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"Parallel Reductions in A-Calculus

Masako Takahashi
Tokyo Institute of Technology

The notion of parallel reduction is extracted from the Tait-
Martin-Lof proof of Church-Rosser theorem (for B-reduction). We

define parallel B-, n-, and RBn-reduction by induction, and
use them to give simple proofs of some fundamental theorems in A-
calculus; the postponement theorem of n-reduction (in Bgn-

reduction), Church-Rosser theorem for Bn-reduction, the normal
reduction theorem for R-reduction, and some others.

1. Preliminaries

A A-term is either X, AX.M (abstraction), or MN
(application), where x 1is a wvariable and M, N are A-terms.
Unless otherwise stated, capital letters M,N,P,Q,R,... stand for
arbitrary A-terms, and X,y,z,u,v,... for'arbjtrary variables. Ve
refer to [1]1 as the standard text; especially we use notations
such as MIx:=N] (the substitution of N for free occurrences of X
in M), M = N (M is syntactically equal to N up to change of bound
variables), B -, =2 (one-step B-, n-, RBn-reductions,

n Bn

respectively), and E*; (R-, n-, Rn-reductions,

R

respectively).
We define the parallel B-reduction E? inductively;

.(B1) x ﬁ# X,

(B2) Ax.M ﬁ# AX.M' if M ﬁ# M,

(R3) MN ﬁ# M'N' if M ﬁ# M' and N ﬁ? N',

(B4) (AX.M)IN Eé M*'Ix:=N"] if M E# M' and N ﬁ# N'.
Intuitively speaking, M ﬁé M' means that M' is obtained from

M by simultanuous reduction of some B-redexes existing in M.

Clearly M §* M' implies M ﬁé M', and M E# M' implies M E* M.
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Thus B is the transitive closure of §$ {but §$ itself is not
transitive). In [11, M ﬁ# M' is denoted by M I M.

Likewise, we défine thé parallel n-reduction = by

n
(nl) x ﬁé X,
(n2)  Ax.M 7 Ax.M' If M= M,
(n3) Av.Mv ﬁ# M’ ‘ C1EM ﬁ# M' and v ¢ FV(M),
(n4) MN 7= M'N’ if M+ M' and N = N,
and the parallel Bn-reduction §ﬁ by
(Bni) X ﬁﬁ X
(Bné) AX.M Z2 AX.M* Hf Mg M,
(Bn3) Av.Mv §% M’ if M ﬁﬁ M' and v ¢ FV(M),
(Bn4) MN Eﬁ M'N' if M Eﬁ M' and N ﬁﬁ N',

(Bn5) (AX.M)IN §ﬁ M'Ix:=N'] if M ﬁﬁ M*' and N §ﬁ N'.

(FV(M) stands for the set of free variables in M.) Intuitively,
M ﬁé M* (M ﬁﬁ M', respectively) means that M' is obtained from M
by simultanuous reduction of n-redexes (B-redexes and/or n-

redexes) existing in M. As before we have:

M e M => M ﬁ$ M* => M . M,
M a3 M => M §ﬁ M’ => M g2 M

Therefore —» g respectively) is the transitive closure of

n
ﬁ# ( Eﬁ ).

These notions §$, ﬁ#, ﬁﬁ are substitution closed in the

sense;
M1 ﬁ# Mi (i=1,2) => Ml[x:=M2] ﬁé Mi[x!=Mé],
Mi ﬁ# Mi (i=1,2) => Ml[x2=M2] ﬁ# Mi[x3=Mé],
Mi Eﬁ Mi (i=1,2) => Ml[x!=M2] ﬁ% Mi[X3=Mé].



See -[(1] 1lemma 3.2.4 for the inductive proof of the case §$.

Similar proofs apply to other cases, and are omitted.

In section 2, a short proof based on these notions is given
for the theorem of postponement of n-reduction (in Bn—reddctloﬁ),
togefher with some relationé betWeen Eé, ﬁé, Eﬁ. In sectlonrs, we
show that the idea of Tait—Maftin—Lof proof of Churéh—Rosser
theorem for B> also applies to the case of - In the final
section, we present a direct proof of the normal feduction
theorem‘for B

‘The essential difference of our proofs from previous ones is
that the parallel reductions make simple inductive argument
suffice to derive these theorems. In other words, by taking
advantage of parallelism, one can avoid discussions of
"residuals"” and introduction of adxiliary terms other than A-

terms.

2. Relations Between Parallel Reductions
For any A-term M, natural number k 2 0, and variables Vi

Vor «..aVy, € FVAM), the A-term Av, . (v O, (AV, My )LL)V,

K 1 2 21
is denoted by (M)k. (In particular, (M)0 M.) Then one can

easily verify the following lemmas.

Lemma 2.1 Suppose M ﬁ# M', N ﬁ# N', and k 2 0. Then
(1) (Ax.M)k §$ AX.M',

(2) (Ax.M)kN ﬁ# M*Ix:=N'1,
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(3) (M)kN ﬁ# M'N',

(4) (M)k+1 ﬁ# (M‘)1

Lemma 2.2
(;) M ﬁ# X iff M= (x)k for some K & 0.
(2) M ﬁ# N1N2 iff M= (Mle)k for some kK 2 0 and.M1

such that Mi ﬁé Ni

(3) M ﬁé AX.N iff M= (J\x.M')k for some k 2 0 and M’

(i=1,2).

such that M’ ﬁ# N.

Lemma 2.3 »M ﬁ$ P ﬁé N implies M ﬁé P’ ﬁ# N for some P'.

{Proof) By induction on the structure of M.

Corollary 2.4 M §ﬁ N implies M E* P ﬁ* N for some P.
By a similar inductive argument as lemma 2.3, one can verify
the equivalence
M iﬁ N iff M ﬁ? P ﬁé N for some P.
The converse of lemma 2.3 however does not hold. Indeed,

AX. (QAy.yx)z §$ AX.ZX ﬁé z, but not AxX.(Ay.yx)z §ﬁ z.

3. Church-Rosser Theorem for Bn-Reduction
In this section we extend the simple proof due to Tait and
Martin-Lof (see [1],t2]) of Church-Rosser theorem for ﬁ* to the

.—.—».
case of an
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Theorem 3.1 M Eﬁ

M1 (i=1,2) implies Mi B N (i=1,2) for some N.
(Proof) We define the A-term ﬁ for each M, as foliows: '

X, then M = x.

(1) If M=

(2) If M= AX.M1 and M is not a n-redex, then ﬁ = Ax.ﬁl.
(3) If M= Av.M{v and v € FV(M), then M = M,.

(4) If M=MM, and M Is not a R-redex, then M = ﬁlﬁz.
(5) 1f M= (AX.M)M,, then M = M [x:= M,].

Then one can verify by induction on the structure of M that M iﬁ
N 1implies N Eﬁ M for any M and N. 1t means that Eﬁ satisfies
the diamond property;

M §% Mi (i=1,2) 1mplies M1 fﬁ N (i=1,2) for some N,
from which the theorem immediately follows since —=» is the

8n
“transitive closure of<§ﬁ. ’

The foregoing proof also shows:

Theorem 3.2 Let MO =M and M™! =P for P=M" (n 2 0). Then

. R i
M §ﬁ N implies N s> M

g for some n 2 0.

4. Normal Reduction Theorem for R-Reduction
The aim of this section is to give a direct proof of normal

reduction theorem for —=»; if M has a B-normal form N, then N can

R
be obtained from M by the leftmost B-reduction.
We wuse notations %*, %*, ~and %* for head B-reduction,
internal RB-reduction, and leftmost R-reduction, respectively.
One-step head B-reduction is denoted by %ﬁ.
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Lemma 4.1

() M N mplies ax.M D N,

2> M N tmplies Mix:=P1 B NIx:=P3.

(3) M %+ N implies MP %ﬂ NP, unless M is an abstraction.

We define the parallel internal B-reduction L# inductively;

g
(1B x 3 x,

(182) AX.M %> Ax.M' £ M3 M,

(1R3) MN 2> M'N' if ML> M and Nz N',

(iB4) (AX.M)N %# (AX.M"IN' if M E# M*' and N ﬁ# N'.

Clearly P l+'Q implies P %# Q, which in turn implies P

B
%% Q. More precisely, P %# Q holds iff either
= 12 = 12 s
(1) P = Ay.xP\P,...P, and Q@ = Avy.xQ,Q,...Q, with n 2 0 and
Py 7 Q, (j=1,2,...,n), or
=—’ =-)
(2) P = Ay. (AX.PyIP P,...P and @ = Ay.(Ax.Q,)Q,Q,...Q, with

n 1 and Pj §$ QJ (j=0,1,...,n)
for a sequence ? of variables, a variable x, and A-terms Pj, QJ.
The key lemma in our proof of the normal reduction theorem is

the following.

Lemma 4.2 M = N implies M %* P %#-N for some P.
(Proof) We prove a stronger statement;
; h + h « h (k) i
Mz> N implies M g> M' 2> M" oo . N

hsm
for some k 2 0 and M(J)ﬁé N (J=1,...,K)

by induction on the structure of M. (Here we identify M with

M@ M with M), etc.) There are two possibilities.



255

—_
(1) Tf M= AV.XM M, . My,

172 n

then N = AY.XN,N,...N. where My B> Ny
(j=1,...,n). In this case clearly M %# N. ’

]

(2) If M= A?.(Ax.MO)MIMQ..;Mn with n 2 1, then either (2.1) N

- ' = 12 '._‘_ P
Ay. (AX.N )N1N2...N or: (2.2) NE Ay.(No[x.— Nl]) N2...Nn where

0 n
MJ i# Nj (j=0,1,...,n). In case (2.1), by definition M %# N.

We prove the case (2.2), by éssuming ? is empty. (It does not

lose generality, because of lemma 4.1(1) and definition (i82).)

= h R , e
In this case, M= (AX‘MQ)MIMZ'f'Mn Eﬁ (Mo[x.— Mllez...Mn ﬁ#
(NO[x§= NI])Nz"'Nn = N. Since Mj ﬁé NJ and MJ 5 are subterms of
: ' h . h w h ~ih
M, Dby inductive hypothesis we know Mj §+ MJ §* MJ E* “e §4
(kj) ’

éé N for some M(k)

MJ 3 j j ﬁé NJ (k=0,1,...,kj), and kJ 20 (j =
0,1,...,n). Then from lemma 4.1(2) and lemma 4.4 below, we get
e 1 Dy ervecm 1 M ereeoy 4 By
MU[X"MJJ Eﬁ Mo[x.—Mll §4‘M0[x.—M1] E%
(k,) (k,) (k,)
h 0 . h 0 R ¢ 0 . _aan
'B—’ MO [X-—Ml] —B—* MO [X-—MIJ ‘B—') MO [X-—M(l]
(k) .
h h 0 (k) .o
2 e g My Dxr=m %# Ng[x:=N, ] (%)
(J) _ _ , (Jj)
for some k = kl' Since M0 ﬁ# N0 (J—O.l,...,ko) and Ml ﬁ#

N1 (J=0,1..ﬂ.,k), we have
(J)

Mg Dxi=M 1 =N Ix:=N T (J=0,1,...,ky), and
(kn) (j). . '
Mg O Dxi=My 1@ NN (3=0,1,.. K0,
: (k,+Kk)
. - h, . h, ouh h 0 -
Let MgIx:=M;1 = P > P @ P ... P baq =

N0[x2=N1] stand for the reduction sequence (*).» Thenr by

applying lemma 4.3 below to (%) n times, we get

h ho o, | h
Mg PMMg My PIMM My
h. o(p) ~ _ o
L T %@ QNpNg- - Ny = N, and

(D) ) =
P M2M3...Mn i# N  (J=0,1,...,pP)

for some p S k0+k.
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h,

Lemma 4.3 1f M I w h h

ﬁ (k) | (3)
M . M %é N with M 7 N
(j=0,1,...,k), and P §$ Q, then for some m S k

RTT

h "p h h (m) i .
MP — 3 = M"P E» “en Eﬁ M P %é NQ, apd
M(j)P = NQ (J=0,1,...,m.
(Proof) If there exist abstrasctions in M, M', M", ,M(k), let

(m)

M be the first one in the sequence. Then by lemma 4.1(3) and

definition (iR4)

MP B> M s wep B D u™p L ng
since M(m) E# N implies that N is also an abstraction. On the
other hand, if there is no abstraction in M, M', ..., M%), then
for m = kK we have | |
Cwp By Lwphwel L yMpdsng

8
by lemma 4.1(3) and definition (iB3). 1In either case, clearly

u3p > NQ (4=0,1,...,m.

h. . h. «u h ho (k) H
Lemma 4.4 If M Mo me B B w5 ds N witn w8 n
(j=0,1,...,kK), and P %# Q, then for some m S k

PIx:=M] - %e PIx:=M"'] E» PIX:=M"] ga ..

h e (m) .-
SN Eﬂ PIx:=M ] %# Qlx:=Nl, and

Prx:=M‘J77 = QIx:=N]  (j=0,1,...,m).

(Proof) Since P %é Q, we have'either

B - _9 . N : :
(1) P = Ay.zP1P2...Pn‘and Q= AY.zQ Q2 -Q, with n 20

and PJ §$ Q (J=1,..i.n). or (
5 _ )
y. (Az PO)P1P2 P and Q = Ay. (Az. Q )Q Q ...Qn

with nel and P §$ QJ (J= 0 1, yn).

(2} P=EA



Because of lemma 4.1(1) and definition (iB2), it suffices to

consider the case where 3 is empty. Let Pj =P

| J[x:=M] and QJ =
QJ[x:=N] (j=0,1,...,n). If z = x in case (1), then by lemma 4.3
.o = D . h - . h - h
Plx:=M1 = MP1P2 P 2 M PlP2 2 '
M)y,
M PPy %# NQ;{ Q). . = Q[x:=N1, and
\j L] L] . L] -
M P1P2 P NQIQ2 ‘Qn (j=0,1,...,m)
for some m S k. If in (1) =z 1is different from X, then clearly
PLx:=M1 = zPlPé P' %é zQiQé...Qh ‘= QI[x:= Nl. In case (2),

PLx:=M1 = (Az P )PlPé .Pﬁ %# (Az.Qb)QiQé...Qﬁ = QILx:=N1.
The proof of lemma 4.2 is now completed. 1t says that M E#
N implies M =» P 5» N for some P. Next we show that the same

holds true under a weaker condition M E* N.

Lemma 4.5 M %# P %4 N implies M %* Q %# N for some Q.
(Proof)  Since P i N, we have P = AV.(AX.Py)P,P,...P_ and N =
- -
Ay.(PU[x.~PlJ)P2...Pn for some n & 1 and y, X, PO’ Pl’ ey Pn.
Next from M %@ P, we know that M = A?.(AX.MO)Mlmz...Mn with some
- . h, ,2 .
Mi ﬁ# Pi (j=0,1,...,n). This implies M E% Ay.(Mo[x.-Ml])Mz...Mn
= A?.(Potx:=PIJ)P2...Pn = N, which together with lemma 4.2
shows the lemma.
Corollary 4.6 M z» N implies M %» p %* N for some P.
(Proof) Recall that —=» ( l*, resp.) is the transitive closure

R R
of §$ (of %#), and apply lemmas 4.2 and 4.5.

From corollary 4.6, one can obtain the normal reduction

theorem as in [11].
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[

Theorem 4.7 . I1f M has a B-normal form N, then M i N.

Similarly we can., prove from corollary 4.6 the

standardization theorm ([1]1 theorem 11.4.7).
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