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ON FINITE GALOIS COVERINGS OF

COMPACT COMPLEX MANIFOLDS

Makoto Namba

1. Introduction. A finite branched covering of an

n-dimensional connected compact éomplex manifold M 1is,

by definitioh, an irreducible normal complex space X
together with a surjecﬁiVe proper finite holomorphic

mapping m : X + M; A point p £ X isrcalled/an unramified
point if ﬂ_>is locally biholomorphic éround p. Otherwise,
p is called a ramified point. The set of,allyramified

points forms a hypersurface Rn of X, called the ramification

locus of 7. The image Bﬂ’z n(Rﬂ) of RTr is called the

branch locus of , which is a hypersurface of M.

A morphism (resp. isomorphism) of = : X + M to
Tt X° > M is a holomorphic (resp. biholomorphic) mapping

¢ : X » X~ such that ﬂ;¢ = . Anvéutomorphism of 1m is



W

=

called a covering transformation of m. The set of all

covering transformations of = forms a group G7T - under

composition, called the covering transformation group of .

The covering = : X +» M 1is called a Galois covering if

G acts transitively on every fiber.

Let m : X+ M be a finite Galois covefing and
. ' 1 Uu... U Ds be the irreducible decomposition of the
branch locus Bﬂ,v For each non-singular poinﬁ g .of Bﬂ,
every point p E ﬂ-l(q) is a non-singular point of both
X and n—l(Bﬂ); Moreover, there are coordinate systems
(wl, ey wn) and (zl, eees ?n), around q and p,

respectively, such that q = (0, ..., 0), p = (0, ..., 0),

B = {w

L= tuy = 0l nH(B ) = {z, = 0} and

]
~~
N

T (Zl’ cees Zn) > (Wl’ cens Wn)

1]

locally. The positive integer e e. (2 2) 1is constant

J

as a function of @ on Dj - Sing Bn for every Dj and

is called the ramification index of m around Dj' (Sing



B, 'is the singular locus of . B_.) In this case, r 1is said

to branch along the positive divisor D7='elDl +o... + e D,

on M.
The purpose of .this note is to give a sufficient condition

for the existence of a finite Galois covering = : X =+ M of

M with non-singular X which branches along a given positive

divisor D = D. + ... + e D (e. 2 2) on ‘M. The existence

11 57s J ‘

of such coverings for some special cases were proved in the
interesting papers Hirzebruch [3], H&fer [4] and Kato [6].
In‘this note, we maké use of Se1berg's theorem on the monodfomy

representation of a Fuchsian differential equatioh.

2. Kato's criterion. Let B be a hypersurface of M

and B = D, ug...U DS be its irreducible decomposition.

Figure 1

3
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We fix a point g E M - B- once for all. Let Yj be
a loop in M - B starting and terminéting at dg enpircling
a point of Dj'— Sing B in-the’positive sense as ih Figure 1.
We identify;;yj with its homotopy_class‘in’the fundamental

group T, BN es be integers gréater

l(M - B, qo). Let e

13
than one. We denote by

1
J = <Yl > s Yg 5>

the smallest normal subgroup of wl(M - B, qo) which contains

For a subgroup K of ﬁl(M - B, qo) with J'( K, we

consider the following condition:

Condition A. If de belongs to K, then d = 0 (mod ej)

for every j (1 < Jj < s).

Then we have

Theorem 1 (Namba [8]). There exists a finite Galois

covering m : X > M which branches along D = e;D; + ...

+ est if and only if there exists a normal subgroup K of
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ﬂ My—‘B,,qO) of finite index which contains J and

X

satisfies Condition A. The correspondence
To> K= K(m) = m(n (X - w1(B)))
between (isomorphism classes of) such 7's and such K's is

M - B, qo)/K.

one-to-one. GTr is ‘isomorphic to ﬂl(

Henceforth, we suppose that B 1is simple normally crossing.
For any point q € B, we take a local coordinate system
n

(wl, ..., W.) around q such that q = (0, ..., 0) and

B = {w

]

w

1 e ¢ 0} locally. We may suppose D, = {Wj = 0}

J
locally for 1 < j < t.

Figure 2



Let §J be a loop in M - B starting and terminating

at d, encircling a point of . Dj - 8ing B near q in the

~

positive sense as in Figure 2. Yj' is then conjugate to Yj
in ﬂl(M -.B, qo). Note that ?1, ey Yt: are mutually
commutative.

For a subgroup K of m, (M - B, q ) with J ( K, we

consider the following condition:

Adl Adt
Condition A'. If Yq cee Yy belongs to X, then

d;= 0 (mod e;), ..., d, = 0 (mod e. ) for every point g £ B.

Then, as a special case of Kato [5], we have

Theorem 2 (Kato). In Theorem 1, if K = K(w) satisfies

Condition A', then X is non-singular.

3. Fuchsian differential equations. Let B = Dl U ...
U DS be as above simple normally crossing. Let §© be an
(r x r)-matrix-valued meromorphic 1-form on M such that

d2 + § ~ 9 = 0 and such that @ is holomorphic on M ~ B.

O~
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' For an unknown r-vector-valued function Y, the differential
equation

day = YQ - : (1)

(of ordér r) is called a Fuchsian differeﬁtial,equation with

regular singularity along B, if, for every point g E B,

can be locally written as

dw1 dwt

Q = Al(w)ﬁz— ¥ ... + At(w)ﬁg_ + At+l(w)dwt+l + ... + An(w)dwn s

around q, under the notations in §2, where Aj(w) are

(r x r)-matrix-valued holomorphic'functions around q. In

this case,

D.

Res. § = Aj(q) (1 <J <%)

is a constant matrix on Dj’ called the residue of Q at Dj‘

Theorem 3 (Gérard [2], Yoshida-Takano [10]). A fundamental
matrix solution F(w) around g E B of the Fuchsian differential
equaiton (1) with regular singularity along B can be written as

c C N N

t
1 cee WL G(w),

F(w) = w
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Nl’ cevs Nt are diagonal matrices whose components are non-

negative integers, and G(w) dis an (r x r)-matrix-valued
holomorphic function around q with detG(w) nowhere vanishing.
Moreover, if none of_the'differences of the eigenvalues of

Res, 0 ére non-zero integers for 1 < j < t, then C. and

D. - :

j J
Nj can be so chosen that Nj =0 (1< j<t) and Cj is
conjugate to ResD Q (1 <J <¢t).

J .

y, Existence of finite Galois coverings. Let B é'Dl U
U Ds be as above simple normally crossing. Suppoée
(i) wl(M - B, qo) is finitely generated. (This condition is
satisfied if M dis projective as Prof. M. Oka informed us.)
Suppose that there is a Fuchsian differential equation (1) with

regular singularity along B such that (ii) the order r of

(1) satisfies r 2 n, (iii) every ResD Q (1 <j< s) is

J
diagonalizable and (iv) every eigenvalue of ResD Q is a
, J
rational number.
We write the eigenvalue as
a. a.
1 r
e% >ttt eq 2 o ' (2)
J J
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where e (2 2) and a5, are integers such that

.].1,. T ajl’" eJ) 213

where - (#, ..., *) denotes the ° GCD of,the>componeﬁtst
Suppose moreoVer vyvif a. =—a: d e.), th .. T 8. .
pp ( ) 85y =24y (mo eJ), en  aj, ju

‘For a point q € Sing B, Resy € (1 < j < t) under the
' J

notations in §2 are mutuallyvcommutatiVe. Hence they can be

simultaneously diagonalizable:

JT 5

P(Resy, Q)P 1 = .
J

for 1 <j < t, where P 1is a non-singular matrix.

Let

N (= () ).

be the (t x t)-minors of the (t x r)-matrix (ajv)‘ Put

>

fj,f ej < eys e s ej—l’ ej+l’ e s et% /,<el,v;.. > €



for 1 < j < t, where <*, ..., x> denotes the LCM of the

components.

Theorem 4. Under the above notations and assumptions

(i) - (v), suppose moreover (vi) . (Al, cees AN? fj) =1

1 <j<t for every point q'€ Sing B. Then there exists a

finite Galois covering 1w : X -+ M with non-singular X which

branches along D = elD1 + ... +eD

For the proof of Theorem 4, we make use of the following

theorem of Selberg [9] (see also Borel [1]).

Theorem 5 (Selberg). Let T ©be a finitely generated

subgroup of GL(r, C).. Then there exists a normal subgroup

r, of T of finite index and of torsion free. If T # {1},

then Fo can be so chosen that Fo £ T.

Proof of Theorem 4. Let R : m,(M - B, qo) + GL(r, )

1

be the monodrbmy representatioh of the equation (1) and put

r = R(ﬂl(M - B, qo)). Let FO be a normal subgroup of T

of finite index and of torsion free in Theorem 5. Put K = R

-1

(r).
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Then K is a normal subgroup of . nl(M'; B, qo) of finite index.

We show that ‘K. satisfies the conditions of Theorem 2.

We first show that K contains J. By Theorem 3 and by

the assumption (v),

- : e, ‘ e.
R(Yj Jdy = R(Yj) J « (exp 2mi Res; ) J
( : 7 3
= exp 2T7i ej ResD.Q
J
ajl 0
-~ exp 27i oo =1,
" 0. a.

where -~ means the conjugacy relation. Hence

e. '
Y; J € ker(R) ( K,

SO

J ( K.

Next, suppose de € X. Then R(Yj)d E r,. Note that
€. s e. v
d
Ry 7 = Ry DY =1

Since Fo is torsion free, we have R(yj)d = 1. This means

that

//
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dajl[ej, cee dajr/ej

are integers. Hence d = 0. (mod ej). This holds for

1 <j <s.

’ d
Finally, for a point q € Sing B, suppose yl,l ..

d

. d
y 1.,

Yt.t € K, under the notations in §2. Then R(:y\1

. d
R(y,) © € T . Note that
. d ~ d, e ...
(R(Y)) * ... Ry, Ot
| ' a ~ d

Since Fo is torsion free, we have R(§l) 1 .. R(yt) vt 1.

This means that

are integers. Now the assumption (vi) implies easily that

1]

0 (mod el), ce. 5 4= 0. (mod et).

Q.E.D.

/2



5. Application to Appell's F,. Let (Z, : Z. : Z be

1 0. 1 ‘2)

a homogeneous coordinate system on the complex prbjective
plane E2 and let (x, y) ='(Zl/Zd,‘ZZ/ZO) be the affine
coordinate system. Appell's hypergeometric differential

equation F1 can be written as

of 3f af _af, .
d(f, XE-}E s y-a—§) (f3 Xa_)z > yW) QO >
where
o = A% s W, o&X_, pdy_ ., gdlx-y)
o . X y x-1 = Ty-1i X-y
0 0 0 0 0 0
A = 1 1-y+B"' -g' |, B =1} 0 0 0
0 0 0/ 1 -8 1l-y+B/
0 -oB 0 0 0 -aB!
C = 0 y-oa-g-1 -0 , D=]0 0 -B?
0 -B 0 : 0 0 y-o-8'-1
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0 0 0
E =| 0 -8 B! |,
0 B . -B

where o, B, B' and <y are constants, (see Kimura [7]).
QO is a (3 x 3)-matrix-valued meromorphic 1l-form on P2

which is holomorphic on E2 - Bo’ where

5 1 U D, UDs UD, UDyU D,

D, = {x = 0}, D, = {y = 0},

D3 = {x = 1}, Dy = {y = 1},

D5 = {x =y}, D6 = the line at infinity.

D5
4 Po \D3 PINN

Figure 3

/%



Consider the blowing up p :,M;# B™ » P° at the four points:

pp = (1 :0.:0),p =7(0:1 :AO), Py, = (0.: 0 : 1), p§ = (1

Figure 4

Then the differential equation

ay = YQ - ' ’ (3)
on ﬁz, where § = p*QO, is Fuchsian with regular singularity
along

B=D, U ..i,q DlO.’

where D7, D8’ D9, Dlo are exceptional curves as in Figure 4.

AN

49

1)
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(By abuse of notation, we write the strict transform of Dj
as ’Dj again for l'f_j_f_G). Note that B 1is simple
normallyvcrossing.

We apply Theorem 4 to the‘equation.(j). Suppose that

o, B, B' and Yy are rational numbers and suppose

1 -y + B'»z al/el, where e, 2 2 and. (al, el) = 1,

|
st
-

- = P
1 Y+ B - a2/e2? where e, 2 2 and (a2? e2)

|
—
-

- o - B8 - = > ’
Y - a B 1 33/e3’ where ej. 2 and (aj,,ej)

‘Y -a-pB' -1 = aqleu, where ey 2 2 and (au, eu) =1,

- - 1 = - =
B B! = a /e5, where e 2 and (a5, e5) = 1,

5 5

l1-vy=a /e7, where e, 2 2 and (a7, e7) =1,

7 7

- - - - t = >
Y 1 o B B : alOZGIO% where €19 2 2 and (310% 910)

=1,

B + B' - a ='a6/e6, o = b6/36, where e6,> 2 and (a6, b6, e6) =1,

B - a = a8/e8, o = b8/e8, where eg 2 2 and (a8, b8’ e8) =1,

B! - a = a_/e

9

b /eg, where e

gs @ = Pg 2 2 and (a9, b9, e9)

9

Then, after some simple calculations, we have by

Theorem U4:

/4

= l.‘
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Theorem 6. Under the above notations and assumptions,
suppose moreover that a; = 0 (mod ej)- for j =6, 8, 9, and
(a6, egs 2ags e8) = 1 and (a6, €6 2g> e9) = 1. Then there

2

exists a finite Galois covering 7w : X » B with non-singular

X which branches along D = e D, + ... +'e10D

171 10°

There are a lot of examples in which the conditions of
Theorem 6 are satisfied. We give three such examples.
(The numbers attached to the curves in the figures below

mean the ramification indices along the curves.)

Example 1. o = 3 - 1/a, B = B' = 1 - 1/4a and

Yy = 3 - 3/4a, where a 2 2 and (a, 3) = 1.

// I \\ ha

2a 2a

ba

2a 55

2a
2a

La

Figure 5
/7
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Example 2. o = 3 - 1/3a, B = B' = 1 - 1/12a and

Yy = 3 - 1/4a, where a 1is a positive integer.

/1 N\__ 12a

6a 6a
12a
6a 68.
ba
6a
\N | 7/
ba
Figure 6

Example 3. o =3 - 4/3a, B = B' = 1 - l/ja and

Yy =3 - 1/a, where a 2 3 and (a, 2) = 1.

/| N\ >z

3a 3a

3a

3a Ba‘

3a
3a

Figure 7

Cx
Y

/



[1]

[2]

[3]

[4]

[5]

[6]

(7]

[8]

[9]

293

" References .

Borel, Compact Clifford-Klein forms of symmetric
spaces, TopologyAgv(l963}, 111-122.

Gérard, Théorie de Fuchs sur une variété analytique
complexe, J. Math. Pures Appl. 47 (1968), 321-404,

Hirzebruch, Arrangements of lines and algebraic.

surfaces, Prog. in Math. 36 (1983), Birkhiuser, 113-140.

.‘Héfer, Ballquotienten als verzweigte ﬂberlagerungeh

der projektiven Ebene, Dissertation Bonn, 1985.

. Kato, On uniformizations of orbifolds, Adv. Studies in

Pure Math. 9 (1986,, 149-172.

Kato, On the existence of finite principal unifofmizations
of EE2 along weighted line configurations, Mem.
Kyushu Univ. 38 (198”),,127—132.

Kimura, Hypergeometric functions of two variables,

Lec. Notes; Univ. Minnesota, 1973.

Namba, Branched coverings and algebraic functions,
to appear in Research Notes in Math., Longman
Scientific & Technical.

Selberg, On discontinuous groups in higher dimensional
symmetric spaces, in Contribution to Function Theory,

Tata Inst., Bombay, 1960.



(4

04

[10] M. Yoshida and K. Takano, On a linear system of Pffaffian
equations with regular singular points, Funkéial.

Ekvac. 19 (1976), 175-189.

Mathematical Institute
Tohoku University
Sendai, 980 Japan



