goooboooogn

0 6250 19870 186-195
186

A Two-Phase Locking Mechanism
Avoiding Deadlock for Read-Write Confliction

UK 4 #EF (Xingguo Zhong)
UMK A #ZE (Yahiko Kambayashi)

2-phase locking method is the most widely used approach for concurrency control in database systems.
To detect deadlocks that may occur by mechanisms based on 2-phase locking protocol, a wait-for graph
_is usually used. By rolling back some transactions, the cycle corresponding to a deadlock can be
removed. To improve system efficiency, it is very important to avoid deadlocks or to decrease the
number of deadlock. The conflictions that may cause deadlocks can be classified into read-write, write-
write and write-read situations. In this paper, we point out that there is functional redundancy between
2-phase locking protocol and a wait-for graph, and propose a mechanism that can always avoid
deadlocks in case of read-write conflictions. That is, in our mechanism a read-lock request never cause
deadlock. This property is very similar to some multi-version timestamp ordering mechanisms. In \
contrast to timestamp ordering mechanisms, no multi-version of data is necessary in this mechanism.
Since for almost all database systems write-write conflictions are very rare to occur, it is very important
for a concurrency control mechanism to make the read-write conflictions to be deadlock free.
Combination of this mechanism with 2-phase commitment protocol seems to be very practical.

1. INTRODUCTION

In recent years, a lot of papers on concurrency control and recovery problems have
been published and there are still many researchers on the subject. It has gradually
become clear that most of the results can be classified into two kinds of approaches :
two-phase locking [EG76] or timestamp ordering [RE78, BG80]. There are other
methods, such as those realized by mixing the two approaches [BG81] and algorithms
that depend on that the database itself have some data structures [SK80, SK82,
MF85], but the general approaches classified in essence are only the two. It is well-
known that each approach has different advantages and disadvantages. For example,
multi-version timestamp ordering methods have the merit that read operations never
get into trouble by reading a proper version of a data item [BG80]. However, there is
very little research on methods for applying the advantages of one approach to the
other.

2-phase locking based methods are most widely used for concurrency control in
database systems. To solve the deadlock problem that exists in 2-phase locking
methods, a wait-for graph is usually used [GR78]. By rolling back some transactions,
the deadlock cycles can be removed. Timestamp ordering based methods have been
proposed mainly for distributed database systems[BG80], since deadlock detection in
2-phase locking methods is very hard and cost consuming in distributed environments
[MM79,GS80, OB82]. We will not discuss it in detail in this paper.

187

To improve system efficiency, it is very important to avoid deadlocks or to reduce
the rate of deadlocks as less as possible. The conflicting situations of operation
requests that may cause rollback of transactions can be classified into read-write,
write-write and write-read. A read-write confliction means that a transaction requests
a read operation on a data item that is written or held for writing by another
transaction. Under 2-phase locking method, a read-write confliction occurs when a
transaction requests a read lock on a data item that is locked by another transaction in
write mode. Evidently, a write-write (write-read) confliction occurs when a
transaction requests a write lock on a data item that is locked by another transaction
in write mode (by other transactions in read mode). In this paper, we point out that
there is functional redundancy between 2-phase locking protocol and a wait-for graph,
and propose a mechanism that can always avoid deadlocks in case of read-write
conflictions. That is, in our method a read lock request never causes deadlock, and
thus it does not cause rollback of transactions. This property is just like the advantage
-of typical multi-version timestamp ordering mechanisms. In contrast with timestamp
ordering mechanisms, no multi-version of data is necessary in this mechanism. Since
for almost all database systems write-write conflictions are very rare to occur, it is,
therefore,very important for a concurrency control mechanism to make read-write
conflictions to be deadlock free. This mechanism is joined with 2-phase commitment
protocol [GR78] in order to make it practical. '

In the rest of this paper, we first give the basic concepts on concurrency control and
2-phase locking in Section 2. In Section 3, we point out the problem that exists in
conventional methods and give a framework of the ideas proposed in this paper. We
describe our mechanism in Section 4. Additional discussions are given in Section 5.

2. BASIC CONCEPTS

(1) Serializability ,

Concurrency control is very important in realizing database management systems.
The most general way to discuss the concurrency control problem is to view a database
as a set of data items, on which read and write operations are performed by programs.
To ensure the consistency of the database, a common approach is to define transactions
as the units of operations that preserve the consistency of the database [EG76, GR81].
A transaction always transforms a consistent state of the database into a consistent
state when it is executed alone. The outcome of processing a set of transactions
concurrently is required to be same as one produced by running these transactions
serially in some order. A schedule that has this property is said to be serializable
[EG76, BS79]. The basic work of concurrency control for database systems is to ensure
the serializability of the schedule of transactions. In order to guarantee the
serializability, some started transactions have to be aborted in some situations. This
is called rollback of transactions. When a transaction is rolled back, all the changes
that are caused by the execution of that transaction must be recovered.

(2) 2-phase commitment protocol ’
2-phase commitment protocol was first introduced by J. Gray for distributed"
database systems [GR78]. In fact, the same problem also exists in centralized systems,

18%

if we do not have the assumption that the system never gets into failures and we do not
allow any cascading of rollback of transactions.

By 2-phase commitment protocol, write operations of a transaction cannot reflect
the new values that it writes to the database before it has been ensured to complete.
This is realized by dividing the commitment of a transaction into two phases. In the
first phase, the transaction writes the new values to logs without losing the old values
of the corresponding data items in the database. After the transaction has completed
all its write operations to logs, the completion of the transaction is guaranteed. In the
second phase it reflects the logs to database.

(3) 2-phase locking protocol

2-phase locking protocol is a well known method in guaranteeing the serializability
of a schedule of transactions. Before performing an operation on a data item, the
transaction first locks the data item. There are read locks and write locks
corresponding to read and write operations. More than one read lock can be imposed
on the same data item at the same time. However, when a data item is locked by a
transaction in write mode, no other transactions can lock it. The execution of a
transaction is always divided into two phases. In the first phase, it does only lock data
items and in the second phase it does only release locks. That is, for each transaction
once it has released a data item, it will not lock any data item further. Under this
protocol, the schedule of a set of executed transactions (or including the executing
transactions up to their executed stages) is always serializable [EG76].

(4) Deadlock

The deadlock problem exists in the two-phase locking protocol. When transaction
T; requests to lock a data item D that is still locked by another transaction Tj (and at
least one of them is a write lock), T; can not obtain the lock and have to wait until T
releases D. This situation is called a confliction, and we call T; the conflicting
transaction and Tj the conflicted transaction. When Tj is determined to wait for Tj, we
say Tj is dependent on Tj and denote as Ti—Tj. In this case, we call T the depending
transaction and Tj the depended transaction. Furthermore, if T1—Tg, Te—T3 ... Ty
1— Tk, T1 is also dependent on Tx. Each transaction may be in one of two states. One
is in the active state which means the transaction is in execution. The other is in the
blocked state which means the transaction is blocked due to some lock request. Since a
transaction can be waiting for a data item while holding other data items, the wait-for
cycle as T1—Tg, To—T3 ... Tx—T1 may occur. This situation is called deadlock.
When a deadlock occurs, all the transactions in the wait-for cycle are blocked and
cannot be executed further. The system must have some way to detect and resolve
deadlocks [GR78].

(5) Wait-for Graph(WFG)

In order to detect deadlock, a directed graph called the wait-for graph(WFG for
short) is usually used by the system. Each node of the graph corresponds to a
transaction issued to the system. For simplicity, we use the same notation of
transaction to the corresponding node in WFG. When transaction T; conflicts with
transaction Tj, that is when T;—Tj, an arc from node Ti to node Tj is appended to the
WFG. There is a deadlock in the system iff there exists a cycle in the WFG [EG76].
There are mainly two strategies in handling deadlock detection. One is called

,‘189

continuous detection and the other is called periodic detection. In continuous
detection, a detection is performed whenever a new arc is required to be added to the
WFG. In periodic detection, the detection is performed once in a period of time. The
strategy used in this paper is continuous detection.

3. THE PROBLEM

We have introduced the basic concepts of the 2-phase locking protocol in the
previous section. In order to give the reader a framework of the ideas proposed in this
paper, we first describe the situation where a read lock is being requested by a
transaction to see how we can handle it to be deadlock free without using multi-version
of data.

The confliction caused by a read lock request only arose on the situation when a
transaction T; requests to lock data item D in read mode that has been locked by
another transaction Tg in write mode. If T9 does not depend on Tj then no cycle in the
WFG will be created when we append a new arc from node T; to Tgo. Transaction T
can wait until Tg releases D. However, when transaction T2 depends on Tj, a cycle
To— ..., T;—Tg will be created if we append the arc to the WFG. In such a situation,
a deadlock occurs by conventional methods. Transaction T; or Tg, or maybe other
transactions in the cycles have to be rolled back to break the deadlock.

- To our viewpoint, when such a situation occurs, we need not to rollback any
transaction. Since Tg depends on T, To must be in blocked state for some lock
request, therefore Tg has not yet reflected the new value of D being requested by T; to
database (See 2-phase commitment protocol). Thus we can change T1—Tg to To—T;
in the WFG. That is, transaction T; can read the existing value of D directly without
destroying the serializability of the schedule of transactions. ,

Fig. 1(a)_gives an example of the situation where transaction T; is requesting a

Ty Ty
o -7 9
/,‘ // T\
Ve /
7/ /
/ T\ : o
1 o \ o
LA A
o} A7
Tko (@] Tk
(a) An example of read-write (b) An example of avoiding
confliction that causes a deadlock caused by
deadlock read-write confliction
Fig. 1

read lock that conflicts with a write lock of transaction Tk on D. By consenting T7 to
read the existing value of D, the deadlock can be avoided. The changed WFG is
described in Fig.1(b). The dotted arcs in the figure express the dependency that is
produced by the above operation.

190

Now we discuss the problem of conventional 2-phase locking methods. That is,
there is functional redundancy between 2-phase locking protocol and the wait-for
graph. In continuous strategy, no cycle is allowed to exist in the WFG. That means
the schedules of transactions are always serializable up to the executing stage of each
transactions. For this reason, it is not necessary to lock data items, in the conventional
meaning, for a concurrency control mechanism. In conventional locking, when a data
item is locked by a transaction, no other transaction can obtain a conflict lock on the -
data item. Therefore, the transaction that requested the data item earlier must -
perform its operation earlier than later transactions. Reading the existing value of
data items as described above, shows that even if transaction T7 requests its read lock
later than To, it can do its reading before the writing of Ts.

With the development of database systems, the concepts of consistency and
reliability are more strictly required. 2-phase locking protocol joined with 2-phase
commitment have gradually become a standard technique in transaction processing.
Under this environment, the period of a lock becomes long and a lock in write mode
does not mean having a write operation on a data item , but means that the transaction
will write the data item in the future when it is committed.

Thus we conclude that there is no sufficient reason to have locking in the
conventional meaning on data items for concurrency control in database systems. It is
more reasonable only to record proper information on a data item before a transaction
read or determined to write it in the future. In this paper, we still use the word “lock”
for succession, but the essence of the concept is different from the conventional one.
Several lock modes on data items are defined in following.

4. A CONTROL MECHANISM THAT AVOIDS DEADLOCK IN CASE OF READ-
WRITE CONFLICTIONS

In this section, we propose the control mechanism that always handles read-write
conflictions to be deadlock free as described in Section 3. We first give a general
processing model for transactions in Section 4.1. In Section 4.2, a lock mechanism is
described by defining the lock modes on data items. The management of the WFG that
does relate to the lock mechanism will be described in Section 4.3.

4.1 A processing model for transaction and data item operations

A transaction performs read and write operations on data items when it executes.
When a transaction starts its execution, it is given a private work space by the system
for buffering the data items it will read and write. All the read operations are
performed by copying data items to its work space. Therefore, a transaction will not
read same data item more than once. By 2-phase commitment protocol, write
operations of a transaction always do not reflect their values until the transaction is
committed. Therefore, under the above supposition no data item will be written to the
database more than once by one transaction.

There are read lock requests and write lock requests that must be performed by a
transaction before it wants to read and write a data item respectively. Once a
transaction is blocked, it is not desirable for the transaction to lock other data items

further, since the increase of the number of data item which is held by a blocked -
transaction causes the increase of possibility of deadlocks in the system. Therefore
even if a transaction could execute its actions in parallel, the lock requests are
performed serially. In this way, a transaction can be blocked on only one data item
even if several outgoing arcs might be created when a write lock request conflicts to
several transactions that locked the same data item in read mode. When a transaction
do both read and write operations on same data item, two distinct locks are performed.
However, two locks by the same transaction are not judged to be a confliction. 1t is
important to note that a write lock request is different from its write operation. The
write operation can only be performed at the time when the transaction is committed.
Write lock request, however, should be issued to the system as early as possible (see
Section 6).

4.2 The lock mechanism

Under our lock mechanism below, a read lock request on data item D means that
the transaction requests to read D. Once the read lock is granted, the transaction will
read D soon. That is, when a write lock request conflicts with a read lock on D, we can
think that the conflicted transaction has read D. A write lock request on D means that
the transaction requests to write D in future. The write will be performed when the
transaction commits. That is, when a lock request conflicts with a write lock on D, we
cannot think that the conflicted transaction has written D. We define four lock modes,
(a) Read lock, (b) Consent read lock, (¢) Write lock and (d) reservation write lock in the
following. We suppose that transaction Tj is now requesting a lock on D.

(a) Readlock : Transaction T; can lock data item D in read mode when D is
neither locked in write mode as (c) and nor preserved to be locked as (d) by any other
transaction in write mode. When the read lock is granted,the transaction T; can read
D. '

(b) Consentreadlock : Data item D is still locked by a transaction Tj in write
mode as (c) or reserved a write lock as (d). By referencing the WFG, we know that it
will create a cycle in the WFG if we add an arc from node Tj to Tj. That is , making Tj
waits for Tj will cause a deadlock. In this situation, a consent read lock is performed,
since the existing version of D could be read. When the consent read lock is granted,
transaction T; can read D. The only difference between read lock and consent read lock
is the current state of the data item when a transaction requests to lock it. After the
consent read lock has been granted, there is no distinction between consent read lock
and read lock. , ,

(c) Writelock : Transaction Tj can lock data item D in write mode when D is
not locked by any other transaction in any mode. When the write lock is granted,
transaction Tj is determined to write D when T is committed.

(d) Reservation write lock : Data item D is only locked by transactions Tjx (k=1,
2, ... n) in read mode and by referencing the WFG we know that it will not cause any
cycle in the WFG if we add arcs from node Tj to each Tjx (k=1,2, ... n). That is,
making T; wait for Tjk (k=1, ... n) will not cause any deadlock. In this situation,
transaction T; can reserve a write lock. However, even having reserved the write lock,
the transaction is not allowed to write D yet. The transaction should change its lock
into write mode as in (¢) when it is awaken to continue its execution.

19%

A lock request is said to be granted when it belongs to the conditions of (a), (b) and
(¢). Otherwise it is said to be rejected. Read lock cannot be granted in other situation
except (a) and (b). The transaction will be blocked until data item D is released. Write
lock described in (c) is defined as conventional way. Reserving write lock as (d) is
defined to avoid new read locks of transactions on D for the uniformity of response of
transactions. '

In this lock mechanism, it is allowed to have several locks on data item D. But
there is at most one of them being in write mode or reserving write mode. Fig. 2
describes the lock states of data item D except the situation that there is no lock on D.
Small circles express read locks and big circles represent reserving write locks. The
arrows from write lock to a read lock show that the transaction locked D in write mode
or reserving write mode depends on all the other transactions that lock D in read mode.
We distinguish write lock from reserving write lock by describing them with real

~ circles and dotted circle respectively. But there is no distinction between read lock and
consent read lock in Fig 2. Condition (a) expresses that there are three transactions
locking D. Condition (b) expresses that D is locked by a transaction in write mode.
Condition (c) is such a state where several transactions locks D in read mode and one
transaction reserves a write lock. This state must have be generated from state of
condition (a), in which some of the read locks may be issued later than the reserving
write lock. Condition (d) is the state that a transaction locked D in write mode and
several read lock requests of transactions are consented to lock D. This state must
generated from state of condition (b).

4.3 Management of WFG

The construction of the WFG is described in Section 2. As in the conventional way,
the WFG is constructed by using nodes to express transactions and arcs to the
dependent relationships between transactions. In this Section, we describe an
algorithm for managing the WFG under the lock mechanism described in Section 4.2.
The algorithm will be described by enumerating all the possible situations of lock
requests and the corresponding operations on the WFG.

Algorithm :
1) A new node Tj is added to the WFG when transaction T is issued to the system.
2) When transaction T; is committed, node T; and arcs pointing to node T; are deleted

from the WFG .

3) No new arc is added when a lock request of T; is granted as in the situation (a) and

(c) in Section 4.2.

4) When a read lock request of T; conflicts with a write lock or a reservation write lock
of Tj on data item D, an arc from Tj to Tj is added, if no deadlock occurs. Otherwise,

a consent read lock will be performed as situation (b) in Section 4.2 and an arc from

node Tj to Tj is added.

5) When a write lock request of T; conflicts to one or several read lock of transactions

Tjx (k=1,2, ...n)ondata item D, the arcs from Tj to all of nodes Tjx (k=1,2, ...

n) are added if no deadlock occur.

6) When a write lock request of Tj conflicts with another write lock of Tj on data item

D (at the same time, some other transactions may lock data item D in read mode

also), an arc from Tj to Tj is added if no deadlock occur.

193

o . O (o} o O o
S = \ T / (2) Read locks
(/ \1 (b) Write lock
S
, - (¢) Read locks with reserving
‘ (b) () write lock

(d) Write lock with consent

O O O
\ f / , read locks ,

Fig.2 Lock states of data D

7) For the situations of 5) and 6), if a deadlock occurs then transaction T; or other
transactions will be determined to be rolled back in order to destroy the deadlock
cycle as in the conventional way.

8) When transaction Tj is rolled back, node T; and all arcs connected to T; are deleted
from the WFG and all the locks requested by T; are released from each data item.

In this algorithm, the WFG is managed as a completed description of dependent
relationships of transactions. When a read lock request of transaction Tj conflicts with
a write lock of transaction Tj on data item D and adding an arc from T; to T;j will not
cause a cycle in the WFG, we cannot let the read lock request of T; to be consented,
since we don’t know if it is better to execute T; before Tj or not. Furthermore, since T;
may be in active state, it is possible for T; and Tj to operate on D simultaneously. A
transaction usually issues its read lock request earlier than its write lock requests.
When the above conditions occur, the probability that T; should execute after Tj is
greater than execute before it.

5. FURTHER DISCUSSIONS

We have described that conflictions are classified to be read-write, write-write and
write-read situations. In our mechanism we have avoided deadlocks in the case of
read-write confliction. Thus we have decreased the rate of causing deadlock.

For a database system, if the read-set of each transaction always covers its write-
set then it is impossible for write-write confliction to cause a deadlock. It is even
impossible to cause a write-write confliction when there is no duplication of data in the
database. We give a proof of these assertions in the following.

We first describe the condition of a non-duplicated database. We can suppose that
for each data item that is both read and written by the same transactions is always
locked in read mode before the write lock is requested. Since the read-set of each
transaction covers its write-set, before a write-write confliction occurs there must be a
write-read confliction on the same data item. If the write-read confliction causes a
deadlock and one of the transactions is rolled back, then the following write-write
confliction will not appear at all. If it does not cause any deadlock, or even caused a

194

deadlock but the deadlock is broken by rolling back other transactions in the deadlock
cycle, the write-read confliction then has determined the dependent relationship of the
two transactions. The depending transaction is blocked until the depended one
releases its lock on that data item. Thus the depending transaction cannot issue its
write lock. :

Now we consider the condition of a database with data duplications. We also
suppose that read-set covers write-set for each transactions. A read lock request
should lock one copy but write lock request locks all copies of the data item [TH79]. In
such an environment, there may be write-write conflictions, but if a write-write
confliction on some copy causes a deadlock, there must be a write-read confliction on
one copy of the same data item causing the same deadlock (same cycle on WFQG). It is
because that the conflicted transaction (in the write-write confliction) still has locked
some copy of the data item before its write lock is performed.

'~ There might also exist some database systems in which transactions can update
data item without referencing the old value of the same data item. That is, the read-
set of a transaction does not cover its write-set. In such a situation, there may exist
write-write conflictions that cause deadlock. How to make write-write conflictions to
be deadlock free is also an interesting topic.

The improvement of performance can also be explained by the higher concurrency
of data utilization. In conventional mechanisms when a data item is locked by a
transaction Tj in write mode, no other transaction can use that data item even if the
transactions can and should read it ’

There is an algorithm in which all transactions always make read lock on data
items and does not upgrade its lock mode into write mode until it wants to perform the
write operations. That algorithm gets lower performance than that locking data items
in write mode directly when the transaction determines to write that data item. This
assertion has been proved by a simulation experiment [CS84]. This result can also be
explained in the following. Taking write lock to be delayed will increase the
probability of deadlock. Since the delay of write lock allows other read lock requests of
transactions issued lately to be granted, when the upstaging comes it will conflict to
these read locks (write-read confliction) and might cause deadlocks.

6. CONCLUSION

As a new version of 2-phase locking methods, we proposed a mechanism in which
deadlock caused by read-write confliction can always be avoided without using multi-
version of data. This mechanism can be referred to as one in which the advantages of
timestamp ordering methods are introduced to 2-phase locking. We have pointed out
that there exists functional redundancy in the 2-phase locking protocol and the wait-
for graph. Therefore, in a 2-phase locking mechanism with strategy of continuous
deadlock detection, locks in conventional meanings should be changed to record proper
information on data items to indicate that the data items was operated on or will be
operated on in future. The information on each data item is just like a schedule of
operations in contrast to the history of data item in timestamp ordering methods.

195

One problem is whether we can extend the mechanism proposed in this paper to
distributed database systems. Many algorithms for distributed deadlock detection
have been proposed in recent years. It is still far from knowing that which strategy
will be a suitable one. Reviewing the published algorithms for distributed deadlock
detections based on the wait-for graph, we find that about half of them belong to
continuous detection. We hope that the proposed mechanism can be extended to
distributed environment.

REFERENCES

[BG80] Bernstein,P. A. and Goodman,N. Timestamp-Based Algorithms for Concurrency Control in
Distributed Database Systems. Proc. of VLDB. (Oct. 1980). pp. 285-300.

[BGS81] P. A. Bernstein and N. Goodman, Concurrency Control in Distributed Database Systems.
Computing Surveys, Vol.13, No. 2 (june 1981).

[BS79] Bernstein,P. A. Aan Shipman,D. W. Formal Aspect of Serializability in Database
Concurrency Control. IEEE Trans. on Software Eng. Vol.SE-5, No.3 May 1979, pp. 203-
216.

[CS84] M. Carey and M. Stonebreaker, The Perormance of Concurrency Control Algorithms for
Database Management Systems. Proc. of VLDB Aug. 1984. pp. 107-118.

[EG76] K. P. Eswaran,J. N. Gray, R. A. Lorie and I. L. Traiger, The Notions of Consystency and
Predicate Lock in a Database System, Comm. ACM Vol. 10, No. 19,pp. 624-633,Nov. 1976.

[GR78] J. N. Gray, Notes on Data Base Operating Systems, IBM Report RJ2188, 1978.

[GR81] J. Gray, The Transaction Concepts: Virtues and Limititions, Procedures on VLDB, 1981, pp.
144-154.

[GS80] V. D. Gligo and S. H. Shattuck, On Deadlock Detection in Distributed Systems, IEEE Trans.
Softw. Eng. SE-6, No.5, pp. 435-440, Sep. 1980.

[MF85] C. Mohan, D Fussell, Z. Kedem and A. Silberschaz, Lock Conversion in Non-Two Phase
Locking Protocols, IEEE Trans. on Softw. Eng. SE-11, No. 1, Jan. 1985, pp. 15-22

[MM79] D. Menasce and R.Muntz, Locking and Deadlock Detection in Distributed Databases, IEEE
Trans. Softw. Eng., SE-5, No. 3, May 1979,pp. 195-202.

[OB82] R. Oberack, Distributed Deadlock Detection Algorithm, ACM Trans. on Database Systems,
Vol. 7, No. 2, pp. 187-208, June 1982. ’

[RE78] D. Reed, Naming and Synchrinization in a Decentrolized Computer System. Tech. Rep.
MIT/LCS/TR-205, Dept. Electrical Engineer and Computer Science,Massachusetts Institute of
Technology, Sept. 1978.

[SK80] Silberschatz, A. and Kedem,Z. Consistency in Hierarchical Database Systems. dJournal of
ACM Vol.27, No.1 (Jun.1980). pp. 72-80. s

[SK82] A. Silberschatz and Z. Kedem, A Family of Protocol for Database Systems That Are Modled by
Directed Graphs, IEEE Trans. on Softw.Eng. Vol. SE-8, NO. 6, Nov. 1982, pp. 558-562.

[TH79] R. Thomas, A Majority Consensus Approach to Concurrency Control for Multiple Copy
Database, ACM Trans. on Database systems, Vol. 4, No. 2, June 1979, pp. 180-20.

-10-

