬂ = $ATan
Wran = INOGEAOx(gPY) Urgy = TNCGZKOx(gP ) o

‘Remark. The following observation means a geometric approach

to the above lemma. According to Oshimal171], theré exists a real
analytic closed manifold G/K containing G/K as an open submanifc}d
and G/P as the boundary of G/K. For the decomposition G = N AK, one
knows that N'x R' is embedded in G7K and Nx Rl is isomorphic to G/K
by the mapping (n—,exp—ll(lug a),'o-,exp—ll(]og a)) — n aK where
1 = rankpG and (lj}}zi is a restricted positive simple root system
of A+ Moreover, G/P can be identified with N x {0}] » Using the

fact that g exp(tlog a)K — gP as t — = , the geodesic half lines
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{g exp(tlog a)K}tsorahd {h exp(tlog a)K}{>0 are asymptotically
apprdaching to ge: hM € ug; . On the qth;r hand, UZH is interpreted
--as a horosphere whose bgundary passes?{hbnugh gP . The leaves wC“,
WY are similarly translated as WS%, WS .
We now stﬁdy the fuliations‘Fj’nf,F\G/ﬁ (j=s,u,cs,cu) in more
detail. Since G/M = G/K x G/P , we see that T'\G/M is a G(P'~bundie
over '\G/K . vApplQing Lemma 2, the follouihg lemmavholdsz
 Lemma 3 The foliated manifolds (I'\G/M,F®) is the foliated
G/P —bund]e over F\G)K'uhuse holonomy group is the image of the left
translation action of T' on G/P . The same is true for (T\G/M,FSY)
replacing P by P . o \
» Let us consider the principal M-bundle T\G over \G/M and my
the natural projection from I\G to I'\G/M ; Then the following lemma
is also verified: ‘
Lemma 4 The pull back faliations'zﬁ(Fs),xﬁ(Fu) of FS,F? by
A are MN,NTM - orbital with respect to the right translation action
p of G on '\G .
Since Hausdorff are the holonomy groupoids of F‘j (J#s,u;cs,cu),

we have the following lemma combining Lemma 3 and Natsume-Takai’s

result for foliated bundles:

Lemma 3 Concerning (F\G/N,FJ) (j=cs,cu), ane obtains that
C:(F\G/H,ch) = (C(G/P)xlr)r@ BC(L2(F\G/K)) s
Ci(F\G/H}Fcu) = (C(G/Pa)xlr)ra BC(LZ(F\G/K)) s

up to isomorphism where (-S(-)r means the reduced crossed product and
BC(H) is the C*-algebra of all compact operators on H .

By Rieffel’s work on Morita equiva]epté, (C(G/P)x%,;I)  is stably
isomorph;c to (C(F\G)xpP)r » Which is equal fo C(F\G)xpP . Since
N~ = 8(N") for the Cartan involution 8 of G, C* (M\G/M,F ) is»stabjy

isomarphic to c;cr\e/n,F°”> . By Lemma 4, one has the following
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lemma:

Lemma.é Concerning (F\G,xﬁ(FJ)i (j=s,u), one obtains that

M
up to isomorphism.

Ct(F\G,x*(FS)) = CIO\BIx NM , CH\G,x}(F) = CAa\GIx NN

Let (N;F) be a foliated manifold and & a bundle over M whose
fibers are ércdmpaCt manifold X. Consider the pull back x*(F) of F
by the natural projection = from £ to M. Then one has the follouwing
Temmas |

Lemma 7 Concerning (§,x*(F)), one obtains that

2

C?(f,x*(F)) = C?(N,F) @ BC(LT(X))

up to isomorphism.
Combining Lemma 6 and 7, the next one is autmatically deduced:
Lemma 8 Concerning (I\G/M,FY) (j=s,u), one obtains that

CX(P\G/M,FS) @ BC(LZ(M))

2

C(F\G)xpN+ﬂ ,

C?(F\G/H,Fu) @ BC(L™(M) C(F\G)xpN_N .
We now compute the analytic K—thenry Ka(F\G/H,Fj) of (F\G/H,FJ)‘
(j=s,u,cs,cu) using Lemma 5~8. lt éertainly follouws that

Ka(F\G,N ) D

Ka(r\e/m,Fs>'= Ka(F\G,N+N) . K (P\G/M,FD

Ka(r\G/N,FCS) = K (G/P,[) ., Ka(F\G/N,FCU) K (G/P,[) .

Since (C(G/P)x F)r, (C(G/P'—)xll")r are étab]y isomorphic to C(F\G)xPP

y s
. C(F\G)xpP— respectively, it then follows that
Ka(G/P,F> = Ka(F\G,P) ’ Ka(G/P_,F) = Ka(F\G,P_)V .

To analyze the right hand side of the above equality, one prepares
a generalized Thom isomorphism business due to Connes and Julg:

. Lemma 9 Let (A,G,a) be a C*—-dynamical system where G is the
semidirect product Rnxsc of R” by a compact group C. Then there is
an C-equivariant Thom isomorphism betueén Ka(A,G) and KQ;C(A) .

Remark. In the above lemma, if C is one point, it is due to

Connes. If n =0, it is thanks to Julg.
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Since P is the semidirect product of N+ of MA , it follows from

L.emma 9 that
dim A

K, TNE,P) = K_(C\@)x, MmN, ) = k3I™ Aqg,mi®

d;m.AN
a,M
As ' is torsion free, it has no intersection with M. Thus, 2 is a

=K (T'\G, )

free action of n on I'\G. Theréfore, we deduce FromtSega] that

; + . +
Kglﬁ AN rG,o) = KIIMAN ey L
, |
Consequently, it follows that
. . + .
K (T\G/M,F®%) = kdim AN“eeamy

We shall next compute thé geometric'K+theory Kg(F\G/H;FCS) of
(T\G/M,F°®) . Let us look at the leave structure of F*. Since
Ur M = Zp (G/K x {gP}) and G/K is contractible, it implies that uﬁ:”
are all K(F,l)—spaces. Since I' is torsion free, so is G =VH01(FC5).
It follows from Baum—-ConnesC1] that

| »Kg(r\e/m,chj = K (B®
where T is the vector bundle over BG via u%és. By definition, G is
isomorphic to (G/P x,I') x (B[ x Br) as a Borel groupuid by Natsume-
Takai. Let us study this correspondence more closely. Conéider the
mapping & from O to Bl x BC by taking &(7) = (nr(s(T)),xr(r(T}}).
Then the groupoids Qﬁl(x,yi (x,yeB') are isomorphic to the principal
groupoid G/P xlF , hamely one has that
6/P x,I' -5 T 2, BgrxBr .

~Taking the ciassifying space‘uf the above spaces, it follows that

B(G/P 1 25 8% B Ba@r xBm) . |
Since Q(BF x BI') is homotopic to one point, one obtains that B§ is
homofopic to B(G/P x;I') by Be. Since one knows that ¢ is an iso-

morphism from G/valr into G as a topological groupoid, it follows

that 6 is a Hausdorff space. Let us consider the back ¢ = (Be)™ (1)
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of T by Be. Then it is a vector bund]e‘nver B(G/P §1r> whose fibers
‘COme from v;cs. By the above discussion, one obtains the follouwing:
| Lgmmg 10 VKU(B(G/P X)) = Kt (BB) wvia (B! .
By definitiun; vEcs is tangential to T*(G/P). Since I is torsion
free, it implies from Baum—Conneétl] that
K G/PT) = K (T x.6/P)
where & = ET er*(G/P) + Since xFG/P is the base space of a
principéi (G/P.xlr)—buhdle, there exists a classifying maéping f‘ofv
&r xFG/P into B(G/P #IF)- Let us take the pull baék bund]e f* (o) of
o by f. Then it is actually isomorphic to & as a vector bundle.
Thérefure, one has the following lTemma: |
Lemma 11 KO (BT x.6/P) = k™ O wem

The next lemma seems to be quite crucial to determine the geometric

K-theory of (I'\G/M,F®%):

; |
£ (a) 6/P) = KI(B(G/P x.T')) wvia f! .

Lemma 12 K (T x 1

. . r

Combining Lemma 10~12, one obtains the following:
Lemma 13 Kg(F\G/N,FCS) = Ké(G/P,F) .
Let H‘j be two closed subgroups of G (J=1;2). One compares the

two geometric K—-groups Kg(G/Hl’HZ) and Kg(HQ\G’Hl)' By the same

phenomenon as the analytic K-theory, one can verify the following:.

Lemma 14 Kg(B/H ,Hy) = K (H\G,HpY o
App?ying’the above Temma to H1= P and H2= r , it implies that
| ngG/P,P) = K I\G,P) .
One finally check the following lemma:
Lemma 15 | KgT\G,P) = Kdim AN(G) .

Summing up the argument discussed above, we nbtéin the following

main thecorem:

Theorem 16 The Baum-Connes conjecture 1 is affirmative for

the Foliated'manifuldé (F\G/M,Fj) (j=s,UsC,C5,CU)
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In fact, the similar method takes place to shuu,the'conjetture

even in the case of j=s,u,c,cu.
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