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1. Introduction.

This paper formalizes the fixedpoint semantics of non-ambiguous linear
term rewriting systems, which generalizes that of recursive progrém schemes.
This is done by considering the infinite sequence of rewriting systems that
approximate a given system. |1 also shows that the fixedpoint semantics
coincides with the algebraic semantics previously propoéed by the authors.
This result generalizes the well-known fact that these two semantics for
recursive schemes coincide [2].

Finally it gives some sufficient condition for the termination of the

approximation term rewriting systenms.
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2. Preliminaries.

Infinite trees

Let F be a set of fuhction symbols whigh are associated with some
arities, and X be a set of variable symbols such that FNX = ¢ . We assume |
F contains a special symbol Q with arity 0. Let T®(F,X) be the set of
finite or infinite trees which are well-formed with respect to the arity of
symbols (in FUX) labeled at their nodes. ‘An‘order < on T®(F,X) is
defined as follows: For T, T°€T®(F,X), T<T’ iff T is obtained by
substituting Q’s for some occurrences of subtrees in T’. It is known that
< T®(F,X), < > is a cpo and the least element is Q. See [1] for more
details. The set of finite trees (terms) is denoted by T(F,X). We shall
use t, t’, u,..., for the elements of T(F,X) and T, T’, U, ..., for the

elements of T°°(F,X). For a set of trees A, A~ denotes ;ng closure of A

defined as follows: let A = {t I3TE€A 1<T}and A™ = {LUA’I A’C

|

directed}.
Let P* be the set of finite sequences of positive integers. The nodes

of a tree are identified by elements of P*vin a well-known manner [1,4].

Hence, we can define the set of nodes in T, denoted by Dom(T), as a subset
of P¥. For peDom(T), a tree T/p is the subtree of T whose root is the node
pinT, and T[p«T’] is the tree which is obtained 5y replacing the subtree
of T occurred at p with- T .

Substitution is a mapping ¢ from X to T®®(F,X). It is extended to a

continuous mapping on T°(F,X) by o (T)=Tlpe o (x)IT/p=xEX].



Term Rewriting Systems

Let Var(T) be the set of variable symbols which occurs in T. A right-

infinite term rewriting system (riTRS), is a subset R of T(F,X)XT%(F,X)

such that each <t, T>€R satisfies Var(T)=Var{(t). An element <t, T> of R

is called a rewrite rule. R is said to be a ngm reQriting system (TRS) if

the right-hand side of each rule is also finite.

A reduction in R is a 4-tuple <T, T’, p, <u, U>> such that p€ Dom(T),
<u, U>€R, T/p=0(u) and T* = T[pe< o ()] for some substitution o. —p is
a binary relation on T°(F,X) obtained by dropping the third and fourth
components of reductions.

A parallel reduction in R is a 4-tuple <T, T°, P, o> where P = {p,,

Pos ...yt be a (possibly infinite) mutually disjoint subset of Dom(T) and p
= {<ty, T1>,<tg, To>, ..+5+ SR such that there ekist 01509 «ons
satisfying T/pj=0 {(T;) for all i, and T'=Tlp;< o ;(T{*) 1 i=1,2,...] [4].
The corresponding binary relation on T®°(F,X) is denoted by ud T

We denote hy ;)* the reflexive-transitive closQre of a binary relation
o . A binary relation o on T(F,X) is confluent iff the following |
condition holds: For every T, Tl, Tos if T ;)* Ty and T ﬁ)* To, there
exists T’ such that Ty o¥* T’ and Ty p* 1",

A tree T is linear if any variable symbol occurs in T at most once. A~

riTRS R is linear if for any <t, T>€R, 1 is linear.

T is Q-free if there is no occurrence of Q in T, and R is @ -free if
for any <t, T> €R, t is Q-free.

T and T’ is unifiable if o (T)=0¢’(T’) holds for some ¢ and ¢’. R

is said to be hon-ambiguous (non-overlapping) if for every <t, T>, <t’, T’>€
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R and every p€Dom(t), t/p and t’ is unifiable iff t/peX.
In this paper, we assume riTRSs are linear, non-ambiguous and Q -free.

The following is an infinite-tree-rewriting version of the well-known result

[4]:

Proposition 2.1. For every linear non-ambiguous riTRS R, ™ is confluent.»

And, for every linear non-ambiguous TRS R, ' is confluent. [

3. Algebraic Semantics.

We briefly review the algebraic semantics of riTRSs. See [5] for the

details.

We define the set of redexes of R, denoted by Redp, as follows:
Redp={T | T=0 (t) for some o and some <u, V>ER}.

The set of candidates for redexes of R, denoted by Candg, is defined

inductively:
1) TE€Redy implies T€ Candp,
2) T, T’&Candg and pEDom(T) implies TLp<T’J€ Candg.

The set of the candidates occurrences of R in T, denoted by CandoccR(T), is
defined by:
Candoccp(T) = {p€Dom(T)1 T/p€ Candg”}.

And the set of approximation normal forms of R, denoted by ANFp, is defined

by:
ANFp = {TI p & Candoccp(T) implies T/p=Q}.

A function wg on T(F,X) is defined by

4



u)R(T)=T[p*-S2 | p is outermost in CandoccR(T)].

u)R(T) is called the apnrdximation'nggmgi fQLm\Qf‘T w.r.t. R.

Definition 3.1. The algebraic semantics or‘the valuation gf T by R is

defined by:
Valg(T) = U{wg(T)1 T ¥ 7'}, O

VaIR is a retraction, i.e., continuous and idempotent, and its range
is ANFR. Using the continuity of VaIR, it is proved that ValR(T)=L}{u)
R T =¥ 7'} holds for a TRS R (in [5], we adopted this as the

definition of the definition of VaIR).

4. Fixedpoint Semantics.

We can take R as an equation system rather thah a rewriting system‘and
the left-hand sides as its unknown variables over ANFR in the foilowing
manner. In sequel, we assume that R'is a TRS. The set of symbolic

interpretation of left-hand sides of R, denoted by lntR, is the set of

functions © from {t | <%, t’>€R} to ANFg such that Var{t)2var(e (1)) for
any <t, t’>€R. For ® € Intp and <t, t’>€R, ©(1) is called the symbolic

interpretation of t w.r.t. ®. We want to extend the domain of ® into T

(F,X) to interpret right-hand side of R. For the purpose, we regard © as a
non-ambiguous linear and‘£2-free riTRS. 'Then, we can show that Valﬁa(t)= ®

(t) for <t, t’>€R. An interpretation ® is called a §¥mbolic solution of R

if @(t)=Val@(t’) for every <t, t'>€R.
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We can solve the equation ,R by the fixedpoint theorem. _ First, we
define a function Egg on Intg by
Eqp(®) = e’ where e’ = Val@(t’) for <t, t’>€R.

Obviously, © € Intp is a symbolic solution of R iff it is a fixedpoint of

Eqg. We define an order < on Intg as follows: for @, @’ElntR, o0<0e’ if
O ()< 0’(t) for <t, t’>€R. It is shown that <Intp, <> i’s a cpo with the
least element 1 such that _L(kt) = Q for any <t, t’> €R. Moreover, the
continuity of Eqg can also be shown. Hence, by the fixedpoint theorem, its
least fixed point A exists and is given by: |

A = U{Eg™(L) | n20}.

Definition 4.1. The fixedpoint semantics of a term T w.r.t. R is defined by

FiXR(T) = ValA(T). O

Let Rn = EqR”(_L) for each n. Rn is called the n-th standard

approximation of R. By the continuity of EqR, we have!

Fixp(T) = U{Valpp(T) | nz0}.
Remark that, to calculate Fixg(T), we do not use R itself to rewrite terms
but Rn’s. It is easyA to see that,

‘RO = {<t, Q> 1 <t, t’>€R} and

Rntl = {<t, Valg(t’)> | <t, t’>€R} for n 2 0.
Intuitively, we at first interpret the left-hand side t as “undefined” and
then, our approximate interpretation is refined asymptotically.

The fixedpoint semantics coincides with the algebraic semantics:

Theorem 4.2. FixR = Valp. ]



5. Termination on approximation normal forms

In this chapter, we study the termination of the approximation TRSs.
Since we consider TRSs are abstract interpreters of programs, their
termination can not always be assumed. Such aniassumption put a severe
restriction on our discussion. However, the termination of the
approximation TRSs is not so restrictive as we see below.

Let A be a set of finite terms. We say that R is terminating over A

if for any t in A there is no infinite reduction sequence issued from t.

We also say R is terminating if R is terminating over T(F,X). A set of

finite terms ANFR'C is defined inductively:

1) ANFR N TCF, X)SANFRTC, |

2) t, t' EANFR"C and p€Dom(t) implies t[pet’J€ANFR C.

Now we can state a sufficient condition for the termination of the

approximation systems.

Proposition 5.1. If a TRS R is terminating over ANFRTC, its standard

approximations are terminating TRSs. (O
There is.a sufficient condition for the termination of R over ANFRrCZ
Proposition 5.2. Suppose Rl is a terminating TRS and R2 is a TRS such that

a rule in Ry has the form <f(x1,..,xn), t> and f does not occur in rules in

Ry. Then a TRS R = RyURy is terminating over ANFR'C. [J

7
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TRSs described in the above proposition still generalizes recursive

program schemes.

6. Conclusion.

Through the 1imit of an infinite sequence of approximation rules, the
fixedpoint semantics of term rewriting systems has been formalized as a
generalization of that of recursive program schemes. On the other hand, the
algebraic semantics is defined through the limits of infinite approximation
reductions. However, as we have seen, these semantics coincide as like for
recursive program schemes.

We also studied the termination of approximation TRSs. Terminating
approximation systems will be a useful tool to check properties of the
original system. Hence, a TRS which satisfies the condition of Proposition

5.2 can be said cahonical in a sense.

o+
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