ON FINITE GALOIS COVERINGS OF COMPACT COMPLEX MANIFOLDS

Makoto Namba

1. Introduction. A finite branched covering of an n-dimensional connected compact complex manifold M is, by definition, an irreducible normal complex space X together with a surjective proper finite holomorphic mapping $\pi: X \to M$. A point $p \in X$ is called an unramified point if π is locally biholomorphic around p. Otherwise, p is called a ramified point. The set of all ramified points forms a hypersurface R_{π} of X, called the ramification locus of π . The image $B_{\pi} = \pi(R_{\pi})$ of R_{π} is called the branch locus of π , which is a hypersurface of M.

A morphism (resp. isomorphism) of $\pi: X \to M$ to $\pi': X' \to M \text{ is a holomorphic (resp. biholomorphic) mapping}$ $\phi: X \to X'$ such that $\pi' \phi = \pi$. An automorphism of π is

called a <u>covering transformation of π .</u> The set of all covering transformations of π forms a group G_{π} under composition, called the <u>covering transformation group of π .</u> The covering $\pi: X \to M$ is called a <u>Galois covering</u> if G_{π} acts transitively on every fiber.

Let $\pi: X \to M$ be a finite Galois covering and $B_{\pi} = D_1 U \ldots U D_s$ be the irreducible decomposition of the branch locus B_{π} . For each non-singular point q of B_{π} , every point $p \in \pi^{-1}(q)$ is a non-singular point of both X and $\pi^{-1}(B_{\pi})$. Moreover, there are coordinate systems (w_1, \ldots, w_n) and (z_1, \ldots, z_n) around q and p, respectively, such that $q = (0, \ldots, 0), p = (0, \ldots, 0), B_{\pi} = \{w_1 = 0\}, \pi^{-1}(B_{\pi}) = \{z_1 = 0\}$ and

$$\pi : (z_1, ..., z_n) \rightarrow (w_1, ..., w_n) = (z_1^e, z_2, ..., z_n),$$

locally. The positive integer $e=e_j~(\geqslant 2)$ is constant as a function of q on D_j - Sing B_π for every D_j and is called the <u>ramification index of</u> π <u>around</u> D_j . (Sing

 B_{π} is the singular locus of B_{π} .) In this case, π is said to <u>branch along the positive divisor</u> $D = e_1D_1 + \dots + e_sD_s$ on M.

The purpose of this note is to give a sufficient condition for the existence of a finite Galois covering $\pi: X \to M$ of M with non-singular X which branches along a given positive divisor $D = e_1D_1 + \ldots + e_sD_s$ ($e_j \ge 2$) on M. The existence of such coverings for some special cases were proved in the interesting papers Hirzebruch [3], Höfer [4] and Kato [6]. In this note, we make use of Selberg's theorem on the monodromy representation of a Fuchsian differential equation.

and $B = D_1 U \dots U D_s$ be its irreducible decomposition.

Figure 1

We fix a point q_o (M - B once for all. Let γ_j be a loop in M - B starting and terminating at q_o encircling a point of D_j - Sing B in the positive sense as in Figure 1. We identify γ_j with its homotopy class in the fundamental group $\pi_1(M - B, q_o)$. Let e_1, \ldots, e_s be integers greater than one. We denote by

$$J = \langle \gamma_1^{e_1}, \ldots, \gamma_s^{e_s} \rangle^{\pi_1}$$

the smallest normal subgroup of $\pi_1(M$ - B, $q_o)$ which contains $\gamma_1^{e_1}, \, \ldots, \, \gamma_s^{e_s}$.

For a subgroup K of $\pi_1(M-B,\,q_o)$ with J (K, we consider the following condition:

Condition A. If γ_j^d belongs to K, then $d\equiv 0$ (mod e_j) for every j (1 $\leq j \leq s$).

Then we have

Theorem 1 (Namba [8]). There exists a finite Galois covering $\pi: X \to M$ which branches along $D = e_1D_1 + \dots + e_sD_s$ if and only if there exists a normal subgroup K of

 $\pi_1(M-B,q_0)$ of finite index which contains J and satisfies Condition A. The correspondence

$$\pi \rightarrow K = K(\pi) = \pi_*(\pi_1(X - \pi^{-1}(B)))$$

between (isomorphism classes of) such π 's and such K's is one-to-one. ${\tt G}_\pi$ is isomorphic to $\pi_1({\tt M}$ - B, ${\tt q}_o)/{\tt K}.$

Henceforth, we suppose that B is simple normally crossing. For any point q $\{$ B, we take a local coordinate system (w_1, \ldots, w_n) around q such that $q = (0, \ldots, 0)$ and $B = \{w_1 \ldots w_t = 0\}$ locally. We may suppose $D_j = \{w_j = 0\}$ locally for $1 \le j \le t$.

Figure 2

Let $\hat{\gamma}_j$ be a loop in M - B starting and terminating at q_o encircling a point of D_j - Sing B near q in the positive sense as in Figure 2. $\hat{\gamma}_j$ is then conjugate to γ_j in $\pi_1(M-B,\,q_o)$. Note that $\hat{\gamma}_1,\,\ldots,\,\hat{\gamma}_t$ are mutually commutative.

For a subgroup K of $\pi_1(M-B,\,q_0)$ with J (K, we consider the following condition:

Condition A'. If $\hat{\gamma}_1^{d_1} \dots \hat{\gamma}_t^{d_t}$ belongs to K, then $d_1 \equiv 0 \pmod{e_1}, \dots, d_t \equiv 0 \pmod{e_t} \text{ for every point } q \notin B.$

Then, as a special case of Kato [5], we have

Theorem 2 (Kato). In Theorem 1, if $K = K(\pi)$ satisfies Condition A', then X is non-singular.

3. Fuchsian differential equations. Let B = D₁ U ... U D_s be as above simple normally crossing. Let Ω be an $(r \times r)$ -matrix-valued meromorphic 1-form on M such that $d\Omega + \Omega \wedge \Omega = 0$ and such that Ω is holomorphic on M - B.

For an unknown r-vector-valued function Y, the differential equation

$$dY = Y\Omega^* \qquad (1)$$

(of order r) is called a Fuchsian differential equation with regular singularity along B, if, for every point q $\{$ B, Ω can be locally written as

$$\Omega = A_1(w) \frac{dw_1}{w_1} + \dots + A_t(w) \frac{dw_t}{w_t} + A_{t+1}(w) dw_{t+1} + \dots + A_n(w) dw_n,$$

around q, under the notations in §2, where $A_j(w)$ are $(r \times r)$ -matrix-valued holomorphic functions around q. In this case,

$$Res_{D_{j}} \Omega = A_{j}(q) \qquad (1 \le j \le t)$$

is a constant matrix on D_j , called the <u>residue</u> of Ω at D_j .

Theorem 3 (Gérard [2], Yoshida-Takano [10]). A fundamental matrix solution F(w) around $q \in B$ of the Fuchsian differential equaiton (1) with regular singularity along B can be written as

$$F(w) = w_1^{C_1} \dots w_t^{C_t} w_1^{N_1} \dots w_t^{N_t} G(w),$$

where C_1 , ..., C_t are mutually commutative constant matrices,

 N_1, \ldots, N_t are diagonal matrices whose components are non-negative integers, and G(w) is an $(r \times r)$ -matrix-valued holomorphic function around q with detG(w) nowhere vanishing. Moreover, if none of the differences of the eigenvalues of $Res_{D_j}^{\ \ \ }\Omega$ are non-zero integers for $1 \le j \le t$, then C_j and N_j can be so chosen that $N_j = 0$ $(1 \le j \le t)$ and C_j is conjugate to $Res_{D_j}^{\ \ \ }\Omega$ $(1 \le j \le t)$.

4. Existence of finite Galois coverings. Let $B = D_1$ U ... U D_s be as above simple normally crossing. Suppose (i) $\pi_1(M-B, q_0)$ is finitely generated. (This condition is satisfied if M is projective as Prof. M. Oka informed us.) Suppose that there is a Fuchsian differential equation (1) with regular singularity along B such that (ii) the order r of (1) satisfies $r \ge n$, (iii) every $\operatorname{Res}_{D_j} \Omega$ ($1 \le j \le s$) is diagonalizable and (iv) every eigenvalue of $\operatorname{Res}_{D_j} \Omega$ is a rational number.

We write the eigenvalue as

$$\frac{a_{jl}}{e_{j}}$$
, ..., $\frac{a_{jr}}{e_{j}}$, (2)

where e_j (\geq 2) and $a_{j\nu}$ are integers such that

$$(a_{j1}, ..., a_{jr}, e_{j}) = 1,$$

where (*, ..., *) denotes the GCD of the components.

Suppose moreover (v) if $a_{j\nu} \equiv a_{j\mu} \pmod{e_j}$, then $a_{j\nu} = a_{j\mu}$.

For a point q (Sing B, $\operatorname{Res}_{D_j}\Omega$ (1 \leq j \leq t) under the notations in §2 are mutually commutative. Hence they can be simultaneously diagonalizable:

$$P(\operatorname{Res}_{D_{j}}\Omega)P^{-1} = \begin{pmatrix} a_{j1}/e_{j} & 0 \\ & \ddots & \\ 0 & & a_{jr}/e_{j} \end{pmatrix}$$

for $1 \le j \le t$, where P is a non-singular matrix.

Let

$$\Delta_1$$
 , ... , Δ_N (N = $\begin{pmatrix} r \\ t \end{pmatrix}$).

be the $(t \times t)$ -minors of the $(t \times r)$ -matrix (a_{jv}) . Put

$$f_j = e_j < e_1, \dots, e_{j-1}, e_{j+1}, \dots, e_t > / < e_1, \dots, e_t >$$

for $1 \le j \le t$, where <*, ..., *> denotes the LCM of the components.

Theorem 4. Under the above notations and assumptions $(i) \sim (v), \text{ suppose moreover } (vi) \quad (\Delta_1, \ldots, \Delta_N, f_j) = 1$ $1 \leq j \leq t \quad \text{for every point } q \in Sing B. \quad \text{Then there exists a}$ $\text{finite Galois covering } \pi: X \rightarrow M \quad \text{with non-singular } X \quad \text{which }$ $\text{branches along } D = e_1D_1 + \ldots + e_sD_s.$

For the proof of Theorem 4, we make use of the following theorem of Selberg [9] (see also Borel [1]).

Theorem 5 (Selberg). Let Γ be a finitely generated subgroup of $GL(r, \mathbb{C})$. Then there exists a normal subgroup Γ_O of Γ of finite index and of torsion free. If $\Gamma \neq \{1\}$, then Γ_O can be so chosen that $\Gamma_O \neq \Gamma$.

Proof of Theorem 4. Let $R: \pi_1(M-B, q_0) \to GL(r, \mathbb{C})$ be the monodromy representation of the equation (1) and put $\Gamma = R(\pi_1(M-B, q_0)).$ Let Γ_0 be a normal subgroup of Γ of finite index and of torsion free in Theorem 5. Put $K = R^{-1}(\Gamma_0)$.

Then K is a normal subgroup of $\pi_1(M-B,q_0)$ of finite index. We show that K satisfies the conditions of Theorem 2.

We first show that K contains J. By Theorem 3 and by the assumption (v),

$$R(\gamma_{j}^{e_{j}}) = R(\gamma_{j})^{e_{j}} \sim (\exp 2\pi i \operatorname{Res}_{D_{j}} \Omega)^{e_{j}}$$

$$= \exp 2\pi i e_{j} \operatorname{Res}_{D_{j}} \Omega$$

$$\sim \exp 2\pi i \begin{pmatrix} a_{j1} & 0 \\ 0 & a_{jr} \end{pmatrix} = 1,$$

where - means the conjugacy relation. Hence

$$\gamma_i^{e_j}$$
 (ker(R) (K,

so

J (к.

Next, suppose $\gamma_j^d \in K$. Then $R(\gamma_j)^d \in \Gamma_o$. Note that $(R(\gamma_j)^d)^{ej} = (R(\gamma_j)^{ej})^d = 1$.

Since Γ_0 is torsion free, we have $R(\gamma_j)^d=1$. This means that

$$da_{jl}/e_j$$
, ..., da_{jr}/e_j

are integers. Hence $d \equiv 0 \pmod{e_j}$. This holds for $1 \le j \le s$.

Finally, for a point q (Sing B, suppose $\hat{\gamma}_1^{d_1}$... $\hat{\gamma}_t^{d_t}$ (K, under the notations in §2. Then $R(\hat{\gamma}_1)^{d_1}$... $R(\hat{\gamma}_t)^{d_t}$ (Γ_o . Note that

$$(R(\hat{\gamma}_1)^{d_1} \dots R(\hat{\gamma}_t)^{d_t})^{e_1} \dots e_t = 1.$$

Since Γ_0 is torsion free, we have $R(\hat{\gamma}_1)^{d_1} \dots R(\hat{\gamma}_t)^{d_t} = 1$. This means that

$$d_{1}a_{11}/e_{1} + \dots + d_{t}a_{t1}/e_{t}$$

$$d_1a_{1r}/e_1 + \dots + d_ta_{tr}/e_t$$

are integers. Now the assumption (vi) implies easily that

$$d_1 \equiv 0 \pmod{e_1}, \dots, d_t \equiv 0 \pmod{e_t}.$$

Q.E.D.

5. Application to Appell's F_1 . Let $(Z_0:Z_1:Z_2)$ be a homogeneous coordinate system on the complex projective plane \mathbb{P}^2 and let $(x,y)=(Z_1/Z_0,Z_2/Z_0)$ be the affine coordinate system. Appell's hypergeometric differential equation F_1 can be written as

d(f,
$$x \frac{\partial f}{\partial x}$$
, $y \frac{\partial f}{\partial y}$) = (f, $x \frac{\partial f}{\partial x}$, $y \frac{\partial f}{\partial y}$) Ω_{O} ,

where

$$\Omega_{O} = A \frac{dx}{x} + B \frac{dy}{y} + C \frac{dx}{x-1} + D \frac{dy}{y-1} + E \frac{d(x-y)}{x-y},$$

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1-\gamma+\beta' & -\beta' \\ 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & -\beta & 1-\gamma+\beta \end{pmatrix}$$

$$C = \begin{pmatrix} 0 & -\alpha\beta & 0 \\ 0 & \gamma - \alpha - \beta - 1 & 0 \\ 0 & -\beta & 0 \end{pmatrix}, D = \begin{pmatrix} 0 & 0 & -\alpha\beta' \\ 0 & 0 & -\beta' \\ 0 & 0 & \gamma - \alpha - \beta' - 1 \end{pmatrix}$$

$$\mathbf{E} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -\beta & \beta & -\beta \end{pmatrix}.$$

where α , β , β ' and γ are constants, (see Kimura [7]). $\Omega_{_{\scriptsize O}}$ is a (3 × 3)-matrix-valued meromorphic 1-form on \mathbb{P}^2 which is holomorphic on \mathbb{P}^2 - B_O, where

$$B_0 = D_1 U D_2 U D_3 U D_4 U D_5 U D_6,$$
 $D_1 = \{x = 0\}, D_2 = \{y = 0\},$
 $D_3 = \{x = 1\}, D_4 = \{y = 1\},$
 $D_5 = \{x = y\}, D_6 = \text{the line at infinity.}$

Figure 3

Consider the blowing up $\rho: M = \hat{\mathbb{P}}^2 \to \mathbb{P}^2$ at the four points $p_0 = (1:0:0), p_1 = (0:1:0), p_2 = (0:0:1), p_3 = (1:1:1)$

Figure 4

Then the differential equation

$$dY = Y\Omega \tag{3}$$

on $\hat{\mathbb{P}}^2$, where $\Omega = \rho * \Omega_0$, is Fuchsian with regular singularity along

$$B = D_1 U ... U D_{10}$$
,

where D_7 , D_8 , D_9 , D_{10} are exceptional curves as in Figure 4.

(By abuse of notation, we write the strict transform of D $_j$ as D $_j$ again for 1 \leq j \leq 6). Note that B is simple normally crossing.

We apply Theorem 4 to the equation (3). Suppose that α , β , β ' and γ are rational numbers and suppose

$$\begin{array}{l} 1-\gamma+\beta'=a_{1}/e_{1}, \; \text{where} \quad e_{1} \geqslant 2 \; \; \text{and} \quad (a_{1},\,e_{1})=1, \\ 1-\gamma+\beta=a_{2}/e_{2}, \; \text{where} \quad e_{2} \geqslant 2 \; \; \text{and} \quad (a_{2},\,e_{2})=1, \\ \gamma-\alpha-\beta-1=a_{3}/e_{3}, \; \text{where} \; e_{3} \geqslant 2 \; \text{and} \; (a_{3},\,e_{3})=1, \\ \gamma-\alpha-\beta'-1=a_{4}/e_{4}, \; \text{where} \; e_{4} \geqslant 2 \; \text{and} \; (a_{4},\,e_{4})=1, \\ -\beta-\beta'=a_{5}/e_{5}, \; \text{where} \; e_{5} \geqslant 2 \; \text{and} \; (a_{5},\,e_{5})=1, \\ 1-\gamma=a_{7}/e_{7}, \; \text{where} \; e_{7} \geqslant 2 \; \text{and} \; (a_{7},\,e_{7})=1, \\ \gamma-1-\alpha-\beta-\beta'=a_{10}/e_{10}, \; \text{where} \; e_{10} \geqslant 2 \; \text{and} \; (a_{10},\,e_{10})=1, \\ \beta+\beta'-\alpha=a_{6}/e_{6}, \; \alpha=b_{6}/e_{6}, \; \text{where} \; e_{6} \geqslant 2 \; \text{and} \; (a_{6},\,b_{6},\,e_{6})=1, \\ \beta-\alpha=a_{8}/e_{8}, \; \alpha=b_{8}/e_{8}, \; \text{where} \; e_{8} \geqslant 2 \; \text{and} \; (a_{9},\,b_{9},\,e_{9})=1. \end{array}$$

Then, after some simple calculations, we have by Theorem 4:

Theorem 6. Under the above notations and assumptions, suppose moreover that $a_j \not\equiv 0 \pmod{e_j}$ for j=6, 8, 9, and $(a_6, e_6, a_8, e_8) = 1$ and $(a_6, e_6, a_9, e_9) = 1$. Then there exists a finite Galois covering $\pi: X \to \hat{\mathbb{P}}^2$ with non-singular X which branches along $D = e_1D_1 + \dots + e_{10}D_{10}$.

There are a lot of examples in which the conditions of Theorem 6 are satisfied. We give three such examples.

(The numbers attached to the curves in the figures below mean the ramification indices along the curves.)

Example 1. $\alpha = 3 - 1/a$, $\beta = \beta' = 1 - 1/4a$ and $\gamma = 3 - 3/4a$, where $a \ge 2$ and (a, 3) = 1.

Figure 5

Example 2. α = 3 - 1/3a, β = β ' = 1 - 1/12a and γ = 3 - 1/4a, where a is a positive integer.

Figure 6

Example 3. $\alpha = 3 - 4/3a$, $\beta = \beta' = 1 - 1/3a$ and $\gamma = 3 - 1/a$, where $a \ge 3$ and (a, 2) = 1.

Figure 7

References

- [1] A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111-122.
- [2] R. Gérard, Théorie de Fuchs sur une variété analytique complexe, J. Math. Pures Appl. 47 (1968), 321-404.
- [3] F. Hirzebruch, Arrangements of lines and algebraic surfaces, Prog. in Math. 36 (1983), Birkhäuser, 113-140.
- [4] T. Höfer, Ballquotienten als verzweigte Überlagerungen der projektiven Ebene, Dissertation Bonn, 1985.
- [5] M. Kato, On uniformizations of orbifolds, Adv. Studies in Pure Math. 9 (1986), 149-172.
- [6] M. Kato, On the existence of finite principal uniformizations of CP² along weighted line configurations, Mem.

 Kyushu Univ. 38 (1984), 127-132.
- [7] T. Kimura, Hypergeometric functions of two variables, Lec. Notes, Univ. Minnesota, 1973.
- [8] M. Namba, Branched coverings and algebraic functions, to appear in Research Notes in Math., Longman Scientific & Technical.
- [9] A. Selberg, On discontinuous groups in higher dimensional symmetric spaces, in Contribution to Function Theory, Tata Inst., Bombay, 1960.

[10] M. Yoshida and K. Takano, On a linear system of Pffaffian equations with regular singular points, Funkcial.

Ekvac. 19 (1976), 175-189.

Mathematical Institute Tohoku University Sendai, 980 Japan