Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits

Toshihiko MATSUKI

松本敏彦島取大教養

§1. Introduction

Let G be a connected Lie group, σ an involution of G and H an open subgroup of $G^{\sigma} = \{x \in G \mid \sigma x = x\}$. Then the G-homogeneous manifold H\G is called an affine symmetric space. Suppose that G is a real semisimple Lie group. Let P be a minimal parabolic subgroup of G and P' a parabolic subgroup of G containing P. Then the double coset decomposition H\G/P is studied in [2] and [5], the relation between H\G/P' and H\G/P is studied in [3], and the closure relation for H\G/P is studied in [4].

Let θ be a Cartan involution of G such that $\sigma\theta = \theta\sigma$. Put $K = G^{\theta}$ and let H^{a} be the open subgroup of $G^{\sigma\theta}$ such that $K \cap H = K \cap H^{a}$. Then $H^{a} \setminus G$ is called the affine symmetric space associated to $H \setminus G$. Let A be a θ -stable split component of P and put $U = \{x \in K \mid xAx^{-1} \text{ is } \sigma\text{-stable}\}$.

There exists a natural one-to-one correspondence between the double coset decompositions $H\backslash G/P'$ and $H^a\backslash G/P'$ given by $D\to D^a=H^a(D\cap U)P'$ for H-P' double cosets D in G ([2], [3]). Moreover it follows easily from Corollary of [4] Theorem that this correspondence reverses the closure relations for the double coset decompositions. In this paper we prove the following theorem.

Theorem. Let D_1 and D_2 be arbitrary H-P' double cosets in G.

$$D_1^{c1} \supset D_2 \iff D_1 \cap D_2^a \neq \emptyset.$$

(ii) Let $I(D_1, D_2)$ be the set of all the H-P' double cosets D in G such that $D_1^{cl} \supset D_2^{cl} \supset D_2$. Then

$$(D_1 \cap D_2^a)^{c1} \cap D_2^a = \bigcup_{D \in I(D_1, D_2)} D \cap D_2^a.$$

- (iii) Let x be an element of U. Then $HxP' \cap H^axP' = (K \cap H)xP'$.
 - (iv) $D_1 \cap D_2^a$ is nonempty and closed in $G \iff D_1 = D_2$.

Example. Let G_1 be a connected semisimple Lie group, θ_1 a Cartan involution of G_1 , $K_1 = \{x \in G_1 \mid \theta_1 x = x\}$, and P_1 a minimal parabolic subgroup of G_1 with a θ_1 -stable split component A_1 . Let P_1' and P_1'' be parabolic subgroups of G_1 containing P_1 . Put $G = G_1 \times G_1$, $H = \{(x, x) \in G \mid x \in G_1\}$, $H^a = \{(\theta_1 x, x) \in G \mid x \in G_1\}$ and $P' = P_1' \times P_1''$. Then we have natural bijections

$$H\backslash G/P' \stackrel{\sim}{\rightarrow} P_1'\backslash G_1/P_1''$$

and

$$H^a \setminus G/P' \xrightarrow{\circ} \theta_1(P'_1) \setminus G_1/P''_1$$

by the maps $(x, y) \rightarrow x^{-1}y$ and $(x, y) \rightarrow \theta_1(x^{-1})y$, respectively. Hence by the Bruhat decomposition of G_1 , every H-P' double coset and H^a -P' double coset have representatives in $W(A_1) \times 1$. Consider the intersection $I = H(w, 1)P' \cap H^a(w', 1)P'$ for w, $w' \in W(A_1)$. Since $H \cap H^a = \{(x, x) \mid x \in K_1\}$ and since $G_1 = K_1P_1$ by the Iwasawa decomposition of G_1 , I contains elements of the form (x, 1) with $x \in G_1$ if I is nonempty. We have easily

$$(x, 1) \in I \iff x \in P_1'wP_1'' \cap \theta_1(P_1')w'P_1''.$$

Thus we have as a corollary of Theorem (i),

$$(1.1) \qquad (P_{1}'wP_{1}'')^{c1} \supset P_{1}'w'P_{1}'' \iff P_{1}'wP_{1}'' \cap \theta_{1}(P_{1}')w'P_{1}'' \neq \phi.$$

Especially we have

$$(1.2) \qquad (P_1 w P_1)^{cl} \supset P_1 w' P_1 \iff P_1 w P_1 \cap \theta_1 (P_1) w' P_1 \neq \phi.$$

Remark. In [1], V. V. Deodhar studied explicitly the above type of intesection $P_1 w P_1 \cap \overline{P}_1 w' P_1$ when G_1 is a semisimple algebraic group over an algebraically closed field. Here $\overline{P}_1 = w_0 P_1 w_0^{-1}$ with the longest element w_0 of the Weyl group. He gave (1.2) as a corollary of his results in this case. (Replace $\theta_1(P_1)$ by \overline{P}_1 .)

The author is grateful to J. A. Wolf who suggested him the importance of the intersections of H-orbits and ${\rm H}^a$ -orbits on ${\rm G/P}$. In fact, Theorem (iv) was conjectured by him.

§2. Notations and elementary lemmas Let \underline{q} be the Lie algebra of G. Let σ and θ be the

involutions of \underline{q} induced from the involutions σ and θ of G, respectively. Let $\underline{q} = \underline{k} + \underline{p}$, $\underline{q} = \underline{h} + \underline{q}$ and $\underline{q} = \underline{h}^a + \underline{q}^a$ be the decompositions of \underline{q} into the +1 and -1 eigenspaces for σ , θ and $\sigma\theta$, respectively.

Let \underline{a} be the Lie algebra of A. Then \underline{a} is a maximal abelian subspace of \underline{p} . Let Σ denote the root system of the pair $(\underline{q}, \underline{a})$. Then P can be written as

$$P = P(\underline{a}, \Sigma^{+}) = Z_{G}(\underline{a}) \exp \underline{n}$$

with a positive system Σ^+ of Σ . Here $Z_{\underline{G}}(\underline{a})$ is the centralizer of \underline{a} in G and $\underline{n} = \sum_{\alpha \in \Sigma^+} \underline{g}(\underline{a}; \alpha)$ $(\underline{g}(\underline{a}; \alpha) = \{X \in \underline{g} \mid [Y, X] = \alpha(Y)X \text{ for all } Y \in \underline{a}\})$.

Lemma 1. Let \underline{P}' be a parabolic subalgebra of \underline{q} . Then \underline{h} + \underline{P}' = \underline{q} .

Proof. Let X be an element of P'. Then

$$\theta X = X - (X + \sigma X) + (\sigma X + \theta X) C \underline{P}' + \underline{h} + \underline{h}^a$$
.

Hence $\theta \underline{P}' \subset \underline{h} + \underline{h}^a + \underline{P}'$. Since $\underline{P}' + \theta \underline{P}' = \underline{q}$, we have $\underline{h} + \underline{h}^a + \underline{P}' \supset \underline{q}$.

Lemma 2. Let D_1 and D_2 be arbitrary H-P' double cosets in G.

(i)
$$(D_1 \cap D_2^a)^{cl} \cap D_2^a = D_1^{cl} \cap D_2^a$$

Proof. (i) It is clear that $(D_1 \cap D_2^a)^{cl} \cap D_2^a \subset D_1^{cl} \cap D_2^a$. Let x be an element of $D_1^{cl} \cap D_2^a$. Then we have only to show that $x \in (D_1 \cap D_2^a)^{cl}$. For any neighborhood V of the identity in H^a , the set HVxP' contains a neighborhood of x in G by Lemma 1. Hence $D_1 \cap HVxP' \neq \emptyset$. Since $HD_1P' = D_1$, we have

$$D_1 \cap Vx \neq \phi$$
.

On the other hand, $\nabla x \in D_2^a$. Hence $(D_1 \cap D_2^a) \cap \nabla x \neq \phi$ and we have proved that $x \in (D_1 \cap D_2^a)^{c1}$.

(ii) is clear from (i) since $D_2 \cap D_2^a \neq \emptyset$. Q.E.D.

§3. Proof of Theorem (i) and (ii)

By Lemma 2 (i), Theorem (ii) follows from Theorem (i).

Proof of Theorem (i). By [2] Theorem 1, we can write $D_1 = HxP' \supset HxP$ with $x \in U$. Considering xPx^{-1} and $xP'x^{-1}$ as P and P', respectively, we may assume that $D_1 = HP'$ and that \underline{a} is σ -stable. By Lemma 2 (ii), we have only to prove the following.

$$D_1 \cap D_2^a \neq \emptyset \implies D_1^{cl} \supset D_2.$$

Suppose that $D_1 \cap D_2^a \neq \emptyset$. Then $HP \cap D_2^a \neq \emptyset$ since $D_2^aP' = D_2^a$. Hence there exists an element y of $D_2^a \cap U = D_2 \cap U$ such that $HP \cap D_2^a \cap D_2^a \cap U = D_2 \cap U$ such that $D_2^a \cap D_2^a \cap D_2$

following.

(3.1) If $HP \cap H^a yP \neq \phi$ for $y \in U$, then $(HP)^{cl} \supset HyP$.

We will prove (3.1) by induction on the real rank of G (= dim \underline{a}). Suppose that $\underline{a} \subset \underline{q}$ and that $Ad(\underline{y})\underline{a} \subset \underline{h}$. Then by [2] Proposition 1 and Proposition 2, HP is open in G and HyP is closed in G. By [4] Proposition, we have always (HP) $C^1 \supset HyP$. Hence we may assume that

$$(3.2) \underline{a} \cap \underline{h} \neq \{0\}$$

or that

(3.3)
$$Ad(y)a \cap g \neq \{0\}.$$

$$H^{a}y^{p}y^{-1} \cap H^{a}p^{-1} \neq \emptyset \implies (H^{a}y^{p}y^{-1})^{cl} \supset H^{a}p^{-1}.$$

Hence

HP
$$\cap$$
 H^ayP \neq ϕ \Longrightarrow $(H^ayP)^{cl} > H^aP$.

On the other hand, we have

$$(HP)^{cl} \supset HyP \iff (H^ayP)^{cl} \supset H^aP$$

for $y \in U$ by Corollary of [4] Theorem. Thus the case (3.3) is reduced to the case (3.2) and so we may assume (3.2) in the

followings.

By [4] Theorem (iv), there exists a sequence $~\alpha_1\,,\dots,~\alpha_n~$ of simple roots in $~\Sigma^+~$ such that

(3.4)
$$(HP)^{cl} = H((L \cap H)(L \cap wPw^{-1}))^{cl}wPL_{\alpha_n}...L_{\alpha_1}.$$

Here $w = w_{\alpha_1} \dots w_{\alpha_n}$, L is the analytic subgroup of G for $\underline{l} = [\underline{z}_{\underline{q}}(\underline{a} \cap \underline{h}), \underline{z}_{\underline{q}}(\underline{a} \cap \underline{h})]$ and $L_{\alpha} = Z_{\underline{G}}(\underline{a}^{\alpha}), \underline{a}^{\alpha} = \{Y \in \underline{a} \mid \alpha(Y) = 0\}$ for $\alpha \in \Sigma$.

Lemma 3. $HwP = (K \cap H)(L \cap H)_0 wP$. $((L \cap H)_0$ is the connected component of $L \cap H$ containing the identity.)

Proof. Put $L_1 = Z_G(\underline{a} \cap \underline{h})$ and define a parabolic subgroup P_1 of G by $P_1 = L_1 w P w^{-1}$ as in [4] §1. Then $P_1 \cap H_0$ is a parabolic subgroup of H_0 and we have $H_0 = (K \cap H)_0 (P_1 \cap H)_0$ by the Iwasawa decomposition of H_0 . On the other hand, $K \cap H$ intersects with every connected component of H since $H = (K \cap H) \exp(\underline{p} \cap \underline{h})$. Hence

(3.5)
$$H = (K \cap H)(P_1 \cap H)_0.$$

Let \underline{n}_1 be the nilpotent radical of the Lie algebra of P_1 . Then $P_1 = L_1 \exp \underline{n}_1$ is a Langlands decomposition of P_1 . Since L_1 and \underline{n}_1 are σ -stable, we have

$$(3.6) \qquad (P_1 \cap H)_0 = (L_1 \cap H)_0 \exp(\underline{n}_1 \cap \underline{h}).$$

Let \underline{z} be the center of the Lie algebra \underline{l}_1 of \underline{l}_1 . Then \underline{l}_1 = $\underline{z} + \underline{l}$. Since \underline{z} and \underline{l} are σ -stable, we have $\underline{l}_1 \cap \underline{h} = \underline{z} \cap \underline{h}$ +

 $\underline{1} \cap \underline{h}$ and therefore

$$(3.7) \qquad (L_1 \cap H)_0 = (L \cap H)_0 \exp(\underline{z} \cap \underline{h}).$$

We get the desired formula from (3.5), (3.6) and (3.7) since $\exp \underline{n}_1 \subset wPw^{-1}$ and $\exp \underline{z} \subset wPw^{-1}$. Q.E.D.

Now we will continue the proof of Theorem (i). Suppose that HP \cap H^ayP \neq ϕ . Since HP \subset HwPL α_n ...L α_1 , we have

HwP
$$\cap$$
 H^ayPL _{α_1} ...L _{α_n} \neq ϕ

By Lemma 3, we have

(3.8)
$$(L \cap H)_0 \cap H^a yPL_{\alpha_1} \dots L_{\alpha_n} w^{-1} \neq \phi.$$

Let y' be an element of the left hand side of (3.8) and y" an element of $(L \cap H^a)_0 y' (L \cap wPw^{-1}) \cap U$. Then

(3.9)
$$H^{a}y''wP C H^{a}yPL_{\alpha_{1}}...L_{\alpha_{n}}$$

and

(3.10)
$$(L \cap H)_0 (L \cap wPw^{-1}) \cap (L \cap H^a)_0 y''(L \cap wPw^{-1}) \neq \phi.$$

Since $\sigma L = \theta L = L$ and $\dim(\underline{l} \cap \underline{a}) < \dim \underline{a}$, we have

$$((L \cap H)_0 (L \cap wPw^{-1}))^{c1} \supset (L \cap H)_0 y''(L \cap wPw^{-1})$$

by the assumption of induction. By (3.4), we have

(3.11)
$$(HP)^{cl} \supset H(L \cap H)_0 y''(L \cap wPw^{-1}) wPL_{\alpha_n} ...L_{\alpha_1}$$

$$\supset Hy''wPL_{\alpha_n} ...L_{\alpha_1} ...$$

Now consider the formula (3.9) which can be rewritten as

$$y \in H^a y''wPL_{\alpha_n}...L_{\alpha_1}.$$

As in the proof of [4] Theorem (vi), we can chooses a $y_1 \in y''wPL_{\alpha_1}...L_{\alpha_1} \cap U$ so that $y \in H^ay_1P$. Since $y \in U$, it follows from [2] Theorem 1 that $y \in (K \cap H)y_1P$. Hence

(3.12)
$$y \in (K \cap H) y'' wPL_{\alpha_n} \dots L_{\alpha_1}.$$

From (3.11) and (3.12), we have $(HP)^{cl} \supset HyP$ as desired. Q.E.D.

§4. Proof of Theorem (iii) and (iv)

Theorem (iv) follows from (ii) and (iii). So we have only to prove (iii) in this section. Recall the definition of $P = P(\underline{a}, \Sigma^+)$ in §2 and let Ψ denote the set of all the simple roots in Σ^+ .

Lemma 4. Suppose that H^aP is not open in G. Then there exists an α \in Ψ such that $\dim H^aP_\alpha > \dim H^aP$.

Proof. By [2] Theorem 1, we may assume that $\sigma_{\underline{a}} = \underline{a}$. By [2] Proposition 1, Σ^+ is not σ -compatible or $\underline{a} \wedge \underline{h}$ is not maximal abelian in $\underline{p} \wedge \underline{h}$. First suppose that Σ^+ is not σ -compatible. Then by [4] Lemma 4 and Lemma 5, there exists an $\alpha \in \Psi$ such that $\underline{H}^a\underline{P}_\alpha = \underline{H}^a\underline{P} \vee \underline{H}^a\underline{w}_\alpha\underline{P}$ and that $\dim \underline{H}^a\underline{w}_\alpha\underline{P} > \dim \underline{H}^a\underline{P}$. Hence we may assume that Σ^+ is σ -compatible and that $\underline{a} \wedge \underline{h}$ is not maximal abelian in $\underline{p} \wedge \underline{h}$.

Put $\underline{l}_1 = \underline{z}_{\underline{q}}(\underline{a} \cap \underline{h})$. Suppose that there exists an $\alpha \in \Psi \cap \Sigma(\underline{l}_1; \underline{a})$ such that $\underline{q}(\underline{a}; \alpha) \cap \underline{q}^a \neq \{0\}$. Here $\Sigma(\underline{l}_1; \underline{a})$ is the root system of the pair $(\underline{l}_1, \underline{a})$, and it is clear that $\alpha \in \Sigma(\underline{l}_1; \underline{a})$ if and only if $\alpha \in \Sigma$, $\sigma \alpha = -\alpha$. Then by [4] Lemma 3 (F), dim $H^a P_{\alpha}$ dim $H^a P$. Hence we may assume that

(4.1)
$$\underline{g}(\underline{a}; \alpha) \wedge \underline{g}^{a} = \{0\} \text{ for all } \alpha \in \Psi \wedge \Sigma(\underline{l}_{1}; \underline{a}).$$

Let β be a root in $\Sigma(\underline{l}_1;\underline{a}) \cap \Sigma^+$ and write $\beta = \Sigma_{\alpha \in \Psi} n_{\alpha}^{\alpha}$. Choose an element $Y \in \underline{a} \cap \underline{h}$ such that $\alpha(Y) > 0$ for all $\alpha \in \Sigma^+ - \Sigma(\underline{l}_1;\underline{a})$ by [4] Lemma 4. If $n_{\alpha} > 0$ for some $\alpha \in \Psi - \Sigma(\underline{l}_1;\underline{a})$, then $\beta(Y) > 0$. But since $\beta(Y) = 0$, we have proved that β is written as a linear combination of roots in $\Psi \cap \Sigma(\underline{l}_1;\underline{a})$. By (4.1) and [4] Lemma 10, we have $\underline{q}(\underline{a};\beta) \subset \underline{h}^a$. Hence

$$\underline{a} \cap \underline{q} + \sum_{\beta \in \Sigma(\underline{l}_1; \underline{a})} \underline{q}(\underline{a}; \beta) \subset \underline{h}^a.$$

Since $\underline{z}_{\underline{q}}(\underline{a} \cap \underline{h}) = \underline{1}_{1} = \underline{a} + \sum_{\beta \in \Sigma(\underline{1}_{1}; \underline{a})} \underline{q}(\underline{a}; \beta)$, $\underline{a} \cap \underline{h}$ is a maximal abelian subspace of $\underline{p} \cap \underline{h} = \underline{p} \cap \underline{q}^{a}$. But this is a contradiction to the assumption on $\underline{a} \cap \underline{h}$.

Lemma 5. If HP is closed in G, then HP = $(K \cap H)P$.

Proof. If HP = $(K \cap H) \times P$ for some $x \in HP$, then HP = $(K \cap H) P$. So taking a conjugate of P, we may assume that $\sigma \underline{a} = \underline{a}$. Since Σ^+ is σ -compatible, we can apply Lemma 3 for w = 1 to get

$$HP = (K \cap H)(L \cap H)_0 P.$$

Since $\underline{a} \cap \underline{h}$ is maximal abelian in $\underline{p} \cap \underline{h}$, we have $\underline{L} \subset \underline{H}^a$ by the

argument in [4] Proof of Lemma 6 (i). Since $H \cap H^a = K \cap H$, we have $HP = (K \cap H)(L \cap H^a \cap H)_0 P = (K \cap H)P$ as desired. Q.E.D.

Proof of Theorem (iii). Choose $x' \in xP' \cap U$ so that Hx'P has the minimum dimension among the H-P double cosets contained in HxP'. Clearly $HxP' \cap H^axP' = (HxP' \cap H^ax'P)P'$. Since $(Hx'P)^{cl} \cap HxP' = Hx'P$, it follows from Theorem (i) that $HxP' \cap H^ax'P = Hx'P \cap H^ax'P$. So we have only to prove that

(4.2)
$$Hx'P \cap H^{a}x'P = (K \cap H)x'P \text{ for } x' \in U.$$

We will prove (4.2) by induction on the codimension of $H^ax'P$. Rewriting $x'Px'^{-1}$ by P, we may assume that x'=1 and that $\sigma\underline{a}$ = a.

Suppose that H^aP is open in G. Then HP is closed in G by [2] §3 Corollary and $HP = (K \cap H)P \subset H^aP$ by Lemma 5. Hence we may assume that H^aP is not open in G.

By Lemma 4, there exists an $\alpha \in \Psi$ such that $\dim H^a P_\alpha > \dim H^a P_\alpha > \dim H^a P$. Then by [4] Lemma 3, there are two cases $(B^a) : \sigma\theta\alpha \neq \pm\alpha$, $\sigma\theta\alpha \in \Sigma^+$ and $(D^a) : \sigma\theta\alpha = \alpha$, $\underline{q}(\underline{a}; \alpha) \cap \underline{q}^a \neq \{0\}$. Put $z = w_\alpha$ in the case (B^a) and put $z = c_\alpha$ in the case (D^a) . Then we have $(HzP)^{cl} \cap HP_\alpha = HzP$ by [4] Lemma 3 (A) and (F). (Since $\theta \mid_{\underline{a}} = -1$, we have $(B^a) = (A) : \sigma\alpha \neq \pm\alpha$, $\sigma\alpha \notin \Sigma^+$ and $(D^a) = (F) : \sigma\alpha = -\alpha$, $\underline{q}(\underline{a}; \alpha) \cap \underline{q}^a \neq \{0\}$.) Applying Theorem (i), we have

Let y be an element of HP \cap H^aP. Then we have only to show

that $y \in (K \cap H)P$ since it is clear that $(K \cap H)P \subset HP \cap H^aP$. Let y' be an element of $HzP \cap yP_{\alpha}$. Then by (4.3) and the assumption of induction, we have

y' \in HzP \cap H^aP_{α} \cap yP_{α} = HzP \cap H^azP \cap yP_{α} = (K \cap H)zP \cap yP_{α} and therefore

$$y \in (K \cap H) zP_{\alpha} = (K \cap H)P_{\alpha}$$

Since $y \in H^{a}P$, we have

$$y \in (K \cap H)P_{\alpha} \cap H^{a}P = (K \cap H)(P_{\alpha} \cap H^{a})P = (K \cap H)JP.$$

Here J is the image of $P_{\alpha} \cap H^{a}$ under the projection $P_{\alpha} \to L_{\alpha}$ with respect of the Langlands decomposition $P_{\alpha} = L_{\alpha} \exp \underline{n}_{\alpha}$. We consider the two cases (B^a) and (D^a) separately.

First consider the case (B^a). We have only to show that $J \subset L_{\alpha} \cap P$. Let L_{α}^{S} denote the identity component of the semisimple part of L_{α} as in [4] §3. Since $L_{\alpha}^{S} \cap J \supset \exp(\underline{q}(\underline{a}; \alpha) + \underline{q}(\underline{a}; 2\alpha))$, we have $L_{\alpha}^{S} - (L_{\alpha}^{S} \cap J) w_{\alpha} (L_{\alpha}^{S} \cap P) \subset L_{\alpha}^{S} \cap P$ by the Bruhat decomposition of L_{α}^{S} . Since $L_{\alpha}/L_{\alpha} \cap P \subset L_{\alpha}^{S}/L_{\alpha}^{S} \cap P$, we have $L_{\alpha} - Jw_{\alpha}(L_{\alpha} \cap P) \subset L_{\alpha} \cap P$. On the other hand, we have $J(L_{\alpha} \cap P) \cap Jw_{\alpha}(L_{\alpha} \cap P) = \emptyset$ since $H^{a}P \cap H^{a}w_{\alpha}P \neq \emptyset$. Hence $J \subset L_{\alpha} \cap P$.

Next consider the case (D^a). We have only to show that J \subset (K \cap H)(L $_{\alpha}$ \cap P). In this case, J \supset L $_{\alpha}^{s}$ \cap H^a and it follows easily from the proof of [4] Lemma 3 (D) that

$$L_{\alpha} = D(1) U D(w_{\alpha}) U D(c_{\alpha}) U D(c_{\alpha}^{-1})$$
.

Here $D(x) = (L_{\alpha}^{s} \cap H^{a}) x (L_{\alpha} \cap P)$ for $x \in L_{\alpha}$. We also have

$$(4.4) \qquad \text{J}(L_{\alpha} \cap P) = \begin{cases} D(1) & \text{if } w_{\alpha} \notin N_{K \cap H}(\underline{a}) Z_{K}(\underline{a}) \\ D(1) \cup D(w_{\alpha}) & \text{if } w_{\alpha} \in N_{K \cap H}(\underline{a}) Z_{K}(\underline{a}) \end{cases}$$

since $(H^a P U H^a w_{\alpha} P) \cap (H^a c_{\alpha} P U H^a c_{\alpha}^{-1} P) = \phi$. Since D(1) and $D(w_{\alpha})$ are closed in L_{α} , we have

(4.5)
$$D(x) = (L_{\alpha}^{S} \cap K \cap H) x (L_{\alpha} \cap P) \text{ for } x = 1 \text{ and } w_{\alpha}$$

by Lemma 5. (Note that $L_{\alpha}/L_{\alpha} \cap P \stackrel{\sim}{=} L_{\alpha}^{S}/L_{\alpha}^{S} \cap P$.) From (4.4) and (4.5), we get

$$J(L_{\alpha} \cap P) \subset (K \cap H)(L_{\alpha} \cap P)$$

as desired.

Q.E.D.

References

- [1] V. V. Deodhar, On some geometric aspects of Bruhat orderings I. A finer decomposition of Bruhat cells, Invent. Math. 79(1985), 499-511
- [2] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31(1979), 331-357
- [3] T. Matsuki, Orbits on affine symmetric spaces under the action of parabolic subgroups, Hiroshima Math. J. 12(1983), 307-320
- [4] T. Matsuki, Closure relations for orbits on affine symmetric spaces under the action of minimal parabolic subgroups, to appear
- [5] W. Rossmann, The structure of semisimple symmetric spaces, Canad. J. Math. 31(1979), 157-180