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Heights of simple loops and pseudo—Anosov homeomorphisms

(PEt 21 A Bd)
Tsuyoshi Kobayashi

1. Introduction

Let H be a 3-dimensional, orientable handlebody of genus g
(>1) and 2 (cOH) be a connected essential simple closed curve. A
simple loop is the ambient isotopy class of ¢ and we often
abbreviate it by denoting 2. A surface is a connected 2-manifold.
Let F be a 2-sided surface properly embedded in a 3-manifold M. F
is essential if it is incompressible and not parallel to a subsurface
of . OM. Then we define the height of &, h(Q), as follows;
h(g) = min { - x(F) | (F,3dF) (c(H,dH-2)) is an essential surface},
wvhere Xx(F) denotes the Euler characteristic of F.

In section 2 we see that h(L) can be defined.

Fix a hyperbolic metric on ©oH. Let L (c3H) be a geodesic
lamination. We say that L is of full type if there is a system of
mutually disjoint incompressible disks {Dl"‘ D } in H such

T 73g-3

that SDIU...U8D3g_3 cuts OJH into 2g-2 pants Pl""’PZg—z’ which
satisfies;

(i) UaDi and L intersect transversely and there is no 2-gon
B in 9H such that 8B = oUB where o is a subarc of 8D1U...U8D3g_3, B
is a subarc of L and

(ii) for each Pi we have;

for each pair of boundary components of Pi’ there is asubarc of

L properly embedded in Pi’ which joins the components.

Then the first result of this paper is;
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Theorem 1. Let f:8H » 38H be a pseudo-Anosov homeomorphism and
2 (cdH) a simple loop. Suppose that the stable lamination of f is
of full type. Then 1iB h(tP@)) = @ , i.e. for each n (2-1) there

ezists a constant N such that if m>N then h(£7(L))>n.

We note that the assumption on the stable lamination of f s
essential. In fact Fathi-Laudenbach [4] showed that there exists a
pseudo-Anosov homeomorphism ¢:9H - 9H which extends to a
homeomorphism of H. Then clearly we have h(e"(2))=h(2), for each &
and n.

Let f:9H » 9H be a homeomorphism and D,V...UD a union of

g
mutually disjoint incompressible disks in H such that D U...UDg

1
cuts H into a 3-cell. Then we get a compact 3-manifold whose
boundary is a sphere by attaching 2-handles to H along the simple
loops f(aDl),...,f(aDg). We note that the obtained manifold does

not depend on the choice of D

1,...,Dg (Lemma 4.1). Hence we denote
the manifold by ﬁf. Then Mf denotes the manifold obtained from ﬁf
by capping off the boundary by a 3-cell. Roughly speaking, M is

f
obtained from H by attaching a copy of H by f.

As an application of Theorem 1, we have;

Theorem 2. Let f:9H » 38H be a pseudo—-Anosov homeomorphism.
Suppose that the invariant laminations of f are of full type. Then.
for each n (20), there is a constant N such that if m>N, then M n

f
does not contain a 2-sided incompressible surface whose genus is less
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than or equal to n.

2. Preliminaries

For the definitions of the standard terms in the 3-dimensional
topology we refer to [6,7]. We assume that the reader is familiar
with [11].

Let H, £ be as in section 1. First we will show that the

height of ¢ «can be defined.

Lemma 2.1. There exists a 2-sided non-separating surface S

properly embedded in (H, 8H-2).

Proof. Let M be the 3-manifold obtained from H by attaching
a 2-handle D2xl along . Since the genus of H 1is greater than
1, the first Betti number of M is greater than 0. Hence by
(6,Lemma 6.6, M contains a properly embedded, 2-sided,
non-separating incompressible surface S'. Then, by moving S' by
an ambient isotopy, we may suppose that S° intersects the 2-handle
in horizontal disks. Hence S = S'-Int (S'n(DgxI)) is a 2-sided
non-separating surface properly embedded in H. Moreover, by moving
S by a tiny isotopy, we may suppose that S is properly embedded in
(H, oH-L).

This completes the proof of Lemma 2.1.

Then we have;

Corollary. There exists an essential surface properly embedded



LTL (H,aH-.Q).

Proof. Let S be the surface obtained in Lemma 2.1. If
necessary, by applying the loop theorem and performing a surgery on
S, we may suppose that S 1is incompressible in H. Since S is
non-separating, S 1is not parallel to a subsurface in ©H. Hence S

is essential.

Let F be a closed, orientable surface of genus g (>1) with a
hyperbolic metric and PL(F) the space of projective measured
laminations of F with an appropriate topology. Then PL(F) is

homeomorphic to the 6g-7 dimensional sphere Sﬁg_7.

A simple loop is
the ambient isotopy class of a closed, connected, l-submanifold of F
which is not contractible in F. Then it is known that the set of
all simple loops together with the counting measure consist a dense
subset of PL(F). Let £ be a simple loop. QQ (cPL(F)) denotes the
set of all simple loops which are disjoint from &. Then let ¢(£;1)

= ¢,, and (;k) = U g

0'€9(L:k-1)
In this section we will prove;

Qg Q, (k)].).

Proposition 2.2, Let f:F > F be a pseudo-Anosov homeomorphism
with an unstable lamination L and & a simple loop. Then there

erists a sequence of neighborhoods of L in PL(F), (Ui}i: such

1'

that U1 =) U2 D>..., and Ukny(ﬂ;k) = ¢, for each k.

Let <t (cF) be a maximal train track ,i.e. the closure of each
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component of F-t is a 3-gon. Then the set of all non-negative
weights on t defines a 6g~-7 dimensional ball B,t in PL(F). And
the set of all positive weights on T <corresponds to the interior of

Bt (1,10].

Lemma 2.3. If Q& 1is carried by <t with all weights positive,

then ycht.

Proof. Let N(t) be a standard neighborhood of <. Since ¢
[Figure 1]
is <carried by =T, we may suppose that QcN(x) and £ is transverse
to the fibers. Let megg. Since each component of F-N(t) is
contractible, we can isotope m into N(t) with mn g =¢. If m
is transverse to the fibers of N(t), then mEBt. Hence we suppose
that m 1is not transverse to the fibers. We can isotope m so that

m is transverse to the fibers except neighborhoods of the switches

which are unions of fibers. See Figure 2. Then the neighborhood of
[Figure 21

a switch will look like as in Figure 3. We note that the subarcs of
[Figure 3]

m as al or a2 in Figure 3 play a bad role in this situation.

Then we will show that we can eliminate such arcs by an isotopy.
Let & be the closure of a component of F - N(t) and e an

edge of the triangle A. Then we have;

Assertion. There is a rectangle R in F such that R < N(T),

Int RN 2 = ¢, one edge of R is a subarc of &, one edge of R is
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e, and the rest edges of R are subarcs of two fibers of N(t).

We note that the universal cover of F is isometric to the

hyperbolic plane Hz. Let & (CHZ) be a 1ift of A, € the edge of A
[Figure 4]

corresponding to e and N(t) (cH?) the 1ift of N(t). Let I, (p€e)

be the fiber of N(t) such that pGIp. Then, by [1,Lemma 5.8]1, we see

that Ip N A = p. Hence v 1 is a disk which is a disjoint union

p€e

of the intervals Ip. Since ¢ is carried by t with all weights
[Figure 5]

positive, we have a rectangle ¥ (cN(t)) such that one edge of R is

e, one edge of K is a subarc of a lift of &, and the rest edges are

subarcs of two fibers of N(t). Since e projects homeomorphically

onto e, we see that K projects to the rectangle as in Assertion.

This completes the proof of Assertion.

Let F' be the component of F - & such that F' o> m, F* the
surface obtained from F' by adding a boundary and N (cF*) the
image of N(t). Then we can reduce the subarcs of type a1 in
Figure 3 by an isotopy as in Figure 6. By Assertion, we can reduce

[Figure Sj

the subarcs of type a, in Figfure 3 by an ambient isotopy on F* as

2
in Figure 7.
[Figure 71

It is easy to see that these operations terminates in finitely

many steps and we see that m 1is carried by <.
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This completes the proof of Lemma 2.3.

Proof of Proposition 2.2. First we will show that U1 actually

exists. Then we will construct U2, U3,... inductively.
Assume that U1 does not exist. Then there is a sequence of
elements of $,, (m) .- , such that m = L (i » =). By

[10,Chapitre 2, Propositionl], there exists a maximal train track =
and a positive integer n such that the stable lamination L+ is
carried by Tt with all weights positive and fn(t) is carried by T.

nm(t) for T, we may suppose that

If necessary, by taking f
BtnL_ = ¢ [10,Chapitre 2]. Hence there exists a neighborhood of L
in PL(F) which is disjoint from Bt' There is an integer N such that
fN(Q)CInt Bt. On the other hand, since f:PL(F) -» PL(F) is a
continuous map, we have fN(mi) > L (i » »), contradicting Lemma 2.3.
Hence U1 exists.

Suppose that we have constructed Ul""'Uk—l' Let T, n be as

above. Then there exists a positive integer N1 such that

an -an
f (PL(F)-Uk_l)cInt Bt. Let Uk=f (PL(F)—Br). Since
an an
g(l;k-l)nUk_1 = ¢, we have f (P(L;k-1))Inf (Uk_l) =
an an an
g(f (D) k=-1))nf (Uk—l) = ¢. Hence ¢(f (2):k-1)clInt Bt. Then,
nN

by Lemma 2.3, we have ¢(f 1(Q);k)CBt. Then we have Ukng(ﬂ;k) = ¢.

This completes the proof of Proposition 2.2.
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3. Proof of Theorem 1
In this section we will give a proof of Theorem 1. Throughout
this section, let H, 2 be as in section 1. The key of the pronf is

Lemma 3.2 which is an easy estimation of h(&) and Lemma 3.4.

Lemma 3.1. Suppose that hl) > -1. Then there exists an

element L' of 92 such that h(l') < hQ).

Proof. There exists an essential surface F properly embedded
in (H,9H-2) such that -x(F) = h(£). Since every incompressible,
d-incompressible surface in H is a disk, there is a disk D in H
such that Int DN F = ¢, DN AH = 3D Nn 8H = ¢ an arc and

DNF =8DNF 8 an arc such that 8x = 38, ¢ U 8 = 8D. Let F' be

the 2-manifold obtained from F by performing a surgery along D and
4' a component of OF. Clearly L' € 92. By moving £' by a tiny
isotopy, we may suppose that &' n 9F' = ¢. Since F 1is essential, we
see that a component of F', say F'', is essential. And

X(F'') > x(F). Hence we have h(£') < h(Q).

This completes the proof of Lemma 3.1.

As an immediate consequence of Lemma 3.1, we have ;

Lemma 3.2. Assume that ¢(8:n) does mot contain a simple loop
of height -1 ,i.e. if m € $Q;n), then ©8H-m {is incompressible in

H. Then h(2) > n.

Lemma 3.3. [/f & is of full type, then h() > -1 ,1i.e. dH-¢
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t8 imcompressible in H.
For the definition of & being of full type, see section 1.

Proof. Assume that ©OH-2£ 1is compressible in H. Then there is
a compression disk D properly embedded in (H,3H-2). Let
{Dl”"’DSg—S) be a system of disks with respect to which £ is of
full type. Then we may suppose that 8Di, 9D, 2 are geodesics for a
fixed hyperbolic metric on ©OH. Assume that 8D = SDi for some i.
Then 9D intersects &, a contradiction. Hence we suppose that
oD = SDi for each i. By cut and paste argument, we may suppose that
D intersects UDi in transverse arcs. Let A be an innermost disk
in D ,i.e. AN(UD, ) = aAn(UDi) = o, an arc and ANdH = 8, an arc such
that aUB = 3A. Let P be the closure of the component of H-N(UDi)
such that A N P # ¢. Then B8 N P 1is an arc and separates two
boundary components of the pants P N 9H. On the other hand, since 2
is of full type, there is a subarc 7y of £ properly embedded in
P N 8H such that ¥ joins the two boundary components. Hence

8 Ny = ¢, a contradiction.

This completes the proof of Lemma 3.3.

We say that a train track Tt on 3H is of full type if there

is a system of disks Dl""'DBg-B in H and a system of pants Pl"
..,Pzg_2 as in section 1 which satisfies;
(i) T and 8D1 U ...V 8D3g_3 intesect transversely and there

is no 2-gon B in ©H such that 8B = a U b, where a is a

differentiable arc on t, and b 1is a subarc of 8D1 U...u 8D3g_3

- 9 -
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and

(ii) for each»pair of boundary components of each pants Pi’
there is a differentiable arc a on <t such that a 1is properly
embedded in Pi' and a joins the boundary components.

Then, by Lemma 3.3, we have;

Lemma 3.4. Suppose that the train track <t (c8H) i8 of full
type. If @ 1is8 a gsimple loop which is carried by <t with all
weights positive, themn h(Q) > -1. |

Proof of Theorem 1. Let L', L” be the stable, and unstable
laminations of f. By Proposition 2.2, there is a neighborhood U of
L~ in PL(F) such that U N ¢(2;n) = é. Since L' is of full type,
there is a train track <t (cO9H) which is of full type such that LY
is carried by <t with all weights positive ([1l,Lemma 5.2]). Let N be
a positive integer such that fN(PL(F)-U) c Int Bt. Then we have
fN(y(Q;n)) = 9(fN(2);n) c Int Bt. Hence, by Lemmas 3.2 and 3.4, we
see that h(fN(Q)) > n. Moreover, by [10,Chapitre 2], we may assume

that f(Bt)cInt Br' Hence we see that if m2N, then h(fm(Q))>n.

This completes the proof of Theorem 1.
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4. Proof of Theorem 2

In this section we will prove Theorem 2. First we will show

that Mf is well defined.

Let H be a genus g (>1) handlebody and f:dH = @H a

17" 1 ,.‘..Dg } be systems of

mutually disjoint incompressible disks in H such that UDi

homeomorphism. Let {D ..,Dg), {D
(UDi' resp.) <cuts H into a 3-cell. Let M (M' resp.) be the
3-manifold obtained from H by attaching 2-handles along the union
of simple loops Uf(aDi) (Uf(SDi') resp.).

Then we have;
Lemma 4.1. M and M' are homeomorphic.

Proof. First we prepare a terminology. Let B be a rectangle
in QH such that 1Int B N (UaDi) = ¢, one edge of B is a subarc «
of 8Dj, another edge of 9B is a subarc 8 of 8Dk. where j#k,

with B N (UDi) = qUB. Then Dj VU BuU Dk is a disk D in H. By

moving D by a tiny isotopy, we may suppose that D n OoH = 8D and
DN (UDi) = ¢. It is easy to see that the disks

{Dl,...,ﬁj,...,Dg,D} cuts H into a 3-cell, where ~ means removing
the element. Then we say that (Dl,...,ﬁ ,...,Dg,D) is obtained

g
.,Dg) by a band move. It is known that .U.D.' is

i

from {D

1’° 1171

ambient isotopic to the union of disks which is obtained from

(Dl""'Dg) by a sequence of band moves ([9,Korrolar 2]). Hence we
may suppose that (Dl‘,....Dg') is obtained from {Dl,....Dg) by a
band move. We may suppose that Di = Di' (2£i<g), and D1 N Dl’ = ¢.
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Then M and M' are homeomorphic to the manifold obtained from H by
attaching 2—handles along the union of simple loops
8D1U8D1'U8D2U...U8Dg, where M denotes the manifold obtained from M
by removing a 3-cell from its interior. This shows that M and M' are
homeomorphic.

This completes the proof of Lemma 4.1.

By Lemma 4.1, we may denote the manifold obtained as above M

£
Then Mf denotes the closed 3-manifold obtained from ﬁf by capping
off the bondary by a 3-cell. It is easy to see that H' = cQ(Mf-H)

is a genus g handlebody. Hence (H,H';F), where F = 8H =9H'
(ch) is a Heegaard splitting of Mf. (H,H';F) is called a
cannonical Heegaard splitling of Mf.
Then we will introduce the concept of rectangle condition of a
Heegaard splitting by Casson-Gordon [2].
Let S be the genus g orientable surface and Pi (i=1,2)
be a pants (:disk with two holes) embedded in S, with SPi =
Qliuﬂziunsi. We suppose that 8P1 and 8P2 intersect transversely.
Let Ql”"’Qm be the compact surfaces obtained from S—(8P1U8P2)
by adding a boundary. We say that P1 and P, are tight if;

(i) each Qi is not a 2-gon,

(ii) for each pair of, pair of boundary components,

1 1 2 2 .
((QS ,Qt ),(9.p ,lq )) of P1 and P2 with s#t{, p#q, there
exists a rectangle Qu embedded in P1 and P2 such that
Int Qu N (P1 v P2) = ¢, and the edges of Qu are subarcs of Qsl,
1 2 2
Qt . ﬂp , and Qq .
Let Ql,...,ng_S 2, ""’QSg—S resp.) be a system

- 12 -
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of mutually disjoint simple loops such that the closure of the
complement of a regular neighborhood of UQi (Uﬂi' resp.) 1is

1,...,P 2g-2 (P1 ”“’P2g-2 resp.). We say

that (21,...,13g_3) and (Ql',...,lag_a'} are tight if, for each

pair (i,j>), P, and Pj are tight.

a union of 2g-2 pants P

i
Let (H,H';F) be a Heegaard splitting of a 3-manifold M. We

say that (H,H';F) satisfies a rectangle condition if there are two
systems of mutually disjoint simple loops {21,...,Q3g_3) and {Ql',.

S A } which are tight and each Qi (Qi' resp.) 1is a boundary

3g-3
of a disk properly embedded in H (H' resp.).

We say that a Heegaard splitting (H,H';F) is strongly
irreducible if there does not exist incompressible disks DcH, D'cH'

such that ©9DN3D'=¢.

Then Casson-Gordon proved;

Theorem [2]. [f a Heegaard splitting (H,H';F) satisfies a

rectangle condition, then (H,H';F) 1is strongly irreducible.
In this paper we will show;

Theorem 4.2. Let H be as in section 7 and f:8H = 3H be a
pseudo-Anosov homeomorphism. Suppose that the invariant laminalions

of £ are of full type. Then there is an integer N1 such that if

then the cannonical Heegaard splitting of M satisfies a

m>N, ,
1 fm

rectangle condition.



Proof. Let L% (L~ resp.) be the stable (unstable resp.)
lamination of f. We suppose that L+ (L™ resp.) is of full type

with respect to a system of disks {Dl,....D3g_3)

1',...,D3g_3'} resp.) in H. Then we may suppose that L+, L,

U8Di, USDi' are unions of geodesics on ©@H. The universal cover of

9 ~
9H is isometric to the hyperbolic plane H". Let f:H2 - Hz be a
1ift of f, and S'_ be the circle at » of HZ.

({D

Then it is known

9
that £ has a unique continuous exXtension to IH"US1 = D2

e o]

~

({1,Lemma 3.713). Moreovér, there is a positive integer n such that

if g:D2 - D2 is the extension of a lift of fn then g 1 has

S

a

(n21) on Slw, alternately

1
on are on S

finitely many fixed pionts A + s A

1°°° 2n

contracting and expanding. We suppose that Al”"’A

in this order, A are contracting and A are

IERRRTY greee By
1

expanding. Let Ij (j=1,...,2n-1) be a closed interval in 87

bounded by Aj and Aj+ such that Int Ij N (UAi) = ¢, and

1
1 21’1—1 ~+ ~_ 2 +
1.). Let L (L resp.) (cH®) be the 1ift of L

= cl(s8" - jgl i

I2n
(L™ resp.), and Yl €

~

1 resp.) be the geodesics of L+ (L™ resp.)

which joins A1 and A3 (A2 and A4 resp.).

Then we will show;

Assertion. For each 8Di (SDi' resp.), there exists a lift e
(CHZ) of it such that the endpoints of e are contained in I1 and

12 (I1 and IZn resp.).

Proof. Since each leaf of L' is dense in L'

([1,Theorem 4.81), there is a sequence of lifts of the points of

_14_
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L*naD., (a.}.>. such that a, € ,, and a, » A, (i » =). Let
i‘i=1 i 1 i 2

be the sequence of the lifts of 8Di such that einal = a,.

i
<o
= i

{81).

i=1

Since each Si is a geodesic, we see that at least one endpoint of

ei is contained in I1 or 1, for sufficiently large i. Assume that
the other endpoints of Si are not contained in I2 or Il. Then we
have lim arg(g€,,%,) = 0, where arg(ei,él) denotes the angle between

the two geodesics. Since L+ is a closed set, we have 8Di c L+, a
contradisction.

This completes the proof of Assertion.

Let Py,...,Py o (Pi's. .., Py g

pants obtained from OH by cutting along USDi (UaDi' resp.). Let

! resp.) be a system of

8Da, SDB and SDY', 8D6' be pairs of boundary components of a pair

(Pi’ Pj'). By Assertion, there are lifts o, 8 (Y, 8 resp.) of

9 A ~
aDa, SDB (D', dD,' resp.) in H® such that any, # ¢, 8 N 7y = ¢,

14 ) 1
Y N 61 ¢, &N 51 # ¢, the endpoints of o, 8 (y, 8 resp.) are
contained in I1 and I2 (I1 and IZn-l resp.), and the subarc of
L8} (51 resp.) bounded by o N Yo 8 n Yy (r n 61, N 61 resp.)

projects to an arc properly embedded in Pi (Pj' resp.). Then there

such that if md>N.

i,j,0,8,y,8® then the

is a constant N. .
i,j,o,B8,7,9

endpoints of fm(a) and fm(B) are separated by the endpoints of ¥

~

and 8. Let N, = max (N,

1 1,j,a,8,y,5| 1<i, j<2g-2, o,8,¥,8}). Then N

1
satisfies the conclusion of Theorem 4.2.

This completes the proof of Theorem 4.2.

Lemma 4.3. Suppose that a Heegaard splitting (H,H';F) of M

18 strongly irreducibe and that M contains a 2-sided incompressible

- 15 -
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sgurface S. Then there is a surface S' which is ambient isotopic to
s and satisfies;

(i) S' intersects F in transverse loops,

(ii) every component of S' N H is not a disk, and

(iii) Just one component of S' N H' 1is a disk.

Proof. This lemma is proved by using the argument of
[6,Chapter II]l, which was used to prove the Haken's theorem. We
assume that the reader is familiar with the proof. We note that Jaco
considered the case of S being the 2-sphere, but the argument works
in this situation. We also note that if (H,H';F) 1is strongly
irreducible, then M 1is irreducible ({3,Theorem 2.11).

We may suppose that each component of S N H 1is a disk and the
number of the component is minimal among all surfaces which are
ambient isotopic to S. By the minimality, we see that S N H' is an
incompressible surface in H'. Hence we have a hierarchy for
2(0)’ ao)’ (52(1) (p)

isotopies of type A in M which realizes the hierarchy. Let

SN H', (S s al),..., (82 , ap), and a sequence of

S(q)

(0£q<p+1) be the image of S after the q-th isotopy of type A‘,i.ef

z(q). Let Kk be the integer such that S. %’ does not

(@) . =
S Nn H' = S 9
contain a disk and 52

(k+1) contains a disk. We note that Sz(k+1)

contains just one disk. Then, by Theorem 4.2 and a theorem of

Casson-Gordon, we see that each component of S(k+l) N H is not a

k+1)

disk. Hence §' = S( satisfies the the conclusions of Lemma 4.3.

This completes the proof of Lemma 4.3.

Lemma 4.4. Let £f:8H - 8H be a pseudo-Anosov homeomorphism.

_16_



Suppose that the stable lamination L' of £ is of full type. Then,
for each n (2-1), there exists a neighborhood U of LY in PL (9H)
such that the height of every simple loop contained in U i8 greater

than n.

Proof. Assume that the conclusion of Lemma 4.3 does not hold.
Then there exists an integer n (2-1), and a sequence of simple loops

(2.3,2, on B8H such that £ = L® (i » «), and h(2,) < n. By [10],

there is a maximal train track <t on 8H and a positive integer m
such that L+ is carried by Tt with all weights positive and fm(t)

is carried by <t. Set Bi = B mi (i2z1). Then, by [10], we see that
f ()

Bp+L c Int Bp, and Bp converges to LY. 1t necessary, by taking a

subsequence of {Qi}, we may suppose that li c Int Bi (i=21). By

Lemmas 3.1 and 2.2, we have a sequence of simple loops (Qi’}izl such

that h(2 ")<n-1, £.' € B, hence, £ ' LY (i » »). By applying

this argument finitely many times, we get a sequence of simple loops

0.
i

.7, such that h. ™) = -1 and ¢, » L" (i » »). But this

contradicts Lemma 3.4.

This completes the proof of Lemma 4.4.

Proof of Theorem 2. By Lemma 4.4, there is a neighborhood U'
(U~ resp.) of Lt oL resp.) such that the height of every simple
loop in VU+ (U" resp.) is greater than 2n+l1 (1 resp.). Let N' be
an integer such that t™(PL(8H)-U") © U" for each m (O>N'). And let
N = max{N',Nl}, where N1 is the constant obtained in Theorem 4.2.

Then we will see that this N satisfies the conclusion of Theorem 2.
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Assume that there is an integer m (>N) such that M m contains
f

an incompressible surface S whose genus is less than or equal to
n, i.e. x(8) 2 2-2n. We may suppose that S satisfies the

conclusions of Lemma 4.2. Let S1 = S N H and 82 = S N H'. Then

xX(8S) = x(Sl) + x(S2) 22-2n. Let D be the disk component of §S,.

Then D 1is the only component which makes a positive contribution in

x(Sl) + X(52)° Hence we have x(S,) + x(Sz) < x(Sz) + 1. Then 2-2n

1

< x(Sz) + 1 and x(Sz) 2 1-2n. Let S* be a component of S Then

9
X(S*) 2 1-2n. Hence fm(aD) ; U+, contradicting the fact that 8D

does not contained in U .

This completes the proof of Theorem 2.
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5. Examples

In this section we will give ways of constructing pseudo-Anosov
homeomorphisms which satisfies the assumptions of Theorems 1 and 2.
Throughout this section let H be as in section 1 and TQ the Dehn

twist along the simple loop £ in @H.

Example 7. Let £ (cOH) be a simple loop which is of full
type and m (cOH) a simple loop such that 2 Um fills up 8H, i.e.
the number of intersection of £ and m 1is minimal among all simple

loops which are isotopic to m and each component of 9H - (£ U m) is

an open disk. Then, by [4,Expose 131, we see that TmoTQ-n is

isotopic to a pseudo-Anosov homeomorphism for each positive integer

n and the stable lamination tends to 2 if n grows larger. Hence

TmoTQ n satisfies the assumption of Theorem 1 if n is sufficiently

large.

Ezample 2. Let ¢ be a pseudo-Anosov homeomorphism such that

w-l satisfies the assumption of Theorem 1, i.e. the unstable

lamination L~ of ¢ is of full type. Let D be a component of

the system of disks with respect to which L~ is of full type. Then,
as observed in the proof of [9,Lemma 2.51, w_koTaDowkoTaD-l is
isotopic to a pseudo-Anosov homeomorphism for a sufficiently large Kk,

and the invariant laminations tend to L and TaD(L—) if K grows
- . -k Kk -1
larger. Clearly TSD(L ) is of full type. Hence ¢ T8D ®» T8D

satisfies the assuption of Theorem 2 if K is sufficiently large.
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