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Closure relations for orbits on affine symmetric spaces under the

action of parabolic subgroups. Intersections of associated orbits
Toshihiko MATSUKI r 3 Eﬁ( %

§1. Introduction

Let G be a connected Lie group, ¢ an involution of G and
H an open subgroup of G° = {% € G | ox = x}. Then the
G-homogeneous manifold H\G is called an affine symmetric space.
Suppose that G 1is a real semisimple Lie group. Let P be a
minimal parabolic subgroup of G and P' a parabolic subgroup of
G containing P. Then the double coset decompostion H\G/P is
studied in [2] and [5], the relation between H\G/P' and H\G/P is

studied in [3]1, and the closure relation for H\G/P 1is studied in

[471.

Let ©6 be a Cartan involution of G such that ¢6 = 80. Put
K = G8 and let H? be the open subgroup of GOe ~such that KNH =
K(\Ha. Then Ha\G is éélled the affine symmetric space associated

to H\G. Let A be a 6-stable split component of P and put U
= {x €K | xAx~! is o-stablel}.

There exists a natural one-to-one correspondence between the
double coset decompositions H\G/P' and H*\G/P' given by D -+ D2
= H¥(DAU)P' for H-P' double cosets D in G ([2], [3]).
Moreover it follows easily from Corollary of [4] Theorem that this

correspondence reverses the closure relations for the double coset

decompositions. In this paper we prove the following theorem.
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Theorem. Let D and D be arbitrary H-P' double cosets in

1 2.
G.,
. _ cl 4 a
(i) D1 D D2 = D1 8] D2 £ .

(ii) ©Let I(D DZ) be the set of all the H-P' double cosets

‘Il
D in G such that D?lj DCl D D2. Then

a
2°

a,cl

a—
(D;ADy) "~ N D, = L/DGI(D1, p.) PND

2)
(iii) Let x be an element of U. Then HxP' N H3xp' =
(RAH)xP'.

(iwv) D1 N D; is nonempty and closed in G & D1 = D2.

Example. Let G1 be a connected semisimple Lie group, 61 a

Cartan involution of G,, K, = {x € G, { 0,x = x}, and P, a

minimal parabolic subgroup of G1 with a 91-stable split component

A,. Let P{ and P? be parabolic subgroups of G, containing
P,. Put G =G, x G, H=1{(x, x) €G] x €Gy}, B = ((0,%, X) €
G| x € G1} and P' = P; X P?. . Then we have natural bijections

H\G/p' ¥ pi\G, /Py
and

BN\G/P' ¥ 0, (P}I\G,/P]

by the maps (%, y) =+ x-1y and (%, y) - 61(x-1)y, respectively.
Hence by the Bruhat decomposition of GT’ every H-P' double coset

and H?-P' double coset have representatives in W(A1)‘x 1.



Consider the intersection I = H(w, 1)P' N Ha(w’, 1)p' for w,

w' € W(A,;). Since Hn H® = {(x, x) | x € K1} and since G, = K P

1 1

by the Iwasawa decomposition of G I contains elements of the

1I
form (x, 1) with x € G1 if I 1is nonempty. We have easily

(x, 1) €I & x € P;qu (\GT(Pi)w’P?.

Thus we have as a corollary of Theorem (i),

‘ i " Cl 1 1 n ) 1 11 1 ] "
(1.1) (PiwPy) ™" D Piw'P) & P wPy N 6,(Py)w'P} £ 0.

Especially we have

(1.2) (‘P1wP1)Cl3 Pw'P, &> PwP. N8 (P )w'P

1" Py 1WP, 1 F 0.

Remark. In [1]1, V. V. Deodhar studied explicitly the above

type of intesection P,wP, N 51W'P1 when G, 1is a semisimple

algebraic group over an algebraically closed field. Here P1 =

wOP1w61 with the longest element v, of the Weyl group. He gave
(1.2) as a corollary of his results in this case. (Replace 61(P1)
by PT‘)

The author is grateful to J. A. Wolf who suggested him the’
importance of the intersections of H-orbits and 5% -orbits on G/P.

In fact, Theorem (iv) was conjectured by him.

§2. Notations and elementary lemmas

Let g be the Lie algebra of G. Let o and 6 Dbe the
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involutions of g induced from‘the involutions o and © éf G,
respectively. Let g = k+p, g9g=h+g ’and g = g? + ga be the
decompositions of g into the +1 and -1 ’eigenspaces for o, 6
and 060, respectively.

Let a be the Lie algebra of A. Then a 1is a maximal
abelian subspace of p. Let I denote the root system of the pair

(g, a).. Then P can be written as

P = P(a, &) = Z,(a)exp n
with a positive system £t of I. Here ZG(Q) is the centralizer
of a in G and n =]  gla; o) (g(a; o) = {xegqg | [Y, X] =
VTP : ,

a(Y)X for all Y € al).

Lemma 1. Let P' be a parabolic subalgebra of g. Then h +

Proof. Let X be an element of P'. Then

a

X = X - (X + 0X) + (0X + 6X) CP' + h + h".

a

Hence 6P' C h + h

+

+ P'., Since P' + 6P' =g, we have h + h" +

P'D g. ' Q0.E.D.

- Lemma 2. Let D and D be.arbitrary H-P' double cosets in -

1 2
G.
o - a.cl a cl a
(i) (D,]ﬂDZ) N D2 = D1 ﬂDz.
.. cl a
(ii) D1 S D2 el D4|;‘\D2 £ 0.
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Proof. (i) It is clear that (D, an)Cl n D5 cD‘flnD;. Let

X be an element of D?lf\Dg. Then we have only to show that x &
(D1f\Dg)Cl. For any neighborhood V of the identity in Ha, the
set HVxP' contains a neighborhood of x in G by Lemma 1. Hence

D, n HVxP' # ¢. Since HD,P' =D we have

1 1 1!

D1 N vx £ ¢.

On the other hand, Vx C Dg. Hence (D1(\Dg) N Vx £ ¢ and we have

a)cl
2 .

(ii) is clear from (i) since D,ND5 # ¢. Q.E.D.

proved that x e.(D1r\D

§3. Proof of Theorem (i) and (ii)

By Lemma 2 (i), Theorem (ii) follows from Theorem (i).

Proof of Theorem (i). By [2] Theorem 1, we can write D1 =

HxP' D HxP with x € U.. Considering XPX—1 and xP'x—1 as P

and P', respectively, we may assume that D1 = HP' and that a

is 0o-stable. By Lemma 2 (ii), we have only to prove the following.

a cl
D1(\D2;£¢ - D1 DD2.

Suppose that D, N Dz # ¢. Then HP N Dg # ¢ since DgP' = Dg.

Hence there exists an element y of D?/\U = DZ{\U such that HP N

HayP # ¢. On the other hand, if (HP)CljD HyP for some y €& D2,

then it is clear that D?l > D2. Thus we have only to prove the
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following.

(3.1) If HP N HyP # ¢ for y € U, then (uP)S! 5 Hyp.

We will prove (3.1) by induction on the real rank of G (= dim
a). Suppose that a Cg ‘and that Ad(yla C h. Then by [2]
Proposition 1 and Proposition 2, HP is open in G and HyP is
closed in G. By [4] Proposition, we have always (HP)Cl D HyP.

Hence we may assume that

(3.2) anh # {0}
or that
(3.3) Ad(y)a ng # {0}.

We first show that the case (3.3) is reduced to the case (3.2).
Assume the condition (3.3). Then Ad(y)a n h® # {0} since Aad(yla
c p. Consider Ad(y)a, h? and yPy_1 as a, h and P in the

case (3.2), respectively. Then we have in the proof of the case

(3.2) that

mypy ™' 4 BORy T £ 6 => (¥ypy )%t o mipyl.

Hence

Hp o HAyP £ 6 =p (8%yp)°T > P,

On the other hand, we have

a

(#p)°L > HYyP & (#2yp)SL o u?p

for y € U by Corollary of [4] Theorem. Thus the case (3.3) is

reduced to the case (3.2) and so we may assume (3.2) in the



followings.

By [4] Theorem (iv), there exists a sequence Qprecer O of

simple roots in ot ~such that

(3.0 me)t = H(Lam) (Lawew ) eRL L

n 1

Here w = Wy seWo L is the analytic subgroup of G for 1 =

1 n ,
¢ a r ‘
[gg(gna), zg(_nh)] and L = ZG(g ), a = {Y€a | a(y) = 0}
for o € I.
Lemma 3. HwP = (Kz\H)(Lr\H)OWP. ((LnH)O is the connected

component of LAH containing the identity.)

Proof. Put L, = ZG(QI\Q) and define a paraboiic subgroup P,
of G by P, = L1wa*1 as in [4] §1. Then P,NH, is a parabolic
subgroup of H0 and we have H0 = (K{\H)O(P1f\H)O by the Iwasawa
decomposition of HO' On the other hand, KANH intersects with
every connected component of H since H = (KnH)exp(pnh). Hence
(3.5) } H = (K(\H)(P1(]H)O.

Let n, Dbe the nilpotent radical of the Lie algebra of P

1 1°

Then P1 = L1exp n, is a Langlands decomposition of P1. Since L1
and n, are o-stable, we have
(3.6) (PynH), = (LynH)exp(n,Nh).

Let 2z be the center of the Lie algebra 1 of L Then 1

1 1° 1

=2 + 1. Since 2z and 1 are o-stable, we have .;1n,g = znh +
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1nh and therefore
(3.7) (L1(\H)0 = (quH)Oexp(E(\g).

We get the desired formula from (3.5), (3.6) and (3.7) since

exp n, c wPw | and exp z C wa—T. o Q.E.D.

‘Now we will continue the proof of Theorem (i). Suppose that

HP N HayP # ¢. Since HP C HwPLa "'La , we have
n 1

a
HwP N H yPLa1...Lan £ ¢

By Lemma 3, we have

(3.8) (LAH)~ A HAYPL  ...L_ w | £ ¢.
0 a, o

Let y' be an element of the left hand side of (3.8) and y" an

element of (L(\Ha)oy'(L{\wa"1) N U. Then

a n a
(3.9) H'y"wP C H yPLa "'La
1 n
and
(3.10) (LAH) o (LAwPw ™) A (LAaEY) y"(Lawbw ') # 6.

Since oL = 6L = L and dim(lna) < dim a, we have

1

(LAH) LAy ) D (LK) y" (Lawpw )

by the assumption of induction. By (3.4), we have-

(3.11) - (up)°L 5 H(LnH)Oy".(anPWJ)wPLa .-y,
n 1

1"
o Hy wPLa "'La .
n 1

Now consider the formula (3.9) which can be rewritten as



a_n .
y wPLa "'La .

n 1

y €H

As in the proof of [4] Theorem (vi), we can chooses a Y, e

y"wPLa oLy ‘NU so that y € Hay1P. Since y € U, it follows
n 1

from [2] Theorem 1 that vy € (K(\H)y1P. Hence
(3.12) y € (KnH)y"wPL  ...L_ .
a a
n 1
From (3.11) and (3.12), we have (HP)Sl S HyP as desired.

Q.E.D.

§4, Proof of Theorem (iii) and (iv)

Theorem (iv) follows from (ii) and (iii). So we have only to

prove (iii) in this section. Recall the definition of P = P(a, gt

in 82 and let Y denote the set of all the simple roots in gt

Lemma 4. Suppose that H®P is not open in G. Then there

exists an o € ¥ such that dim HaPa > dim HaP.

Proof. By [2] Theorem 1, we may assume that oa = a. By [2]
Proposition 1, £ is not o-compatible or aph is not maximal
abelian in ppnh. First suppose that ¥ is not o-compatible.

Then by [4] Lemma 4 and Lemma 5, there exists an a € ¥ such that

#lp = H% V] HawaP and that dim HawaP > dim H®P. Hence we may

Qa

assume that ' is o-compatible and that anh is not maximal

abelian in pph.



=1
"a) such that g(a; @) n g # {0}. Here I(l,; a) is the root

Put 1, = gg(a_nl_l). Suppose that there exists an a € ‘l’nZ(_l_1;

system of the pair (1,, a), and it is clear that o € I(l,; a) if
and only if o € I, o0a = -a. Then by [4] Lemma 3 (F), dim HaPa >

dim H%p. Hence we may assume that
(4.1) gla; @) n g = {0} for all a € ¥ NI(l,; a).

a)n £* and write B n a.

Let B be a root in Z(1 = ZOLE‘P o

1,3
Choose an element Y € anh such that o(Y) > 0 for all o € 5t oo

£(l,; a) by [4] Lemma 4. If n > 0 for some o &€ ¥ - I(L,; a),

17 a

then B(Y) > 0. But since B8(Y) = 0, we have proved that B8 is

written as a linear combination of roots in ¥ N 2(11; a). By (4.1)
and [4] Lemma 10, we have gf(a; B) C Qé. Hence
and + 1 ga;B)Clﬁ.
= BEZ(;1; a) = -

Since Eg(éf\g) =1, =a+ ZBEZ(l1; a) gla; B), anh is a maximal

abelian subspace of pAh = E(\gé. But this is a contradiction to

the assumption on' anph: ' Q.E.D.
Lemma 5. If HP is closed in G, then HP = (KNH)P.

Proof. If HP = (KnH)xP for some x € HP, then HP =
(KnH)P. So taking a conjugate of P, we may assume that o0a = a.

Since £ is o-compatible, we can apply Lemma 3 for w =1 to get‘
HP = (KnH)(LnH)OP.

Since anh is maximal abelian in ppah, we have L C B by the

/‘0
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argument in [4] Proof of Lemma 6 (i). Since H(\Ha = KNH, we have

HP = (Kr\H)(L(\Ha{\H)OP = (KNH)P as desired. Q0.E.D.

Proof of Theorem (iii). Choose x'¢€ xP' N U so that Hx'P
has the minimum dimension among the H-P double cosets contained in
HxP'. Clearly HxP' n H®xP' = (HxP' A H3x'P)P'. Since (Hx'P)°1n
HxP' = Hx'P, it follows from Theorem (i) that HxP' N H¥x'P = Hx'P n

H%x'P. So we have only to prove that
(4.2) Hx'P N #H%x'P = (KANH)x'P for x' € U.

We will prove (4.2) by induction on the codimension of H¥x'P.
Rewfiting %'px' ] by P, we may assume that x' = 1 and that oa
= a.

Suppose that 1p is open in G. Then HP 1is closed in G
by [2] 83 Corollary and HP = (KNH)P C ®p by Lemma 5. Hence we
may assume that #%P is not open in G.

By Lemma 4, there exists an o € VY suqh that dim HaPa > dim

#3P. Then by [4] Lemma 3, there are two cases (Ba) : 0fo # o, obfa

€ :* and (p?) : oba @, gfa; a)ng® # {0}. Put z = w_ in the

Q
case (B?) and put z = cy in the case (D?). Then we have (Hz_P)Cl

N HP = HzP by [4] Lemma 3 (A) and (F). (Since 8]_ = -1, we have

(B%) = (A) : oa # *a, oa ¢ ¥ and (D?) = (F) : oo = -a, g(a; a)

ng® # (0}.) Apllying Theorem (i), we have
(4.3) HzP N HaPa = HzP n HZzP.

Let y be an element of HP N H®P. Then we have only to show

r/



that vy € (KnH)P since it is clear that (KaH)P C HP A HPP. Let
y' be an element of HzP n yP . Then by (4.3) and the assumption

of induction, we have

y' € HzP N HaPu n yP, = HzP N #3zP N yP, = (KNH)zP A YP,
and therefore

YE(KOHMPQ=(KnHWa.
Since vy € HaP, we have
y € (KNH)P, N H'P = (KAH) (P N H2)P = (KA H)JP.

Here J 1is the image of Par\Ha under the projection Pa > Ld

with respect of the Langlands decomposition Pa = Laexp n,- We
consider the two cases (Ba) and‘(Da) separately.

First consider the case (Ba). We have only to show that J C
La(\P. Let LZ denote the identity component of the semisimple
part of La as in [4] 83. Since L:r\J o exp(gla; a)+gla; 2a)),
we have LZ - (LZn.J)wa(szxP) C LZ(\P by the BruhatJdecbmposition_
of Li. Since La/LunP L L:/LGP, we -have L, - Jwa(La(\P) Cc
La(\P. On the other hand, we have J(Lar\P) h Jwa(Lur\P) = ¢ sSince
BP n H'w P # ¢. Hence J CL NP.

| Next consider the case (Da). We have only to show that J C

(K(\H)(La{\P). In this case, J 2 Li{\Ha and it follows easily

from the proof of [4] Lemma 3 (D) that
-1
L, = D(1) vV D(wa) v D(ca) v D(ca ).

Here -D(x) = (Lzr\Ha)x(La{\P) for x € La' We also have

{2



D(1) if w &N (a)z_(a)
(4.4) J(.Lan P) = { a KnH K

D(1) U D(w ) if w_ € Ny .(a)Zg(a)

KnH

since (%P UKW P) N (HacaPUHac;1P) = ¢. Since D(1) and D(w )

are closed in La’ we have
(4.5) D(x) = (LGKnH)x(LanP) for x =1 and w_

by Lemma 5. (Note that La/LanP i Li/LZnP.) From (4.4) and (4.5),

we get
ﬂLanP)C(KnHHLunP)
as desired. \ Q.E.D.
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