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STRANGE ATTRACTORS IN PIECEWISE-LINEAR VECTOR FIELDS
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Abstract: This note provieds an example of
piecewise-linear vector field whose Poincare

map converges to a one-dimensional map.

§ 0. Introduction.

Rﬁssler’s shiral attractor is a typical strange attractor in a
3-dimensional vector fields defined by a concrete differential
equation [11. Under the Poincare map of the vector field, a rectangl
regién is contracted vertically, expanded horizontally, bended and
mapped into itself. Since the vertical contraction is very strong,
the bifurcation of the Poincare map is often studied by reducing to
a l-dimensional map. Whether we can reduce the behavior of
2-dimensional map to that 6f l-dimensional map or cannot is a matter
for argument. This problem is studied by many people, including
M.Yuri[2] and M.Misiurewicz[3]. However, there is no example which
shows that a Poincarée map defined from a concrete ordinary
differential equation can be reduced to some l-dimensional map.'
Rossler has shown that, as same as the case of smooth nonlinear term,
the spiral attractors appear in ordinary differential equations with
piecewise-linear functions ésxnonlihear terms [4]. |

This note provieds an example of pieéewise—linear Vector field
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whose Polncaré map converges to a l~-dimensional map. More precisely,
when suitable parameter of the vector field goes to a limit, we will
show that

1) the Poincare map converges to a l-dimensional map;

2) the properties of periodic points correspond between
2-dimensional map and 1-dimensional map;

3) there exists a limit of the vector field which can define a
semi-flow on Rossler's paper sheet model.

All proofs of theorems will be given in [7].

8§ 1 Piecewise-Linear Vector Fields.

Definition 1. Define a piecewise-linear vector field i:RB——+R3

j MX if <a,x> <1
by E(x) =
\ Mlx - p if <a,x> > 1
1 3 o -0 01
where a = (0| , x,p € R" , M= |0 o 0 , M1 € M(3x3) and < , >
1 0O 0 vy ‘

denotes usual inner product.

Theorem 1. Let M be given as above.
(1) £ is continuous

’ T T
{==)> M1 =M+ p a where a = (1 0 1)

(==> E(X) = MX + % p (J<a,x> - 1] + (ca,x> - 1)}

Hence, if € is continuous, M, is uniquely determined by p.

1
(2) If £ is continuous, p is uniquely determined by eigenvalues
ll,lz,l

3 (e € Yof Ml' Indeed,



1 0 1 c1 | c1 = al— b1 - »
p = 20 ) o Y2 ’ c, = a2- b2+ alc1
o -0 200 c c, = a3— b3+ a1c2+ a2c1
’ 2.2
a1 = trace M, a2 = =-(207+07+007 ), a3 = det M,
b1 = trace Ml’ b2 = -(1112+12A3+A311), b3 = det Ml'
Remark 1. Theorem 1 ensures that if we take any set of

eigenvalues of Ml’ the corresponding continuous piecewise-linear

vector field exists uniquely.

§ 2. Poincare maps.

Assume (1) & is continuous,
(2) the eigenvalues of M are o *iw (6 > 0, @ = 1) and ¥ < 0, and

(3) the eigenvalues of M, are o.*ia > 0, ®, > 0) and ?1 > 0.

1

Set 01:= ol/w = ?l/ml and 4 = (o, 7V, 01, Yl’ ml) (eigenvalue

parameter).

1 N

Definition 2.

{x € Rsz {a,x> = 1}, W = {x=(x,y,2):x <0, vy =0, 0< 2z < 1}

V =
L =({x €V : <a,§(xX)> =0}, P = the singular point other then O.
Eu(O),ES(O) ( Eu(P), ES(P)); (un)/stable eigen space at O (resp. P).
A = BLONES PNV =" (1,0-0%+13 /5,0, B = EYO0)NL = ' (1,0,0),

c = ENPINY, D = E°(0)nv, | E = ES(P)n L,

F = {x € V: £E(X) is parallel to L}.

T W =V ot (X0 =exp(MB)X,  t=t(X)=inf(s>0: exp(Ms)X € V}

TyiV —V; 7, (X)=P+exp (M, t) (x-P), t=t(X)=inf{s>0: P+exp(Ms)(x+P)€ V}
MgtV =W, ma(X)=exp(Mt)X, t=t(X)=inf{s>0: exp(Ms)X € W}.

_ -1 - -1
AT = T, B” = m, (B).



Definition 3. Define a Poincare map n of £ as follows;

n=n : W— ¥

il
(==>
( ,
‘W —W; x — exp(2nM)X : if X € W does not hit Vv
. J . . .
Ty W 5 v g \'f e W, x—#nsnznl(x) if X € W hits A ABE
1 2 3
n, (C) otherwise
.\ 3

Theorem 2. n is differentiable on n; (BF) n W.
Remark 2. Form Theorem 2, 5 is of class C1 at all points of W

except HII(KE).

Definition 4. Let F_:[0,11°——10,11%; F_(x,y) = (£ (X,¥),8 (X,¥))
and f:[0,1]—1[0,1] be continuous (resp. of class Cl).
2D-maps Fn converges uniformly (resp. in Cl—sense) to 1D-map f

as n —o (denote Fn — f (uniformly) (resp. Cl—sense))

Fn———*F (uniformly)(resp. Cl—sense) as n —o

where F:[0,11%— [0,11%;F(x,y) = (£(x),0).
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L BF) n w.

Theorem 2. n is differentiable on nI
Remark 2. Form Theorem 2, m is of class C1 at all points of W
except HII(XE).

Definition 4. Let Fn:[0,1]2——*[0,1]2; Fn(x,y) = (fn(x,y),gn(x,y))

and f:[(0,1]—[0,1] be continuous (resp. of class Cl).

2D-maps Fn converges uniformly (resp. in Cl—sense) to 1D-map f

as n —» (denote Fn — { (uniformly) (resp. C%—sense))
(==>

Fn———ﬁF (uniformly) (resp. Cl—sense) as n —

where F:[0,112— [0,11%;F(x,y) = (£(x),0).

Theorem 3. Under the condition (%) for 0,31,51,?1(see Remark 4
below),

(1) t converges uniformly to a 1D-map f as y — -o,

(2) If x € [0,B"1, then f(x) exp(2no)x.
(3) There exist two explicit elementary functions @(t), ¥(t) of t €
[0,o) (see Remark 3) such that

Yx € [B",A71, 3t € [0,») s.t. x = @(t), £(x) = ¥(t).
(4> limx—aB’ f (x) = exp(2no).

Remark 3. Set

=" o%41) /7 B.= (1

AO— (1,0-(c"+1) ?1). 0" (1,0),

T T
A1= (?1—201,1-01(01—Y1))yl/((ol—y1)+1], B1 = (1,01),

-
oa(t) = (exp(olt)~cos t - exp(?lt), -exp(olt)'sin t) € RZ

u(t) = (<a(t),B1>+exp(Y1t)-1}/<a(t),Bl-A >, v(t)=1-u(t),

1
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X(t) = uCt)A +v(1)B, € RZ,

01 -1
| s2.1] 17 %1 1 [1 7, t
y(t)= {e (u(t)B,+v(t)A,)-B,}+A
02+1 (v,~-o)(o,~-y,0)-1 v,(1-0.) ' 1 1 1 .0
1 1 71 1 %1 1 "1 , .
Then

e(t)= Ix(t)lexp[-ol(n+arg x(t)1, ¢(t)=lY(t)|exp[01(n—arg y(t)1.
Remark 4. The condition (%) of Theorem 3; |
(1) du/dt > 0° for Yt € [0,®), (2){y(t):t>0)N{(X,y):y=0,x<0} = ¢

For example, 0=0.04, J,=-0.375, o

1 =1.25, ¥1=1.o satisfy this

1

condition.

Conjectur. 7T converges to the 1D-map f in Cl-sense as Yy —-o,

Definition 5. Let £:[0,1]—[0,11 be differentiable. An XO €

[0,1] is stable (unstable) p-periodic point of f if

() Pex) = x, # fk(xo) (1 € k <p),

0
P
G | Exp | <1 o> .
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(o=o.04,m=1,51=—0.375,

Fig.2. 1D-map (0=0.04,0=1,5 =-0.375, ©;1.25,% =1)

1
w1=1.25,71=1 )
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Theorem 4. : Let Fn:[0,1]2~-——+[0,1]2 be continuous and

£:00,11—[0,1] differentiable. Assume Fn——%f (uniformly).

1f £ has stable (resp. unstable) p-periodic point x then

0’
(i) 3N > 0, Yn > N, 3(x8,yg) € 10,112 s.t.

p n _n _ ..n _n k.,.n _n

Fo (Xg,¥ ) = (Xp,¥,) # Fn(xo,yo) (1 < k <p),
0) (n—w®).

(ii) (xg,yg) — (%

Moreover, if Fn——*f (Cl—sense), then (xg,yg) ié stable (resp. saddle).

§ 3. Limit Systems.

Theorem 5. Set E(x) = Q-IE(QX), where:

1 0 0O v
Q = [0 1 ’OI]. As Yy —-», ¥ converges to the following
o 0 |7y

system;

(1) z > 0 ==>

X = OX - y + (b2+20b1+1—202)z
y
z

X + oy + (b3+0b2+(02-1)b1—30(02—1))z
= x - 1 (where bi(lsiSS) are defined in Theorem 1(2)).

(2) z < 0 ==>

).{ oxX -y
Yy = X + 0oy
7 = —wz

1]

(3) z = d}& x <1 ==>
[ x=ox-y

y = x + oy

z =0
(4) 2z = 0 &x > 1 ==>

i

) ).( oxX - Yy
. Fig.4.
y X + 0Oy ,
z =x -1 '
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Remark 5. "These vector fields define a semi-flow on a
2-dimensional branched manifold as depicted in Figure 4, that is, the

paper sheet model of the spiral attractor introduced by Rossler [5].
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