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G-surgery of three dimensional manifolds

R EHRBE ZAME ( Masaharu Morimoto )

1. Introduction

In this paper G will denote the cyclic group of ordrer ¢ 2.
G-actiohs on manifolds should be understood to be smooth.

Let X and Y be compact,'éonnected, oriented and
3-dimensional G-manifolds, and let f : X —=Y Ee a degee one
G-map. We are sometimes required to make f a z(p)—homology
equivalence, p prime. This paper is concerned with the problem.
Our main results are Theorems 3.3 and 3.7. As an applicatibn of
Theorm 3.7, we can show the following theorem.

6

Theorem A. There exist one fixed point actions of Ag on S,

6

where Ag is the alternating group on 5 letters and S

is the

standard sphere of dimension 6.

We will, howe&er, give the proofs of Theorems 3.7 and A at
another opportunity.

It seems interesting that, in the case [G| = 2, we get an
obstruction group W3(R[G], ['(G)) different from the Wall group
L,y(R[G]) (it may happen that W,(R[GI, r(G)) is isomorphic to

L3(R[G])). The reason for it is that our G-framed normal map f : X—>
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Y has the non-empty fixed point sets XG and YG.

The idea of this paper originates from not only Wall's surgery
theory [16] but also Dovermann - Petrie's equivariant surgery theory
[5] and [6]." |

In Section 2 we define some Witf groups in which we construct
G-surgery obstructions. In Section 3 we define G-normal maps and
G-framed normal maps and we state our main results. Sections 4 and
5 are devoted to the construction of the G-surgery obstruction and
to the proof of Theorems 3.3.

In the present paper, the orientation of the boundary 9X of an

oriented manifold X is given so that, on the boundary,

the outward normal direction + the orientation of 29X

= the orientation of X.
2. The Witt groups

Our general reference of this section is [2].
Let A be an associative ring with 1  and with an involution
- satisfying T =1, a +b=a+b and ab=ba for a, b €.

Mn(A) denotes the set of nXn-matrices whose entries are in A. Let

' be an additive subgroup of A such that
(T) {a+a| aeh CT Claeh]| a=a}, and

(F'2) alfa C€ I' for all a € A.
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such T 1is called a ring parameter of A.

* ,
For an element (xij{ of Mn(A), (xij) is defined to be

(X..). In the following an arbitrary element in M2n(A) is often

X, .
Jji

written in the form:

with A = (aij), B = (bij), C = (cij) and D = (dij),

where i and Jj run from 1 to n. Let SUn(A, I') be the group

of non-singular matrices in MZn(A) which satisfy
(1) | . « | = . and

. * *
(2) the diagonal coefficients of BA and DC - lie in T.

We denote by TUn(A, ') the subgroup of SUn(A, ') which consists

of the elements with B = 0. We put
0 1
[e} =
-1 0 .

Then ¢ belongs to SU1(A, ') for any ring parameter T of A.

We have the standard stabilizers j : SUn(A, ry — SUn+1(A, r)

n,n+1
definded by



A B
. 1
Jn,n+1(x) c D
1
J
A B
for x = in SUn(A, .
C D
With respect to the standard stabilizers, we define SU(A, T) = l%m

SUn(A, 'Y and TU(A, T) = l%m TUn(A, ['). We denote by RU(A, T)
the subgroup of SU(A, T) which is generated by TU(A, ') and o.
It is well-known (see [2, Corollary 3.91) that RU(A, T) includes
the commutator subgroup CU(A, T) = [SU(A, T), SU(A, T)] of SU(A,
r).

Definition 2.1. The Witt group of dimension three W3(A, r)

is defined to be the quotient group SU(A, T)/RU(A, T). 1In the case
where (1) A is commutative, (2) - is trivial and (3) T = A, we

use w3(A) instead of w3(A, r).

Lemma 2.2. If A 1is a commutative local ring with the trivial

involution, then W3(A, ') = 0 for any ring parameter T.

We omit the proof.
It is important to estimate the commutator subgroup CU(A, T)

of SU(A, T) for applications. We introduce a result of Bak [2].
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For an integer k with 1 ¢k ¢n and for x € ', we define

an element ,Ek(x) of TUn(A, ') by (1) a,, =1=4d P < i n,

ii Cii

A

(2) Cpx = X and (3) all the other entries are 0. If 1 < h, k

[

n and h £ k and x € A, then we define ehk(x) (resp. th(x))

TUn(A, 'y by (1) a;; = 1 = dii I O S n,’(2) Chk = ¥ = Cpp
(resp. -Skh = X = dhk) and (3) all the other entries are 0. FU(A,
') is the subgroup of RU(A, T') generated by (1) o, (2) Ek(x),
(3),ehk(x) and (4) th(x), where n varies over all positive

integers, and h, k and x take all possible values. Then

Corollary 3.9 of [2] asserts:
Lemma 2.4. It holds that CU(A, T) C FU(A, T).

Remark 2.5. Hence for any x € SU(A, T) we have
TU(A, T)xFU(A, T) = xRU(A, T) as subsets of SU(A, T'). This is a

key point of surgery theory.

We define Oy € SUk(A, ') by (1) a;y = 1 = dii if i # k,

(2) by =1 =-c, and (3) all the other entries are 0. We denote

the stabilized element in SUn(A, '), n > k, from Oy again by Oy

It holds that

(2.6) Ky, (x) = ok3ehk(x)ok,.

Proposition 2.7. FU(A, T) is generated by O + sk(x) and

ehk(x), where h, k and x vary over all possible values.




Let R be a commutaitve ring with 1. For a finite group G,
we denote by R[G] the group ring of G With coefficient ring R.

-1 for a € R

R[G] has the involution - satisfying (ag)~ = ag
and g € G.
'Ih the rest of:this paper we let G be {1} the trivial group
or C2 - the group of order two.
' Let I be the ring of integers and Z(0) the localization of
Z at a pfime p. Hereafter R denotes one of Z and z(p).
Remark 2.8. (1) 1In the case where 1/2 € R, the ring
parameter T of RI[G] is unique, that is T = R[G]. 1In the case
we have W, (R[G], T) = W3(R[G]). (2) Let L3(RIG]) be the Wall
group of R-homology equivalence and of dimension 3 + 4n > 7 (see

[1]). Then we have L?(R[G]) = W,(R[G], 2R[G]).

Definition 2.9. We define the ring parameter T(G) by I'(G)
= 2R[G] if G = {1} and I(G) = { 2a + bg | ae R and b e R}

By definition we have Wi(R[G], T(G)) = Lg(R[G]) if G = {1}.

Proposition 2.10. It holds that (1) w3(z {G]) = 0 for any

(p)
prime p and (2) w3(z(2)[G], 'Y = 0 for any ring parameter T.

Proof. This follows from Lemma 2.2.



3. G-normal maps

Let G be {1} or C In the present section we give the

2 L]
definition of a G-normal map f : (X, 9X) —s= (¥, 3Y) and a
%
G-framed normal map (f, b) : (X, 9X; TX) —== (Y, 0Y; f £).
Let Y be a ¢ompact, 1-connected, oriented, 3-dimensional

G-manifold with boundary 29Y (possibly 29dY = ¢).

Remark 3.1. The case where Y is the unit disk D(V) of a
real G-module V is important for applicatiohs. The reader may
restrict the following arguments to the case HZ(Y) = 0.

If G =C, , then we require that

2
(N1) YG is not empty nor Y, and each elemant of G preserves the
orientation of Y.

G

This implies that each connected component of Y has dimension

one. Let X be
(N2) a compact, connected, oriented, 3-dimensional G-manifold

and X1 a G-subcomplex of ° X with dim X

some smooth G-triangulation of X.

1 & 1 with respect to
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Definition 3.2. We call a G-map f : (X, 9X) —> (Y, 3Y) a

G-normal map if the following (N3) - (N5) are satisfied:
(N3) £ : (X, 9X) — (Y, 9Y) has degree one.

(N4) £|3dXx : 89X —= 3Y 1is a G—homotopy equivalence.

G

then f£° : (x©

G

(N5) If G =C , 3x%) —= (¥%, 3Y®) is a homotopy

2 ’

equivalence.

We put X_ =¢ if G = {1} and X = Xx° if G=C, .
] ] 2
If a G-normal map f : (X, 9X) —= (Y, 9Y) with a G-subcomplex
X1 Qf X is given, then by an argument similar to [5] and [6] we

can give an element o(f) of W3(R[G]) with the property:

Theorem 3.3. If o(f) = 0 1in W3(R[G]), then f : (X, 9X)

—= (Y, 9Y) can be converted to a G-normal map f' : (X', 9X')

— (Y, 0Y) with the following conditions (S1) - (S3), by

G-surgery relative to the set 3x U x;, \U X, :

v ] - ' =
(S1) 9X' = 9X, X 1 = X1 and X s = XS .

(s2) f'fax' U x', \U x'(=flx U x, U X, .

(s3) f' : X' —= Y is an R-homology equivalence.
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Remark 3.4. The correspondence : a G-normal map f +—> o(f),
may be multivalﬁed. When we construcﬁ o(f), we are required‘to
make various choices. Thus‘.c(f) may depend on the choices for the
construction. Theorem 3.3 says that if we have o0(f) = 0 from one
series of the choices, then f can be converted to nice f'. in
other words, avG—normal map f corresponds to a subset {o(f)} of
W3(R[G]); if {o(f)} 4implies 0, then f can be converted to nice
f'. Nevertheless, since most of W3(R[G])'s' vanish by Proposition

2.10, we are not too nervous about the ambiguity.

Let & be a real G-vector bundle over Y of fiber-dimension
. . . ,
3. If b: TXeV —=>f £V , V areal G-module, is a G-vector

bundle isomorphism (covering the identity map on X), then we

% .
roughly write b : TX —> f £ and call it a stable G-vector bundle

isomorphism.

Definition 3.5. We call a pair (f, b) of a G-normal map f :
(X, 9X) —= (Y, 9Y) and a stable G-vector bundle isomorphism b :

* o
TX —= f £, a G-framed normal map.

Remark 3.6. Since we want to do G-surgery relative to the
singular set, the normal part of bundle data of the singular set is

needless.



i

%
;f a G-framed normal map (£, b) : (X, 9X; TX) —= (Y, 9Y; f &)
is given, then we can give an element o(f, b) of W3(R[G], r'(G))

with the property:

Theorem 3.7. If o(f, b) = 0 in W3(R[G], ['(G)), then the

G-framed normal map (f, b) : (X, 9X; TX) —> (Y, 9Y; f*g) can be

converted to a G-framed normal map (f', b') : (X', 3X'; TX')-~4?

* .
(Y, 9Y; f' &) satisfying the conditions (S1) - (S3) in Theorem 3.3,

by G-surgery relative to 3ax U X, &} X, .

4., Definition of o(f) in W3(R[G])

In this section we show how the algebraic object o(f) <«
W3(R[G]) is obtained from a G-normal map f s (X, 9X) —= (Y, 3Y)-
with a subcomplex X1 , dim X1 < 1, defined in Section 3. We sho&
it only in the case G = C2 and R = Z. The reader will easily
analogize it for the case G = {1} and R = Z,

Remark 4.1. If we use o(f, R) instead of o(f) <€ W (R[G])
to make the coefficient ring clear (for gereral R), then o(£f, R)
is the image of o(f, Z) by the natural homomorphism from W3(z[G])

to W3(R[G]).

In the following G is C2 with generator g and the
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coefficient ring of homology groups is Z. Let f : (X, 3X)-——é~(Y,

dY) be a G-normal map with X1 C X.

It holds that dim YG = 1 = dim XG. Take connected components

G G G

¢ ‘and X°, of X’ such that f£]| : (xS, , x%,) —

Y, of Y

(YG* ’ BYG*) has degree one. Fix a point x, in Int XG* , and

take a G-invariant c;osed disk D with the center Xy o Take a

point y, in Int YG* and a G-invariant closed disk D' with the

center y,. Further fix a point vy,, in 90" €.

We denote the field of compléx numbers by €, the unit circle

' and the closed unit disk of € by D-.

of € by S

embeddings which generate HT(X) and lie in general position.

Since the normal bundle of hi is trivial, we have an orientation

preserving embedding fi : s x D2 —>x - (3% U x, U x¢ U D)

such that F,(x, 0) = h(x) for x €S'. Weput U, = ImF, and

Ui = Ui U gUi B We Suppose that U1 ¢ o eey Un ’ gU1 # eos ey gUn

are mutually disjoint. Take a closed tube Ti connecting D with

. G = n =
u; in x- (x U x, U xUmtd\J \ ;. Int U;) such that

T1 ¢ eeey Tn ' gT1 ; ecey ng are mutually disjoint. We set

T, = T, U qT; .
U=0 U\, (T, U T,

X, = X - Int U and

- 11 -
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- - =y
Y0 =Y Int D'.

Figure 1.

Deform f : X —> Y by a G-homotopy of G-normal map : (X, 9X) —

(Y, 3Y) so that £(T;) = {yu} = £(U;), £(U) = D' and £(X,) = Y.

If h : Hn(A, A')-—4>-Hn(B, B') is a homomorphism, then we put

Kn(h) = Ker h. If there is no confusion, we use Kn(A, A') instead

of Kn(h).

- 12 -
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The restrictions of f give the kernels

Ké(ﬁ, 3U) = Ker[Hz(E, aﬁ)——>H2(B', aD') 1,

1<2(xO , 00) = Ker[HZ(XO ’ at'J)——>H2(Y0 , aDb")1,
K1(aﬁ) = Ker[H1(aE)——>H1(aB')],
K,(X,) = Ker[H (X)) —>H,(¥;)] and

K, (U) = Ker[H, (U) —> H1(B')].

These make the exact sequence:

—TTTTE _ _ —a
0 K, (U, 3U) ////////)7'K1(x0) 0
/ K1 (aU) \
0 Ky (X o dU) K, () 0
— > ~_ 7

. 1 - ‘
We define e fi : S — BUi by ei(x) = fi(1, x) and fi(x) =

fi(x, 1) for x € S'. We call e; (resp. f.) the meridian (resp.

e : = .. . n =
longitude) of fi .- K,(3U) is isomorphic to @ ,_, H, (30, ).

- 13 -
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K1(aﬁ) is regarded as a Z[G]-free module with the basis {e; , ...,

e £, 4 «ees £ 1. KZ(E, 85) and K, (X, , dU) are treated as

1
submodules of K1(35) in the following. Obviously Kz(ﬁ, d9U) has

n'

the z[G]-basis {e, , ..., e }. Since K,(U) has the Z[G]-basis
thy 4 «.ey h }, we have the splitting s : K1(ﬁ)-—f> K1(85) defined
by s(h;) = £, . We regard K1(ﬁ) ‘as a submodule of Kj(Bﬁ) with
respect to s. K (X)) and K (X, , d9U) are 1I[G]-projective,
hence I[{G]-free. KZ(X0 , 8U0) is a direct summand of K1(8ﬁ).
Furthermore by the Poincaré duality and the universal coefficient

theoren, K2(x 90) has the half rank of KT(aﬁ).

0 14
Since Ki(aﬁ) = H1(3ﬁ), we have the intersection form AO':
K1(35) x K1(Bﬁ)-——> Z, hence we have the (equivariant) intersection

form X : K1(35) x K1(aﬁ)-—->-z[c1 defined by
Ax, y) = Ao(x, y) + AO(x, gylg for x, y € K1(Bﬁ).

Then A satisfies A(x, ay) = aA(x, y) and A(x, y) = -A(y, x)
for x, y € K1(3§) and a < Z[G]. It holds that AX(e,, ej) =0 =
3U)) = 0.

ME; fj), Aey fj) = §.. and A(Kz(x ouU), K, (X

ij 0’ 0o’
Hence all Kz(ﬁ, 3u), K1(ﬁ)‘ and K, (X, , dU) are hyperbolizers of

(K, (30), A).

There are I[G]-isomorphisms a : Kl(aﬁ)-——> K1(85) such that
a(Kz(ﬁ, 3U)) = Ky (X, o dU) and o preserve A. Fix one of them.

We write a in the form:

- 14 -
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t

G(e1 7 e e e r f ? e eceoy fn) = Q(a) (e I3 f ? ey f )

1 1 s e oo e

n

by a 2nx2n-matrix ¢(e). ¢(a) belongs to SUn(Z[G], I[G]).

Remark 4.2. Another choice of a E[G]-isomorphism : K1(85)-—e>

K1(aﬁ) above, determines an element in TU_(Z[G], Z[G])%(a).

Definition 4.3. We define o(f) to be the coset [®(a)] in

W3(Z[G]) = SU(Z[G], z[{G])/RU(Z[G], Z[G]).

Here o(f) may depend not only on f but also on f1 ; seer

f , etc.
n

5. Proof of Theorem 3.3

We prove Theorem 3.3 only in the case G = C and R = Z. The

2

proof of the case G =‘C2 and R =1 needs further WOrk.: G. A.

(p)
Anderson generalized Wall's surgery theory to the surgery theory
with coefficient ring z(p) . His technique [1, pp. 69 - 70] works
Well here, too.

Fbr simplicity we use( SU, TUn , RU, ... instead of

SUn(Z[G], 2[G]), TUn(Z[G]. Z[G]l), RU(Z[G], Z[G]), ... respectively.

-~ 15 -



l’)’)

o b

Stabilization. We defined matrices Oy < SUk by (1) a4 = 1 =

=1 = - Crk and (3) all the other entries

d,., if i #k, (2) b

ii kk

are 0. We denote the stabilized element in SUn s, n > k, from Ok

Kk again by Op » We define Zn‘ to be the product o0, 0, ...

in SU 1 2

Take another orientation preserving trivial embedding fn :

+1
1 2

S x D" —> Int X such that 1Im f lies in a small neighborhood

0 n+1

of D. Consider the effect by adding fn+ to {51 , £ ceey fn}

1 2!
on the matrix ¢®(a) SUn’ We use Y¥(f) instead of ¢(a) in order

to put stress on the map f. The matrix VY(f) éASUn C SUn is

+1

replaced by Y¥(f)o_ . . Let £' : (X', 3X') —= (Y, 9Y) be the

n+1

resulted G-normal map by G-surgery of f along fn+ We use the

1 L ]
above f1 R fz s eee # fn and the dual of fn+1 to determine

‘I’(f')E.SUn+1 . Then we have Y¥(f') = ¥(f) as matrices in SUn+1

Hence for the stabilized element x e SUn from VY(f) = d(a) €

+k
SU, , we can get a G-framed normal map f" with VY(f") = x by

G-surgery of f relative to 3x U X, U xC.

It is easy to see that if ¢(a) = ¥Y(£f) is Zn , then f is a
homology equivalence. Since FU implies Zn ,vfor the proof of

Theorem 3.3 it is sufficient to show that
(5.3) if a matrix x € Y(f)RU 1is arbitrarily given, then we can

obtain a G-framed normal map f' with V¥(f') = x by G-surgery of

f relative to ax U X1_kj xC.

- 16 -
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By Remaks 2.5 and 4.2, the matrix x in (5.3) may be restricted to
the case x € Y(f)FU. We recall Proposition 2.7. Each element of
FU is a product of matrices of type Op 7 Ek(y) and ehk(y), where -
y 1lies in {1, -1, g, -g}. It is sufficient to find G-surgery
corresponding to the matrix changes : ¥Y(f) ——= ¥(f)z, where. z are
0, €, (y) and €., (y).

It is well known that G-surgery along fk corresponds to the

matrix change : Y(f) —> ¥(f)o, .

Assertion 5.4. By some replacement of fk » ®(a) 1is converted

to ®(a)e, (+1).

Proof. We prove it in the case Ek(i1) = 81(1).

Let h,' = h, and define Z ' : s' x p2 —> x by ' (x, y) =

f1(x, x—1y) for x € S1 and y e p2. Then the corresponding f1'

and e,' -are given by f1'(x) = f1'(x, 1) = f1(x, x-1) and e1'(x)

= f1'(1: X) = f1(1' X) = e1(x) for x e S1. Hence we have e, =

€4

- ' ' . 5
and f1 = e, + f1 in K1(EU).

- 17 -



Figure 2.

Define a Z[G]-isomorphism o' : K1(3ﬁ)-—f> K1(3ﬁ) by

(!'(e.", ez, .co'e ';f1',f ’ .o.,f )

n

t
= @(a)&.'(']) (e.‘.' e2 g oseyg en ’ f1" f2 § oeeyg fn)o

o0) and o' preserves A. This

' 1 1 -
Then o (KZ(U' ?U)) = KZ(X0 ’

‘completes the proof.

Assertion 5.5. By some replacement of fk r ®(a) 1is converted

to @(a)ek(ig).

- 18 =
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Proof. We prove it in the case Ek(ig) = 51(g).
Take a thin G-invariant closed tube T connecting T1 with

gT1 along 9D in X, . Without loss of generality, we may assume

0
£(T) = {Yyyleo

Figure 3.

We put W =U, U T1 U TU 9T, U gu, ( C X). Denote by w",
f1", e1" and f1" the copies of W, f1 » €, and f1

respectively. There is a G-diffeomorphism B : W —> W" satisfying

- 19 -
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B o e, = e1" as maps and 8 o f1 = ge1" + flﬂ‘,in H1(8W")._ We
assume this here and continue the proof., The way to obtain such 8

will be shown after the éompletion of the left part of proof.

Define h1' : 8" —> X and f1' : s! x p? —=x by h1' = 3_10
h," and 51' =8 1o f1" and put U1' = Im f1'. We take a closed
tube T1' connecting D with u,' along 9T, - T in T, » and we
set |

ﬁ1| P U1' kj gU1l '

mor ' '

S8 - Mmoo SR n m 7

g' = b U (T,''U 9,") U Ui=2 (T, U 0,) and

xo' = X - Int T.
We put e,' = L e," and f,' = L £,". K1(3ﬁ') is regarded
as a EZ[G]-free module with basis {e1', €y 1 eeer € f1', f2 '

ceey fn}. By the construction there is a Z[G]-isomorphism Yy :
K, (30') —> K (30) such that (1) Y(K,(T', 30')) = K, (X', 30'),
(2) vy preserves»the (equivariant) intersection form A' on
K1(Qﬁ') and (3) Y has the matrix form ®(a)e,(g), that is, .

’ f1',.f2 g eeeyp fn)

- 20 -
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= ¢(a)€1(g) ‘en"l e2 ’ LR 4 en ’ f1" f2, ® e ey fn)o

This completes the proof under the assumption of existence of 8.

Now we show the way to obtain the G-diffeomorphism B : W —> W

( = W")o

We regard W as the union of 3-dimensional disks H(1), H(0)

and H(g) with the picture:

H(1) H(g)

H(0)

ettt e are t— —

Figure 4.

Here the action of g on W is regardéd as the rotation with angle
7 around the axis XG* . We assume that H(g) = gH(T) and H(O0)

is G-invariant. We identify H(1) with I x D2, I = [0, 1], and

- 21 -



128

H(0) with D2 x I, where the action of ‘g on H(0) is the
rotation oﬂ D2 x I with angle 7 around {0} X I. We suppose
that {0} x D of H(1) lies in D° x {1} of H(0), and {1} X
D> of H(1) lies in' D® x {0} of H(0). Let B, : W—>W be
the G-diffeomorphism given by twisting H(0) once around XG*.

That is, B,(x, t) = (x exp(21t Y=1), t) for (x, t) € D2 x I = H(0)

and 81(y) =y for ye H(1) U H(g). Then f1 is mapped by 81
to f1 + e, + ge, (caution: not f1 + ge1) as elements of the
homology group H1(8W). Let 82 : W—>W be the G-diffeomorphism
given by twisting H(1) and H(g) equivariantly once in the
opposite direction around I X {0}. That is Bo(t, x) = (t, x
exp(-2nt‘Vt7)) for (t, x) € I X D2 = H(1), Bz(y) =y for ye
H(0) and 62(92) = ng(z) for gz € H(g). Then f1 is mapped by
82 to f1 - e as elements of H1(8W). The required map B 1is

the composition 81 ° 82 of 81 and 82 .

Remark 5.6. It will turn out to be a key to our G-surgery of

the framed case, that f1 and f1' : S1 x D2 —> W are isotopic to

" each other.

Assertion 5.7. By some replacement of fi y ®(a) is

converted to @(a)eij(y) for arbitrarily given y ¢ {1, -1, g9, -9}

and i # j.

Proof. The reader may have the strategy for the proof on the

analogy of ordinaly surgery theory as follows. Fix a G-invariant
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Riemannian metric on X. Consider the effect of varying hi by
regular homotopies. Here fi is also varied by parallel
translation along the regular homotopies. We should, of course, do
it by using the covering : X - x© —> (X - XG)/G. As in ordinary
surgery theory, it seems possible to convert the matrix ¢(a) to
@(a)sij(y) by some choice of an element in the regular homotopy
class of hi .

There is, however, a more elementary way of proof. Since the
proof is quite similar to the proof of Assertion 5.5, we give only a
rough sketch.,

We suppose that eij(y) = €12(1).

.Take a connecting tube T from T.| to. T2 which does not

meet with gT. We have two disjoint handle bodies of genus two:
H(1) = U, U T, T U T, U U, ~and H(g) = gH(1).

If we forget the G-action of W in the proof of Assertion 5.5, then
W 1is homeomorphic to H(1) and H(g). Thus we consider the effect
of twisting H(1) (simultaneously H(g)) as W was dohe by B.

By the twisting, fz is also replaced by a new emmbedding fz'.

This fz' is isotopic to the original fz . We can suppose fz' =
fz . By the twisting H(1) and H(g), we can convert the matrix
®(a) to &(a)e,,(1).

The other cases are quite similarly shown.

We complete the proof of Theorem 3.3.
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