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On some recent guestions
in

equivariant. simple homotopy theory

Soren Illman

The common theme of the different sections in this paper is
the operation of restricting the transformation group in equivariant
simple homotopy theory.

In the case of a finite transformation group G one does not
encounter any fundamental geometric problems and one can directly
go on to establish formulas for the restriction homomorphism
between equivariant Whitehead groups. This 1s the topic of
Section 1. 1In the case of finite transformation groups it 1is
possible to give formulas for the restriction homomorphism between
equivariant Whitehead groups in complete generality. We have,
however, here limited ourselves to present the case where G
is an arbitrary finite group but the G-CW complexes are assumed
to be of the type where all fixed polnt sets are non-empty,
connected and simply-connected.

In Sections 2-4 the transformation group G is an arbitrary
compact Lie group. Of the results presented in these sections we
in particular want to mention the following one. In Section 4
we obtain a class of equivariant triangulations of compact smooth
G-manifolds which behaves well with respect to the operation of
restricting the transformation group to any closed subgroup H
of G . This result provides a solution of Problem 4.1 in [16].

We are in this paper concerned with equivariant simple-
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homotopy theory and the equivariant Whitehead group Whg(X) as
defined in [9]. This theory is valid for an arbitrary compact

Lie group G, and for arbitrary G-CW complexes X‘. For a
different approach, valid when G 1is a finite group and all

fixed point sets are non-empty, connected and simply connected,

we refer to Rothenberg [15]. For papers dealing with the algebraic
determination of the equivariant Whitehead group we refer to [5],
[1], [11] and [2]. In the present paper we iny'use the algebraic
determination of WhG(X) in a special case, in fact, this case

is exactly the same as the one we mentioned above 1in connection
with the paper [15] by Rothenberg.

My work on the problem considered in Section 1 was prompted
by a question of Kawakubo in a colioqium talk by him at Osaka
University in February 1987. I am very grateful to him for posing
the question. The work described in Sections 3 and 4 is to a large
extent inspired by the paper [14] of Matumoto and Shiota. It
should here be pointed out that the work presented in Sections 2,

3 and 4 represents work in progress. In my talk at the Symposium,‘
Theorem F in Section 4 was only given as a Conjecture. Except for
this change we have tried to follow the actual lecture as closely
as possible in writing this paper. For example, Theorems A, B,

C, D and Corollary E are the same as the results given as A, B,

C, D and E in the actual lecture.

A1l my work has greatly benefited from the excellent working
conditions here at R.I.M.S., and from the very kind reception I
have received both here in Kyoto and at the many other Universities
in Japan that I have visited. For all this I wish to express my

sincere gratitude.



Equivariant
problem, Mount Daimonji grand

bring solution clear

1. The restriction homomorphism Resg:WhG(X)——-+ WhH(X) in

the case when G 1s a finite group

In the case when G 1is a finite group, and H<G 1is an
arbitrary subgroup of G , there are no problems in obtaining a

well-defined restriction homomorphism
G
Recall that an element of WhG(X) is an equivalence class
SG(V,X) = S(V,X) )
where V 1is any finite G-CW complex containing X as a strong
G-deformation retract. The equivalence relation is defined as

follows:

(V,X)¥(V,X) & there is a G-equivariant formal deformation

1

rel X from V to V
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When G 1is a finite‘group a G-CW complex X consits of an,
ordinary CW ‘complex X together withra simplicial action of

G on X , such that if ge G fixes a point in an open cell 8
of X then g fixes all of ¢ pointwise. Thus, when restricting
the transformation group G to the subgroup H we automatically
obtain a finite H-CW complex X . Given a finite G-CW

pair (V,X) , as above, we dbtain a finite. H—CW pair (V,X) ,
with X a strong H-deformation retract of V . Furthermore it is
immediately seen that a G-equivariant formal deformation rel X
induces an H-equivariant formal deformation rel X . Thus, given
an arbitrary element SG(V,X)G:WhG(X) we obtain a well-defined
unique element sg(V,X) € Why(X) . The restriction homomorphism

(#) is defined by
Res%(sG(V,X)) = SH(V,X)

We wish to give an algebralc description of the restriction
homomorphism (#), when both Wh;(X) and Why(X) are given in
their algebraic forms as direct sums of ordinary Whitehead groups
of various discrete groups.

In order to simplify the situafion and our notation we shall
here assume that the G-CW complex X 1s such that each fixed
polnt set XQ , Q<G , 1s non-empty, connected and éimply connected.
In this case we have

Whg(X) 2

® Wh(WgQ) ,
(@)g

where the direct sum is over the set of all G-conjugacy classes

T
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(Q)G , of arbitrary subgroups of G . Here we have denoted
WeQ = NgQ/Q ,
where NGQ is the normalizer of @Q 1in G . Analogously we have

Why(X) wh(WgR)

&
(R)y
where the direct sum is over the set of all H-conjugacy classes
(R)H , of arbitrary subgroups of H , and we have denoted

with NyR denoting the normalizer of R<H in H
Our problem is to determine the question mark in the commutative

diagram

e

@ Wh(W
(&), (6

Reng l ?

Why (X) (g)HWh(wHR)

Whg (X)

e

As one can see from the algebraic description of Whg(X) ,
given above, the equivariant Whitehead group WhG(X)- is the
same one for each G-CW complex X  with the property that all
fixed point sets X< s Q<G , are non-empty, connected and simply-
connecfed. W(For.a general result on isomorphisms between
equivariant Whitehead.groups, see 3. Araki [2; Theorem 9.3].)

That is, in the special case that we'are,considefing here the
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actual geometry of the G-space X has no influence on WhG(X) R
and WhG(X) is in this case only depending on the group G .
Thus, our problem to determine the question mark in the above
diagram is the same one even if we take X={#} . Our problem
here, in the special case we are considering,is a purely
combinatorial problem related to the subgroup H of the finite
group G

Given a subgroup Q@ of G , representing the G-conjugacy
class (Q)g , and a subgroup R of H , representing the H-

conjugacy class (R)g , we shall define a homomorphism
f(R,Q)iWh(WzQ) — Wh(WyR)

such that the following‘holds:

If Q'e (Q)G and R'e (R)H are some other representatives
for the G-conjugacy class (Q); and the H-conjugacy class (R)y ,
respectively, then the following diagram commutes

Wh(WgQ) S8 yn (wyR)

v(g)x l& 2J y(h)x

Wh(Wge') 2B80), yn(wgR')

Here v(g)y 1s the isomorphism induced by the isomorphism
Y(g)thQ‘——* WeQ' , defined by y(g)(nQ)=(gng™1)Q' , where

ne NoQ and g 1s any element of G such that gQg'l=Qi

The isomorphism 7v(g)g 1is independent of the éhoice of the
element ge G , since an inner automorphism of a discrete group
induces the identity map on the corresponding Whitehead group.
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Thus 7Y(g)g glves us a canonical isomorphism from Wh(WGQ) to
Wh(wGQ') . The canonical isomorphism vy(h)y 1is defined analogously.
In order to give the definition of the homomorphism f£(R,Q)

we proceed as follows. Consider the homogeneous space G/Q

together with two actions on it; the right NGQ—action given by
('gQ,n) — gng ,

and the standard action of H on the left.

These two actions on G/Q commute and we denote by
H\(G/Q) NgQ

the total orbit space of the simultaneous left H-action and right
NGQ—action on G/Q . Observe that all points in an NGQ—orbit in

G/Q have the same H-isotropy subgroup. Let
[H \(6/Q)/ NGQl(g), = (H(E1@NGQ ..., Hgr@)NGQ)

be the set of all total orbits which have H-isotropy type equal
to (R)H , and where we moreover have chosen the representing
elements ng 5o e e gPQGEG/Q such that they have H-isotropy

Subgroup equal to R . Thus we have
giQei NH = s i=l,...,r

It should be observed that for a given H-isotropy type, that is,
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an H-conjugacy class (R)H , we may of course very well have
[H\(G/Q) NgQI(R), = ¢

i.e., r=0 . We denote

lenggIl 3 i:]-,"':r)

thus

For each i , 1l<isr we define §::Wh(W,Q) — Wh(WyR) by the
’ i G H

following commutative diagram

Wh (WgQ) 2! ~ Wh(WyR)

y(gi)*l 4 [l

Wh(WgQy) 23 Wh((NgQy M H)/(Q; 0 H)) 2294, wn((NgRAH)/R)

Here res and 1ind denote ordinary restriction and induction
homomorphisms between Whitehead groups. Observe that

We now set
r
$(R,Q) = 2 S : Wn(WgQ) — Wh(WyR)

(In case r=0 the homomorphism §(R,Q) 1s the zero-homomorphism.)

Then §(R,Q) 1is a well-defined homomorphism which is independent
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of the choice of the elements 81 sB8p€EG .

Theorem A. TLet X be as above. Then the following diagram

commutes
Whe (X) > (Q)GWh(WGQ)
Resg J J ? = 8¢ (R,Q)
Why(X) ~ @ Wh(WgR
H()_(R)H (WyR)

Here the notation & €(R,Q) has the obvious meaning; that is,
?z@ £(R,Q) 1is the homomorphism (betwéen the indicated direct
sums) for which the induced homomorphism from the summand
Wh(WGQ) to the summand Wh(WHR) equals € (R,Q)

If G 1is abelian we have r=1 or 0 , and when r=1 ,
i.e., when QnNnH=R , we have that

§ = rest/@ nq ¢ Wn(G/Q) — Wa(H/HNQ) = Wn(H/R)

Thus, in the case when G 1s abelian (and X is as before) }

is the direct sum of the ordinary restriction homomorphisms

resgfgf\Q , Wwhere Q runs through the set of all subgroups. of

G . This case, where G 1s abelian, is due to Dovermann-Rothenberg

[3, Lemma 3.2].



2. The restriction homomorphism Resg:WhG(X)~+WhH(X) in the

case when G 1s a compact Lie group

In this section G denotes a compact Lie group and H is
a fixed closed subgroupof G . Let X be a finite G-CW complex.

We wish to define a restriction homomorphism

(%) Resy : Whg(X) — Why(X)

When G 1s a non-discrete compact Lie group (more precisely, when
G/H 1is non-discrete) the task to obtain (¥**) as a well definedl
homomorphism requires that one first solves some geometric
problems. |
Given a finite G-CW. complex X we are first of all faced
wlth the problem of trying to give the H-space X +the structure
of é finite H-CW complex. If we manage to solve this first
problem we are still left with the question of whether our
solution gives rise to a well-defined simple H-homotopy type for
X 3 +that is, whether the obtained‘finite H-CW complex structure
on - X 1is unique up to a simple H-homotopy equivalence.
Before we continue the discusslion let me point out the
following.
Remark. One may also take the more general point of view that
the equivariant Whitehead group Whg(X) 1s defined for an
arbitrary G-space X , and the elements of Wh(X) are then the
appropriate equivalence classes of G-pairs (V,X)., where X
is a strong G-deformation retract of V , and V 1is obtalned

from X by adjoining a finite number of G-equivariant cells.
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When restricting the given action of G on X to an action of
g on X wé then have that X \iS‘ah H-space and in this generalized
context the H-equivariant Whitehead group WhH(X) automatically
has a well-defined meaning. It should however be observed that
in order to have a well-defined homomorphism (x%#%) one is still
left with the same kind of problems‘as in the case, discussed
above, when X "is assumed to be a finite - G-CW complex. One
first of all has the problem of trying to show that the H-space
V can be obtained from the H-space X by a finite number of
H—equivariént éeils, and furthermore one needs to show that this
éan be done iﬁ such a way that the obtained relative H-CW complex
(V,X) determines a well-defined uniqué element in WhH(X)

Thus we see that although the method of defining Whg(X)
for an arbitraryAG—space X does have the advantage that the
group WhH(X) 1s automatically defined it does not however help
us with the problems we encounter in trying to obtain a well-defined
restriction homomorphism (%%) . We may therefore as well return
to discuss the case where X 1is assumed to be a finite G-CW
complex.

Let us first note that a special case of the main theorem

in [12] gives us the following result.

Theorem B. Let X be a finite G-CW complex, where G 1is a
compact Lie group, and let H be a closed subgroup of G . Then
there exists a finite H-CW complex X of the same H-homotopy
type as the H-space X .-

It should be observed that it is not the H-space X itself

that is given a finite H-CW complex structure. The finite
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H-CW - complex ‘i has the same H-homotopy type as the H-space

X and ﬁ is also in other aspects a good model for the H-space
X (see [12] for more details), but no claim is made that f is
H-homeomorphic to X . 1In fact we gave in [12] an example which
shows that in general the H-space X does not automatically
inherit an H-CW complex structure from the given G-CW complex
structure on X . This example does not rule out the possibility
that the H-space X could be given an -H-CW complex-structure
in some other way.  But, in my opinion, the example in [12]
clearly indicates that the search for H-CW complex structures
on H-spaces X arising from G-CW complexes X , 1s not a very
productive line of investigation.

In [12] we were not at all concerned with equivariant simple-
homotopy theory, so no effort is made to make the construction
such that the finite H-CW complex X would be well-defined up
to a simple H—homqtopy equivalence.  However, a similar technique
as in [12], but with some important modifications, gives a proof

of the following.

Theprem C. Let H be a closed subgroup of the compact Lie group
G . Then one can associate to any finite G-CW complex X a finite
H-CW complex eshy(X) and an H-homotopy equivalence
u:X » eshy(X) 1in such a way that the construction is well-defined
up to a simple H-homotopy equivalence.

The last statement in Theorem C means that if we by some other
choices in the construction arriverat the finite H-CW complex
eshH(X)' and the H-homotopy equivalence TRED g eshH(X)' then

we have an H-homotopy commutative diagram

- 12 -
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/ N\

eshy(X) —Z» eshy(X)'

where o 1is a simple H-homotopy equivalence.

It follows from Theorem C that there exists a well-defined
restriction homomorphism Res%:WhG(X)——+WhH(X). It should also be
possible togive an algebraic description of Res% when both
Why(X) and WhH(X)¥WhH(eShH(X)) are given in their algebraic
forms as direct sums of ordinary Whitehead groups of various
discrete groups.

- However, in many cases one‘may,néed further functorial
properties of the restriction homomorphism. If K<H<G one obtains

the diagram

Resg
Whg(X) ——— Why(X)

Res%
Res%
Why (X)
in which all three homomorphism 'Res% R Res%v and Res% are well-
defined. But I cannot see that it woﬁld follow ffom Theofem C
that the diagram commutes. In other words, although Theorem C
is good enough to give us a well-defined restrictionbhomomorphism

Resﬁ s whenever H<G , 1t is not good enoughfbr‘eétablishing the

natural associativity property
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Res% o Resg = ResK

The results discussed in Sections 3 and 4 are also relevant for

the solution of this problem.

3. The rdle of G-simplicial complexes

In this section G 1is a compact Lie group. We begin by
recalling the definition of equivariant simplexes. (See [8,
Definition 1.4] and [10, Section 3].) Let Hy 5..., H, Dbe closed

subgroups of G such that Hy> Hy>...>H, . Then the standard
equivariant n-simplex of type (HO s e s ey Hn) is defined as

follows. Consider the G-space AnXG , where G acts trivially

on A, and by left multiplication on G, and define a relation

v~ in A xG  as follows. We set
(x,8)v(x,g' )& gHy, = g'Hmé G/H, , when xe€l, - A, 7 , 0Smsn
Then ~ 1s an equivalence relaion in A, xG , and we define

D) o= (ay x @)/

An(G;HO 5ee0s H
The space An(G;HO 2o Hn) is given the quotient topology from
the natural projection ©p:A xG > A (G3Hy ,..., Hy) , and we have
an induced action of G on An(G;HO 5 e e Hn) . The orbit space

of this action is 4, , and every point in A -A, ;(0Smsn) has

- 14 -
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isotropy type equal to (Hp) . We call Ap(GsHy 5.0:, H “the

n)

standard equivariant n—simplex.of type (HO 5 ey H

a) - \
Let X be a compact G-space.- A finite equiwvariant

triangulation of X consists of a finite (ordinary)simplicial

complex K. and a triangulation t:X > X/G of the orbit space,

such that for each n-simplex s ‘of K there exist closed subgroups

HO S0 s Hn of G and a G-homeomorphism
ot A (G3Hy ..., Hy) > mh(6(s))

which on the orbit space level induces a linear homeomorphism from
A, to t(s) .

If X 1is a compact G-space for which the orbit space X/G
can be given a triangulation such that all points in any open

simplex have the same G-isotropy type, then X can be given a

finite equivariant triangulation, see [10, Theorem 5.5].

Definition. A finite G-simplicial complex X is a compact

G-space X together with a finite equivariant triangulation of X .
A finite G-simplicial complex X -is:'in particular a finite
G-CW complex, see [10,>Proposition 6.17.

Our main new result here is the following.

Theorem D. Let G Dbe a compact Lie group. Then every finite.
G-simplicial complex X can be equivariantly imbedded in some
representation spéce W as a subanalytic set.

For the notion of a subanalytiésetseeIﬁx@naka (6] and [T7],

and Hardt [4].
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Thus every finite G-simplicial complex can be given the
structure of a‘subanalytic set. Furthermore, the proof of
Theorem D is such that if 1:X > W and 1i':X > W' are two G-
imbeddings given by Theorem D, then the G-homeomorphism
i'Oi_l:i(X)‘+ 1"(X) 'is a subanalytic isomorphism between subanalytic
sets. Hence every finite G-simplicial complex can be given a
canonical subanalytic set structure (up to subanalytic isomorphisms).

As a consequence of Theorem D one obtains the following result.

Corollary E. Let X be a finite G-simplicial complex, where G

is a compact Lie group. For any closed subgroup H of G the
H-space X can be given the structufe of an H—simplicial complex,
and this can be ddne in such a way that one obtains a well-defined
simple H-homotopy type for X

It should here be recalled that equivariant Whitehead torsion
is not a topological invariant. Therefore only the fact that one
succeeds in giving the H-space X . itself the structure of a finite
H-simplicial complex does not give one a well-defined simple
H-homotopy type for the‘H-space X , because an arbitrary H-
homeomorphism between two H-simplicial complexes need not be a
simple H-homotopy equivalence. Thus Corollary E gives more
information than the, interesting and pleasing, fact that the
H-space X itself can be given é finite H-simplicial complex

structure.

- 16 -
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4. Compact smooth G-manifolds

In this section G denotes a compact Lie group. Let M
pe a compact smooth G-manifold. (By smooth we mean c” )
It 1s known that M can be given the structure of a finite G-CW
complex or in fact the structure of a finite G-simplicial complex.
See Matumoto [13] and Illman [8]; as well as [10]. In these
works one uses the fact that the orbit space M/G can be
triangulated in such a way that all points in any open simplex
have the same'isotropy typé. Using a suitable 1lifting procedure
it 1s then possible to prove that M. admits the structure of a
finite G-simplicial complex. It should be pointed out that one
is here only using a topological triangulation of M/G , i.e.,
an arbitrary homeomorphism from a finite simplicial complex :onto
M/G , satisfying the additional property concerning the isotropy
type in open simplexes. |

In [lM],‘Matumoto and Shiota use subanalytic triangulations
of the orbit space M/G , and as a consequence of a certain
uniqueness property for such triangulations one obtains a uniqueness
property for the corresponding equivariant triangulations of M
In particular one obtains in this way a well-defined simple G-
homotopy type for M

In order to obtailn a subanalytic structure on M/G one
proceeds as follows. Given a compact smooth G-manifold M there
exists a real analytic G-manifold M, which is G-diffeomorphic
to M, and any two such real analytic G-manifolds are real
analytically G-isomorphic, see [14, Theorems 1.3 and 1.2]. Thus

we may . as well from now on assume that M 1s.a compact real
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analytic -G-manifold. Then there exists an equivariant real
analytic imbedding of M into some representation space W of
G , see [14, Theorem 1.1]. By classical invariant theory there
exists a G-invariant polynomial map p:W >~ R? , from "W into some
euclidean space IRM™ , which induces a proper imbedding
pW/G »R® . Thus p(W)=p(W/G) is a closed semi-algebraic subset
of R . It now follows that one obtains a subanalytic set structure
on M/G , and this structure is unique up to subanalytic homeo—.
morphisms.

The important fact about subanalytic sets in this context
i1s that there is a very good and well behaving theory of subanalytic
triangulations of subanalytic sets see Hironaka [7] and Hardt [4].
In particular every subanalytic set has a subanalytic triangulation
and any two such triangulations have a common subdivision. In
the situation we are considering one obtains that M/G can be
given a subanalytic triangulation in which all points in any open
simplex have the same isotropy type. Thus, in this case, one

obtains a commutative diagram

l

X —— M

(#) pol lp

€
X/G=K ——— M/G

where K 1s a finite simpliclal complex, t 1is a subanalytic
homeomorphism (satisfying the additional property concerning
isotropy types), and X 1is a finite G-simplicial complex and
£ 1is a G-homeomorphism.

Now, by Theorem D and the discussion following it, every
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finite G-simplicial complex can be given a canonical structure -of-
a subanalytic set. Thus it is natural to ask if we can take £

to be a~sﬂbanalytic G~homeomorphism. - In fact, in order to have

a very well working theory of equivariant triangulations it 1s
desirable to obtain a diagram like (#) with £ a subanalytic

G—homeomorphism} We now state the following result.

Theorem F. Let M Dbe a compact real analytic G-manifold, where
G 1is a compact Lie group. Then there exists an equivariant
subanalytic trianguiafion‘of FM. ) | |

The conclusion in Theorem F means that there exist a finite
G-simplicial complex X , equipped with iﬁs canoncial structure

as a subanalytic set, and a subanalytic G-homeomorphism

£:X » M, which in the orbit spaces induces an ordinary subanalytic
triangulation t:K ; M/G , where K=X/G 1is a finite simplicial
complex.

Now let H be a closed subgroup of G . If ET:X > M 1is a
G-equivariant subanalytic triangulation and we restrict the
tfansformation group to  H we obtain by Corollary E a finite
H-simplicial complex XIH s, wWith-a well-defined simple H-homotopy
type, and the H-map €|y:X|yg ~ M]Hl is an H-equivariant subanalytic
triangulatipn. This shows the following:

If we define the simple G-homotopy type of ‘M wusing the class
of G-equivariant subanalytic triangulations of M . (and likewise
define the simple H-homotopy ﬁype of M by using the class of
H-equivariant subanalytic triangulations of M) we obtain that
the operation of restricting the transfofmation group G to the

subgroup H takes the simple G-homotopy type of M to the simple
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H-homotopy type of M;

- Thus, the class of equivariant subanalytic triangulations of
compact smooth G-manifolds (made into real analytic G-manifolds)
is a good class of triangulations, and in particular they givera

solution to Problem 4.1 :in [16].
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