goooboooogn
0 6250 19870 11-20

11

DEADLOCK AVOIDANCE AND CONSISTENCY IN DATABASE SYSTEM

HEEBIT® A% Prasert Khanobthamchai
ZERIELARSE B|HF JH (Jun Okui)

1.Introduction.

In database systems, transactions concurrently accessing the database
may lead the system to an inconsistent state. The database management system
must provide a control mechanism that guarantees completion of transactions
and correctness of data used by tranéactions. Many control mechanisms have
been proposed based on the notion of locking,e.g.[4,5]. However, the control
mechanism using locking is susceptible to deadlock. Serializability is the
criteria of correctness of execution sequences. It is shown that recognizing
serializability of an arbitrary execution sequence is NP-complete[3]. How-
ever, subset of serializable class of execution sequences can be recognized
in polynomial time such as the class DSR[3] (CPSR[2]) and WRW#[7].

Two phase locking policy[4] was shown to guarentee se‘rializability. In
the system, serializability requires that each transaction be two phase, i.e.
it cannot lock any data after it has unlocked some data. In fact, this
control mechanism only checks for availability(unlocked) of data on deciding
to grant a lock. Deadlock avoidance in such system can be accomplished by
using an algorithm as in the operating system environment. Deadlock avoid-
ance algorithm checks for acyclicity of a directed graph whose edges repre-
sent wait-for relations among transactions. However, if an algorithm that
checks for acyclicity of graph is used, by changing policy of placing edges
in the graph, the two phase restriction can be removed.

In this paper, we propose a scheduler that allows deadlock-free and
serializable execution sequences for a locking system. In our model, locking
are distinguished into two kinds, shared and exclusive locks. The scheduler
determines whether granting a lock will lead the system to an inconsistent
state by examining acyclicity of a directed graph. We show that the sche-
duler allows the largest class of schedules obtainable from locking system.
Finally, the class of schedules allowed by the scheduler is shown to be DSR.
2. Model .

A formal model of thev database and transaction system with ideas on

consistency control and deadlock avoidance will be discussed.

12

2.1 Database.

A database is a set D of entities. A state of the database is an
assignment of values to the entities. The consistency constraints of the
database define a set CS of consistent states. .Generally, the consistency
constraints are not explicitly defined and if they are defined, the cost of
checking out consistency of the entire database against the constraints
would be prohibitly expensive. A transaction is correct if its execution
sequence maps any consistent state to a consistent state. For simplicity, we
assume that the system starts from a consistent state and each transaction
is correct. ,

Definition. A locked transaction is a finite sequence of steps. Steps of
locked transaptions are distinguished into three kinds of requests, namely,
shared lock (LS.x), exclusive lock (LX.x) and unlock(U.x) request.

A transaction is supposed to issue a shared lock request on an entity
before it reads the entity and an exclusive lock before it reads and writes
or only writes the entity. Two or more transactions can simultaneously hold
shared locks on the same entity and an entity being locked in exclusive mode
cannot be locked(in shared or exclusive mode) by any other transaction. Pair
of locks on the same entity with one or both locks being exclusive is called
incompatible. We assume that a locked transaction neither locks again an
entity which is already locked by itself nor unlocks an entity which is not
locked and that it unlocks every entity that it locks. Without loss of
generality, we assume that each transaction does not request a lock on any
particular entity more than once.

Definition. A transaction T has locked an entity x through step i if for
some j<i the jtt step of T is LS.x (LX.x) and there is no k with j<k<i such
that the ktt step of T is U.x. A locked transaction is well formed[4] if

whenever the ith step of T is an action(read or write) on x, then x is
locked through step i.

Provided that T is well formed, the particular time at which T acts
(reads or writes) on x is left undefined and can be interpreted as anywhere
between the lock-unlock interval. For this reason, the scheduler will be
dealing with only sequences of lock and unlock requests. Furthermore, only
well formed locked transaction will be considered. '

A transaction system 7 is a finite set of transactions. A schedule S of

Tis an ordering of actions of all transactions in 7 which preserves the

13

ordering of actions of each transaction. A serial schedule is one in which
there is no interleaving. From our assumption on transactions, a serial
schedule thus preserves consistency of the system. A transaction Ti is said
to read an entity x from a transaction T;(T; is read on x by Ti) if Tj's

write on x in the schedule is followed by read on x by T; without any write
on x by other transaction in between. Two schedules are equivalent if the
read-from relations on all entities involved in the two schedules are the
same. A schedule that is equivalent to a serial schedule is called a seria-
lizable schedule. Apparently, a serializable schedule produces the same
effects to the database as a serial schedule.

When a transaction issues a lock request to the system, the system may
not grant the lock immediately if the entity is being locked by other
transactions with incompatible lock or if granting the lock will lead the
system to an inconsistent state or deadlock.

2.2 Serializability and deadlock avoidance in locking systems.

If transactions read an entity without updating value of the entity,
the value of the entity left in the database and read by the transactions is
not affected by the relative order of reading of transactions. However, if
one or more transactions write the entity, the relative order of writing and

reading of transactions affects the value of the entity.

Example 1. Let T: and T: be two transactions having the following steps;
Ti: <LX:1.X,U1.X,L.S1.¥,U1.y>, and T2 <LS2.X,Uz.x,LX2.5,U2.¥>
Sequence of requests granted:
LX31.x Upx LS2.x Uzx _
Possible serializable schedule:
LXi.x Uzx LSz.x Uz.x LS1.y Uiy LX2y Uzy

Example 1 shows that T, and T: must be scheduled according to the order
of their locks on x and their remaining locks on y must be ordered in the
same way. This suggests us that the relative orders among all incompatible
locks of transactions must be preserved and must be the same. In order to
capture -this idea, a directed graph can be used. We construct a directed
graph G=<V,E> whose set of nodes V corresponds to the set of transactions 7
and edges represent the orders of locks in schedule S: for any nodes Ti and

T;, include an edge from Ti to T; if and only if Ti and T; have incompatible

14

locks on an entity x and Ti locks x before T; does in S.

We now show that the graph can be used to obtain an equivalent serial
schedule if one exists.
Theorem 1: If graph G is acyclic then scheduIeVS is serializable.
Proof. If the graph is acyclic, by topological sorting we obtain a total
order of transactions. Let the sequence of transactions obtained be SR=<Ti
yesTn>, then SR is an equivalent serial schedule for S. We shall prove that
if Ti reads some entity, say X, from T; in S then T also reads x from T;
in SR. Since T; writes x, from our assumption, T; issues an exclusive lock
before writing x and no transaction can lock x while T; is holding the lock
on xX. Thus Ti locks x after T;. There is an edge directed from T; to Ti in G
and thus T; must be before T; in SR. Suppose that there is a transaction Tk
that writes x. There is an edge between Tx and Ti in G, also an edge between
Tk and T; There are three possibilities; a) edges directed from T; to Tk
and from T; to Tx , b) from Tx to T; and from Tx to T; , c) from T; to Tk
and from Tk to Ti . The case in which edges are directed from Tk to T; and
from T; to Tx is impossible since G is acyclic. In a) or b) Tk would have
been placed after Ti or before T; respectively. In c¢) Tk’s lock is between
Ti’s and T;'s locks thus T;i cannot read x from T; in S. This is a contra-
diction. We conclude that Tk cannot be placed between T; and T; in SR.
Therefore Ti also reads x from T; in SR, Thus the schedule S and SR are
equivalent and S is serializable.

Next, it will be proved that the class of schedule allowed is the
largest class obtainable from locking system.
Theorem 2: The class of schedule allowed by graph G is the largest class
obtainable from the locking system.
Proof. It suffices to prove that all edges between pairs of nodes in the
graph represents the inevitable order between transactions. In order to
prove this we use an application of regular expressions. Let x be any entity
in D and I={S,X} be the set of symbols where S and X represent shared lock
LS.x and exclusive lock LX.x respectively. For any pair of transaction T;
and T; whose locks on x are incompatible and Ti locks x before T; the sequence
of locks on x from Ti's to Tj;'s lock can be described by one of the following
regular expressions: a) XiI*¥S;, b) XiI*¥X;, or c) SiI*X;. Now let us define a kind
of edges as follows: a simple edge on x from Ti to T; is an edge from

Ti to T; such that Ti and T; have incompatible locks on x and in the sequence

15

of locks on x from Ti to T; there is no exclusive lock on x in between. The
situation where there is a simple edge on x from Ti to T; can be described
as a) XiS*S;, b) XiS¥X;, or c) S;S*X;. In the first case, T; reads x from T; and
thus the simple edge specifies inevitable order between Ti and T; In the
gsecond case, since T;'s lock is exclusive then T; may have read x from Ti,
thus the simple edge between transactions is necessary. In the last case,

Ti and T; may have read x from some transaction, say Tk, thus both tran-
sactions must be ordered after Tk in the equivalent serial schedule. Also

T; cannot be ordered after T; because, otherwise, Ti would not read x from

Tk in the equivalent serial schedule. In all cases, we conclude that if there

is a simple edge from T; to T; then Ti must be scheduled before T;.

For the general cases above, we use induction on the number m of
exclusive locks that appears between locks of Ti and T;.

Hypothesié: For any m 2 0, Ti must be scheduled before T; in the equivalent
serial schedule. We prove this for case a) XiI*S;.

m = 0: There is a simple edge from T; to T;.

m > 0: Let Ty be the transaction whose lock is the (m-1)® X in the seq-
uence, then by induction hypothesis Ti must be scheduled before T1 and
there is a simple edge from T to T, thus Ti must be scheduled before T;
also. Cases b) and c¢) can be proved by similar arguments. We conclude that
edges placed between any pair of incompatible transactions by our policy
specifies the inevitable order between transactions and are necessary.

Note that in the case where m > 0, the edge from T; to T; is not a
simple edge and serves for the fact that Ti must be scheduled before T;. In
fact, there is a path of simple edges between every pair of such Ti and T;
and edges that are not simple edges can be omitted.

In operating system, deadlock avoidance is a mothod using predeclared
knowledge of requests of processes in examining future resource allocation
sequence. In database system, entities can be regarded as system resources
on which transactions, upon holding lock, gain right to act. The knowledge
of data set to be locked is used to determine future deadlock. Future
deadlock can be tested by using directed graph. Nodes of the graph repre-
sents the set of transactions and edges represent wait-for relations. A
transaction Ti is said to wait for T; on x if T; is holding incompatible
lock on x when T; issues lock on x and we include an edge from T; to Ti in

the graph. Apart from the present wait-for relation we also have to consider

16

future wait-for relations. The necessity of this comes when transactions
increasingly lock more entities without unlocking the holding locks and
finally end up with some transactions waiting for each other in a cycle. A
simple scheme of including future wait-for relation to the graph is to
include an edge from transaction that presently holds a lock on an entity to
all transactions that have a lock but not yet lock the entity. A more
elaborate scheme where edges are placed only between transactions that is
probable to cause deadlock can be exercised, see [1]. However, the latter
one may not help in our model where even the edges placed by the simple
scheme must be present in serializing the schedule.
Lemma 1. Let P be the sequence of lock granted so far. Let G=<V,E> be
directed graph whose nodes V represent the set of transaction 7 and edges
E: and E: constructed as follows:

For any pair of Ti and T; and any entity x € D such that T; and T;
have incompatible locks on x. .
Ei: a) If Ti’s lock on x is before Tj's lock in P, an edge is included from
Ti to Tj.

b) If Ty is holding a lock on x or have already locked x(Ti’s lock is in

P) and T; has not locked x, an edge is included from Ti to Tj.
E2: If Ti is holding a lock on x and T; has not locked x, an edge is
included from Ti to Tj.

then if there is an edge E: constructed from Ti to T; then there is an
edge E; from T; to T;.

The argument is apparent from construction of edges.

3. Algorithm .

Our algorithm examines the state when a'lock is supposed to be
granted and repeatedly finds transactions that can be advanced forward until
finish until no more transactions. The lock can be granted if all transactions
can be advanced to finish.

Since we have to construct directed graph from the partial schedule P
repeatedly when examining whether to grant a lock, the algorithm keeps the
graph instead of the list P. We assume that on arriving in the‘ system, each
transaction T:i submits a set L(i) of locks to be issued. Each element in
L(i) has the form LXi.x or LSi.x where x is the entity to be locked. Sub-

scripts of lock requests are omitted when the transaction concerned is

obvious. For each entity x € D, we associate two variables count(x) and
mode(x). The variable count(x) is used for counting the number of transac-
tions presently holding lock on x and mode(x) signifies the mode in which x
is locked which is exclusive(mode(x)=X) or shared(mode(x)=S). Also with each
entity, we keep a set LL(x) of last locks which is the set of lock requests
that has locked x counting from the last exclusive lock(the last exclusive
lock on x is also included).
Algorithm (SCHEDULER)
0: [Initialization] FAILS := true. NEW := false.
For all x in D, count(x) := 0, LL(x) := ¢.
Let G=<V,E> be a directed graph and G := ¢, V := ¢.
1: [Wait for next request]
Let q be the request arrived and x be the entity associated with q and Ti
be the transaction issuing q. NEW:=true.
20 If SNV = ¢
then V:= VU T
for all elements p in L(i) and element x € D and T; in V,
do one of the followings.
a) p = LX.x:
for all elements r in LL(x),
if r = LS;.x or r = LX;x then include an edge from T; to T
b) p = LSix :
for all elements r in LL(x),
if r = LX;x then include edge ffom T; to Ti .
3: Do one of the following. -
é) q = LSix or q = LXi.x:
If NEW then delete q from L(i) else delete q from DEL.
Test q by the algorithm CHECK.
If FAILS then mark q, augment DEL with g
else change G to G’, discard old version of G,
do one of the followings,
a) q = LX.x: mode(x) := X, count(x) := 1, LL(x) := {q}.
b) q = LS.x: mode(x) := S, count(x) := count(x) + 1,
LL(x) := LL(x) U {q}.

If NEW then goto 1

else pick up new q from unmarked elements of DEL,

18

If no such elements then goto 1 else goto 3.
b) q = Uwix:
count(x) := count(x)-1.
~repeat finding source node T; in V such .that L(j) = ¢ and there is no
element of the form LX;y or LS;y, where y € D, in DEL, delete T;
from V all edges directed from T; until no such source node.
If count(x) # 0 then goto 1
else unmark all element in DEL, NEW:=false,
pick up new q from unmarked elements in DEL
if no such elements then goto 1 else goto 3.
4, End.
CHECK
1: If (g=LX.x and count(x)=0) or (q=LS.x and (mode(s)=S or count(x)=0)
then FAILS:=true, return.
2: Construct G’ from G by copy G to G,
for all T; € V - Ty,
if ((T; has LS.x or LX.x in L(j) or DEL) and g = LX.x) or
((T; has LX.x in L(j) or DEL) and q = LS.x)
then include an edge from T; to T,
3: If G’ is acyclic then FAILS := false elgse FAILS := frue, discard G’.

4: Return.

Informally, the algorithm works like this: After a request arrived in
the system, if the request is from a new transaction, the algorithm updates
the graph to include the transaction and necessary edges to it(step 2).
Then, the algorithm checks if the request can be granted immediately, if
this fails it puts the request into the delay list, otherwise, it grants the
locks and changes the graph to a new version. Upon receiving an imlock
request the transaction checks to see if any delayed requests can be granted
and returns to wait for a new request. The algorithm 'CHECK’ creates a new
version G’ of G which represents the situation when the request is supposed
to be granted. On doing this it first includes all new necessary edges which
should be directed from the transaction having the lock which is now a new
holding lock to all transactions that have not locked the entity involved.

It should be noted that edges from transactions holding locks to

transactions having unexecuted locks are placed in the graph when G’ is

14

construéted and when a new transaction arrived in the syvstem., However, all
edges from E; defined in lemma 1 are not completely placed in the graph but
all simple edges, which we have ‘seen to be necessary, are placed in the
graph. Paths of simple edges function like those missing edges.

Theorem 3: Graph G is acyclic if and only if partial schedule P can be
extended to a complete serializable schedule.

Proof. 'If' Since the graph is acyclic then it can be topological sorted and
thus we obtain a sequence of transactions. By deleting source node and edges
directed from the source node repeatedly until no node is left is equivalent

" to have transactions execute their remaining locks one by one until all
transactions finish. Since the source node is not directed by any edges, all
of its remaining locks can be executed without violating consistency and all
entities can be locked since the transaction that previously holding lock on
the entities has completed and thus unlocked the entities. '

'only if’ We prove that if the graph is cyclic then either there will be
deadlock or inconsistency. If the graph is cyclic then each transaction
participating in the cycle is directed by edges from some transactions and
therefore its remaining locks must be either executed after some transac-
tion's lock or some entity is being locked by other transactions. Thus,
transactions participating in cycle can not be extended to completion.

Theorem 4: The class of schedule allowed by the algorithm is DSR.
Definition; For any transaction Ti and T;, and any entity x€ D
1. RW-constraint: If Ti reads x before T; writes x then Ti must be seria-

lized before T;.

2. WR-constraint: If T; writes x before T; reads x then Ti must be seria-

lized before T;. v
3. WW-constraint: If T; writes x before T; writes x then Ti must be seria-

-lized before T;.

The class of schedule cbnforms to these constraints is DSR. ,
Proof. Each edge in the graph is placed between pair of nodes representing
transactions having incompatible lock. There are 3 situations in which Ti
has an outgoing edge directed to T; because they have incompatible lock on
an entity x; Ti has a shared lock®and T; has an exclusive lock, Ti has an
exclusive lock and T; has a shared lock or both Ti and T; have‘ exclusive
locks. These cases correspond to Ti reads x and T; writes x, Ti writes x

and T; reads x, and both transactions write X, respectively. Since our

locking policy does not allow T; and T; to lock x simultaneously, the order
of Ti and Ty’s actions(read or write) on x depends on the order of their
locks on x. Since an edge is directed from T:i to T; if Ti locked x before
T; in P or Ti has already locked x and T; hasn’t locked x, in either case,
Ti's lock on x is before Tj’s lock. Thus Ts's action on x is before Tj's
action. Edges in the graph imposes constraints to schedule as same as
constraints in class DSR.

4. Conclusion.

In this paper, we propose a scheduler for a locking system that checks
for serializability by examining acyclicity of a directed graph. The
scheduler allows a class of schedules that is shown to be DSR. Deadlock
avoidance algorithm was adapted for the purpose. However, in the deadlock
problem, wait-for relations goes away after transactions release entities
locked but in serialization of schedule constraints of serialization does
not. We have seen that when a more complex(and time-consuming) algorithm is
used concurrency can be improved. However, this is the matter of tradeoff on

issue of concurrency and efficiency.

REFERENCES:

1. SUGIYAMA,Y.,ARAKI,T.,OKUI,J.,AND KASAMI,T. Complexity of the deadlock
avoidance problem. Trans. Inst. of Electrom. Comm. Eng. Japan J60-D,4
(Apr. 1977),251-258,

2. BERSTEIN,P.A.,SHIPMAN,D.W.,AND WONG,S.W. Formal aspects of serializa-
bility in database concurrency control. IEEE Trans. Softw. Eng. SE-5,3,
(1979),203-216.

3. PAPADIMITRIOU,C.H. The serializability of concurrent database updates.
J.ACM 26,4(Oct. 1979),631-653.

4, ESWARAN,K.P.,GRAY,J.N.,LORIE,R.A.,AND TRAIGER,I.L. The notions of consis-
tency and predicate locks in database system. Commun. ACM. 19,11
{(Nov. 1976),624-633.

5. YANNAKAKIS,M. A theory of safe locking policies in database system.J.ACM.
29,3(Jul. 1982),718-740.

6. AHO,A.V,,HOPCROFT,J.,AND ULLMAN,J. The design and analysis of computer
algorithm. Addison-Wesley,Reading,Mass.,1974.

7. KATOH,N.,IBARAKI,T., AND KAMEDA,T. A cautious transaction scheduler with
admission control. ACM trans. database syst. 10,2(Jun 1985),205-229,

