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Hiroshi TAKAIL
& #1735
Department of Mathematics,
Tokyo Metropolitan University,

Fukazawa, Setagaya, Tokyo, JAPAN.

§1 Introduction Interrelationship among different areas in
mathematics gives a plenty of beneficence to themselves as numbers
of results support its justification. Especially concerning both
geometry and analysis, there isvno doubt that Atiyah—Singer index
theory has a crucial role to develope their fields simultaneously.

Recently, Connes[3] has initiated a new index theory for both
dynamical systems and foliated manifolds, which seems to be useful
to cases with pathological ambient spaces to which the index theory
of Atiyah-Singer type is no longer aéplicable. The main idea of his’
theory is based on K-theory of boht C*-algebras and tuwisted vector
bundles, whose validity can be illustrated in several manuscripts
due to Baum-Douglas, Connes, Kasparov, Miscenko, Pimsner—-Voiculescu
and Rosenberg etc. Among others, Baum—-ConnesC1] has conjectured the
existance of a K-theoretic index formula between geometric and
analytic K-theory of differential dynamical systems and foliated
manifolds, which may be viewed as an ultimate form of a generali-
zation of Atiyah -Singer index theorem. It has a quite important
meaning involved as a central ingredient to research differential

geometry, topolaogy and C*-algebras etc. More accurately, their

._1_



102

conjecture says that the geametric K-group is isomorphic to the
analytic one under the K-index mapping for foliated manifolds and
differential dynamics. If it is affirmative, as corollaries are
deduced the conjectures due to Novikav,,Gromov—Lauson—Rosenberg and
Kadison etc in topology, differential geometry and C*-algebras res;
pectively. As a matter of fact, no theorem from-general sights has
been obtained until now although various examples supporting the
conjecture have been constructed by several persons.

In this paper, we shall state the construction of Baum—Connes
conjectures, the results obtained and their some applications. In
particular, we shall show their affirmation for generalized Anosov
foliations on infra—-homogeneous spaces. The basic refferences are
due to Baum—Connes[11,[2], Connes[31, Kasparov[é] and Rosenbergl%1~
[113.

§2 Construction Let (M,F) be a foliated smooth manifeld and
1/2

be the half density bundle over G
1/2

G ité holonomy groupoid. Let Q

tangential to F®F and denaote by CC(Q
1/2

) the "-algebra consisting of
all continuocus sections of Q over G with compact support by the

following algebraic operations:

(fg)(r) = [T=7 7. Frery)
1°2
* ‘ = Fe¢rl
i)y = G )
/2

for all f,q € CC(Q Yo Given any x € M, let Hx be the Hilbert

2_ sections of,Qi/z over G. .Let us define

a "-representation L3 of Cc(Ql/g) on Hx by

space consisting of all L

(nx(F)f)(T) f(71)§(72)

JT:-T 172

_.2_
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for all f e cc(Ql/2>*and ¢ € H. Then a C*-norm I+l on cc(91/2> is

defined by

hfn = supxem Hxx(f)ﬂ
for all f e cc<91/2). “Let us denote by C*(M,F) the completion of
cc<91/2) with respect to l+ll, which is called a foliation C*-algebra

assaociated to (M,F). |

We then consider the K-theory Ka(M,F) of C;(N,F), Wwhich is
called the analytic K-theory of (M,F). On the other hand, we shall
offer a pure geometric way of defining its K-theory. . Let X be a
proper G-manifold and U* the dual bundle of the normal bundle U of
the foliation of X determined by the G-orbits. We denate by p the
canonical G-equivariant mapping from X to M and ¥ (w*) the pull back
of the dual bundle v* of the normal bundle v of F. We consider a
pair (X,£) of X and a G-vector bundle § over U*®p* (W*), which is
called a K-cocycle of (M,F), Denote by I'(M,F) be the set of all K-
cocycles of (M,F). We then introduce an equivalence relation ~ on
rM,F) by the following way: (Xl,fl) ~ (X2,§2) if and only if there
exist a proper G-manifold X and G-mappinés ¢j from )(‘j to X such that

(1) p. = P'¢j and (ii) ¢1!(§1) = ¢2!(§ ) R

J 2
where p,pj are the canpni;a] G-mappings .from )(,')(\j to M respectively,
and ¢j! mean the Thom—-Gysin mappings from G-vector bundles over
Sjepj(u*) to those aver v*ep* (U*). Denote by Kg(M,F) the set of
all equivalence classes in I'(M,F) with respect to ~. Then it is an
abelian group equipped with the disjoint union of G-vector bundles.
We call it the geometric K-theory of (M,F).

In what folows, we shall explain the K-index mapping & from

Kg(M,F) to Ka(M,F). Given any (X,§) € T(M,F), let us consider the

G-mapping j from X to XxM defined by j(x) = (x,0(x)) for x € X.
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Then ¢ = x+j where = is the projection from XxM to M. Let ? be the
canonical G-mapping from g§®p*(u*) to GQXMSn*(u*) associated to j,
which is a bundle projection whose fibers have a G-equivariant spinC
structure. By the Thom-Gysin’s theorem, the group generated by all
G-vector bundles over Ui@p*(u*) is isomorphic to that by those over
;;xn@z*(u*) under the mapping J! of 7. Suppose § is a G-vector
bundle over Uiap*(u*) and put § = J1(£), Then it is a G-vector
bundie over 3;xmex*(v*) which is G-isomorphic to §. Let 7 be the
1 1

cotangent bundle T*(x “(m)) of = ~(m) for me€ M and put 7 = U

meM Tm
Since = is a submersion, the G-space 3§Xn®x*(v*) is the total space
of the bundle over T under the canunica] projection ® whose fibers
are v¥ep*. Therefore, & can be‘vieued as a G-vector bundle over 7
under the mapping %! of . Let ?m = glt be the restriction of ¢
to T By the definition‘of ¥, there exist elliptic differential

-1

operators Dm on & “(m) such that Em is the symbol o(Dm) of Dm. Let

D be the G-equivariant field of {Dm}meﬁ° Then it is considered as
a G-invariant differential operator on XxM such that
(i) D are elliptic on z” (m),
(ii) ¥ is the symbol o (D) of D.
Let us take the K-theoretic index ind D of D in Ka(H,F) as follows:
ind B = [Ker D]l - [CCoker D13,
where [+J means a C?(N.F)—modu]e generated by - . We then define
u(Xx,§) = ind D. It depends only on the equivalence class of (X,£).

Therefore, it determines a homomorphism from Kg(H,F) to Ka(M,F). We

now state the first.Baum—Connes conjecture as follous:

Baum-Connes Conjecture I. Given any foliated manifold (M,F),

the K—-index mapping # is an isomorphism from Kg(N,F) to Ka(H,F).

On the other hand, suppose (M,G,¥) is a differential dynamical

— g -
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system where ¢ is free. Then the family F of all G-orbits becomes
a foliation of M, and its C*-algebra C;(N,F) is nothing but the C*-
crossed product C(”)X¢G of C(MD Ey @ Thus it implies that Ka(N,F)
= K(C(M)wa). Moreover, Kg(M,F) is isomorphic to the abelian group
Kg(M,G) defined by the following way: Let us denote by I'(M,G) the
set of all triples (X,f,r) where X is a proper G-manifold, = is a G-
mapping from X to M and § is a G-vector bundle over T (Xex* (T* (M) .

Then it has a similar equivalence relation as before.  In other
words, (Xl,fl,xl) ~ (X2,§2,x2) if and only if thefe exist a proper
G-manifold X and G-mappings x,pj such that

(i) ‘zj = el and  (i1) P ME) = Pyl

where pj! are the Thom=Gysin mappings from the groups generated by
all G-vector bundles over\T*(Xj)exj(T*(M)) to the group generated by
those over T* (X)ex™ (T* (M)). Dencte by Kg(N,G) the set of all equi-
v;lence classes in I'(M,G) with respect to ~. Theh it is anvabelian
group by the canonical sum. According to the conjecture I, we also

offer the following conjecture due to Baum-Connes[13:

Baum—-Connes Conjecture 11 "Given a differentiable dynamical

system (M,G,9), the K-index mapping Lo is an.isomorphism from Kg(M,G)
to K (M,6) = K(C(M)x¢Gﬁ.

Remark. Let BG be the classifying space of G and EG the total
space of the universal principal G-bundle over BG. Let 7 be the
vector bundle over EGxGM whose fibers are T*(M). If we dencte by
K’ (EGx

G
ball bundle Bt of T by its sphere bundle St, then there exists a

M) the K—-group K(Bt/St) of the quotient space Bt/St of the

homomorphism 6 from KT(EGxGM) to Kg(M;G) with the property that u«+6
is the Kasparov B8-mapping if'M is one point. Moreover suppose G is
discrete, then 6 is Q-injective. If G is torsion-free, then 0 is

bijective.



If the conjectures I and 1I are affirmative, then .so are those
due to Novikov, Gromov-Lawson—-Rosenberg and Kadison in topology,
differential geometry and C*-algebra theory respectively. We shall
explain them in uhatffolloﬁs,

Let M be.a closed oriented manifold and let p, be the rational

i

J—Pontrjagin class of M in HaJ(N,Q). Namely, p. (--1)‘jc2‘j where

J
¢, is the rational j-Chern class of TaDeC.,  As a well known fact,

J
they are topological invariants by Novikov whereas their integral
classes are no longer with the property by Milnor. Moreover they
are without homotopy invariance by Tamura, Shimada and Thom though
they are homotopy invariant for ambient manifolds with nonpositive
sectional curvature. Let # be the fundamental group of M, and we
then consider the total Hirzebruch L-class defined by
LAD = 1+ py/3 + 1/85(7p, = p2) + wvee .
By definition, the higher signature o (M) of M for x € H* (Bx ,Q) is
- formulated as
Ux(”) = < LM (x), M >
where f is the classifying mapping from M to Brx, f* is the 1ift of f
from H* (Bx,0) to H*(M,Q) and [M] is the fundamental homology class

of M. We then state the Novikov conjecture as follouws:

Novikov Conjecture - Given any oriented closed manifold M

and x € H*(Bx,B), the higher signature qx(M) is a homotopy invariant

of M.

If fact, if the Baum—Connes caonjecture II is affirmative for M
= {pt}, then so is the Novikov conjecture. We sha]l‘see it briefly

in what follows. It suffices to show that fo(L(M™) in H,(Bx,R) is
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a homotopy invariant of M, where L(M)" is the Poincare dual L(MALM]
of LM in He (M,Q). We may assume that dim M is even if necessary
replacing M by mxsl. Let A*(M) be the Grassmann algebra of T*(M).
For any EEJ € KO(N), let us consider the signature operator Dg on
the tensor bundle A" (e of A* (M) and §. In other words, denoting
by df the tensor product d®1 of the exterior derivative d of M and
the trivial mapping of ¢, Dg is defined as d§+ dg. Since it is
elliptic, we can define the analytic index indaof of Dg, which is
nothing but the Kasparov product [fJGNEDJ € Z of [£] and [D] for the
signature operator D on A*(M), uhere the latter is described in the

2

following way: let L“(A*(M)) be the Hilbert space consisting of all

L2—sections of A*(M) and 2 the canonical representation of C(M) on
L2 <), then [01 = CLZA* ) ,2,0¢1+09 7)1 in KK, pt)

We denote by inngf the geometric index of Df‘ Then it equals
< LM veh(LET),LMI > where ch is the Chern character from KO(N) to
HEY (M,Q) . It follows from Atiyah-Singer index theorem that

[§J®MCDJ = { LMvch(LED M >
for all 61« KOUM).  Since chg is an isomorphism from KO(M)e,@ to

H®VY(M,Q), it implies that

chg ! F*(0®LIDT = < % GOL,LADT >
for all x € H®V(Bx,Q). As a known fact, it follows that
chg +f* = frechgl  and M (aeghb = aepfu (b)

for all a € KK(P,R) and b € KK(Q,R) where f is a continuous mapping
from Q@ to R and f*,f, are the 1ifts of f Prom‘KK(P,R), KK(Q,R) to

KK(P,Q), KK(R,R) respectively. We then see that

-1
Q Br

for all - x € H*(Bzx,). Then the homotopy invariance of fe (LAD™) is

chny (%8, fu (D) = < x,fu (LD >

equivarent to that of f, (D) in;KO(Bn)GZQ = lim XCBnKO(X)QZu‘
of LM in Hy(M,Q). We may assume that dim Nvis even if necessary

replacing M by HxSlw Let A* (M) be the Grassmann algebra of T* (M.

- 7 -
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For any [£] e KO(M), let us consider the signature operator Dg on
the tensor bundle A* (M®¢ of A* (M) and §. In other words, denoting
by df the tensor product d®1 of the exterior derivative d of M and
the trivial mapping of ¢, Dg is. defined as d£+ dg. Since it is
elliptic, we can define the analytic index indaDE of Df’ which is
nothing but the Kasparov product E§J®MED] € Z of [£] and [DJ] for the

signature operator D on A* (M), where the latter is described in the

2

following way: let LAY (M)) be the Hilbert space consisting of all

Lz—sections of A*(M) and X1 the canonical representation of C(M) on

L2 2 2,-1/2

(A" (M), then [DJ = CC(LA* (D ,2,D(1+D Y1 in KK(M,pt).

We dencte by inngf the geometric index of Df. Then it equals

o

< LM vch(CEDY,LMI > where ch is the Chern character from K (M) to

Hev(m,ﬂ)- It follows from Atiyah-Singer index theorem that

'tfjemtoj = < LaDveh([ED),IMI >

0 0

for all [€1 e KM vSince Chﬁ is an isomorphism from K (M)®Z@ to

HEY(M,@), it implies that

_1. * _ * -~
Ch@ f (x)®m[DJ = < P (x), L™ >
for all x e HeV(Bn,Q). As a known fact, it follows that
chgl+f* = frechgland  frc@degh = @@ pfy (b

for all a € KK(P,R) and b € KK(Q,R) where f is a continuous mapping
from @ toc R and ?*,?* are the 1ifts of f from KK(P,R), KK(Q,R) to
KK({P,Q), KK(R,R) respectively. " We then see that

-1 FL(EDD) = < x,fu (LAD™Y D

chlu (X)@Bx
for all x € H*(Bz,Q). Then the homotopy invariance of fa(LUD™) is
equivarent to that of f.([D1) in KO(BR)GZQ = lim XCBnKO(X)QZu’

Let us now define the Kasparov homomerphism 8 from K. (Br) to
K*(C?fz)) by the following way. Given a compact subset X of Br,
put X = i&(En)'for the natufai imbedding ix from X to Br. . Then it
is a regular covering space with the property that X = X/x. Let Ex

be the set of all continuous mappings f from X to C:(z) such that

- 8 —
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flgx) = R(g)fx)
for all g € xn and x € X. It becomes a Hilbert C(X)ec;(n)—modu1e
equipped with
“~ — LN . ~ Y ~ — ~o * ~
(fa)(x) = f(x)arpi{x) and <f1"F2> p(x) fl(x) F2(x)

for all f,f, € Ey, ac¢ C(X)®C¥ (x) and % € X, where p means the
projection from X to X. We then denote by [Ex] the homotopy class

of (E,,0) which belongs to KK(&,C(X)®C?(z)) = KO(C(X)QC?(x)). Let

x!
us define a homomorphism Bx from KO(X) to KO(C;(x)) by
Bx(f) = [EX] ®y £
for £ e KO(X). “Moreover, put 8 = lim XCBr BX' Then it is a homo-

morphism from K,(Bzx) to KO(C?(K)) such that 8, = 8 "KO(X)' Due to
Miscenko-Fomenkol8] and Kasparovié], the image Bﬂ-f*(ED]) of fx(CDD)
under BQ = )391[11 is a homotopy invariant of M in KO(Bz)QZQ. Thus if
BQ is a monomorphism from Ko(Br)e,Q to KO(C:(n))@ZQ, then f,(LDJ) is
also a homotopy invariant of M. Remembering the definitien of 8,6
aﬁd 4, one can see that 8 = u.é. Therefore if the conjecture 11 is
affirmative or uﬂ is injective in more general, then so is BQ' This
implies that the Novikov conjecture is affirmative ([6]1,[123~[147).

We shall next state the Gromov-Lawson—Rosenberg conjecture in
differential topology in connection with the Baum-Connes conjecture
II. Let M be a closed spin manifold and = its fundamental group.
Taking the classifying map f from M to Bz, let f* the 1ift of f from
H*(Bx,Q) to H*(M,Q). We then define the Hirzebruch A-class A(M) of
M by

AMY = 1 - p1/24 - 1/32'45(p2 - 7/4 Pf) — e
uh‘ere‘p‘j are the rational Pontrjagin classes of M. .The higher A-
genus Px(M)_of M for all x € H*(Bx,Q) is defined by the following
fashion:
Px(M) = < AMVY(x),IM] >

where M1 is the fundamental homology class of M. It is obviously

-9 —
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differentially invariant of M. Let x (M) be the scalar curvature
of M at me M, in other words

xm(ﬂ) = 2 < R(Xi,XJ)XJIlXi >

iy m
where {XJ) is a locally orthonormal frame of T(M) and R is the
curvature tensor of M with respect to a given Riemannian metric.

The following conjecture was established by Gromov, Lawson and

Rosenberg:

Gromov-Lawson-Rosenberg Conjecture Let M be a c]osed_SPin

manifold. Suppose there exists a Riemannian‘metric of M for which
the scalar curvature x is positive, then the higher A-genus px(”) of

M vanishes for every x € H*(Bx,Q).

-This conjecture is a%firmative if the Kasparov mapping B@ is
injective, which is satisfied if Baum-Connes Conjecture II holds.
In fact, let & be the flat Ci(x)-bundle over M, namely § = i xan(ﬂ)
where M is the universal cerring space of M.  Ue may assume that
dim M is even as before. Since M has a spin structure S, there‘
exist half spinor bundles S*, S~ of S. Let c7(s%e¢), C7(ST®¢) be
the sets of all C”-sections of S+®E, S8t respectively. Denote by
0¥ the Dirac gperator from Cm(S+@§) to CT(S7®f) with respect to the
flat connection of ¢. Then there e#ists the conjugate operataor D
of DV from C"(s7et) to C*(s*®¢).  Ue next study the Chern character
of ch(§) of ¢ due to Miscenko-Solov’ev. Let ¢ be a C:(n)—bundle
over I whose fibers are finitely generated projective left CR -
medules. Then the classes [£] of § by stable equivalence generate
the K-group K, (C(MeC* (x)) of the C*~tensor product C(M®CX(n) of
C(M) and C;(n). Using the ordinary Chern character and the Kunneth
formula, we obtain the Chern character ch([§1) of E?J as a homomor-

Phism from Ko(C(MOCk () to HEV (M@K (Ch ) @ HOd(m,@eK, (Ch )
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which is actually an isomorphism modulo torsion. Since S'®¢ and

S ®f are smooth C;(x)—vector bundles over M, and D is an elliptic
bounded C:(n)—valued operétur from a Sobolev C?(n)~m0du]e H* (s7e$)
of STet to H* (S ®¢) of S ®f, there exists a C;(x)4compact operator C
from H* (S*e¢) to H*(Sef) such that both [Ker(D'+ €)1 and [Coker(D'+
€)1 are finitely generated projective C;(x)—modules. Therefore one
+

p* of DY by

. * _ .
can define the Cr(x) index 1ndc:(n)

indew py DY = [Ker(D'+ £)1 - [Coker(D™+ ©1 .
: ,

It follows from Misceqkq—FomenkoE8] that

indC;(n) " = <vch'a(D+)de(N),[T*(ﬂ)j >
in K*(C;(n))ezﬁ, where Td(M) is the Todd class of M and [T*(MJ is
the fundamental class of T*(M). Since M has a spin structure, i&
imp]ies that there exists a Thom isomorphism Tﬁ from H*(M,Q)'onto
HZ(T*(N),Q) where HC means de Rham cohomology with compact suppoft.
It then follous that

ch(LEDVAM = Th l(ch+a (DHVIdM).

Therefore we have that

.o + :
1ndc;(x) 8] = < ch(LEDVAMD ,IMT >,

Qn the Socbolev C;(n)—module H*(S+@§), the operator D—Df satisfies
the generalized Bochner-UWeizenbeck formula: |
DD" = 90 + x/a.

where V is the canonical flat connection of S+0§o ﬂSihilaf]}. 0D
has the following equality: |

p'0” = vy 4 ;/4.
By the assumption of x, it follows frbm Kazdan-UWarner’s resulf that
there exist a Riemannian metricof M and a positive cdnstant ¢ such
that x (M) > c1 for all me M. Thus D7D* and D*D” have bounded
‘inverse operatqrs, which means thaf“

< ch(LEDVAMD,IMI > = O.
- 11 -
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Let ¥ be the universal C;(x)—bundle over Bx associated to ¢, Since

inda;Dg = indg Dg. it follouws from the de?inition of B that

Bucchélof*(a<n)Aan>) (¥l £y (A ATMD

-1
Bz P

< ch(L¥FD),fu (AUDAIMND >
= < ech(LEDHVAMD ,IMT >,

Since § is the flat Cﬁ(x)—bundlg over M, it is the pull back f* (&)

of ¥ with respect to f. Therefore it implies that
B@(ch—l'f*(A(H)AEH])) = < ch(EHvaM ,MI > = 0.
Suppose BQ is injective, then we have that

cholof, AGDAIND = 0.

Q
Since Ch@ is an isomorphism from K« (Br)®,0 to He (Bx,Q), it follouws
that

fu (ACMAIMI) = 0.

By the definition of p*(ﬂ). we conclude that

px(ﬂ) <CAMVE* (x),IM] >

<Xy Fu (AUDAIMD > = O

for every x € H*(Bx,Q). Especially, if the Baum—Connes conjecture
11 is affirmative, so is the Gromov-Lawson—Rosenberg conjecture.
For instance, as p,(K*) = 2 for the K3-surface K}, there exists no

4 which induces a positive scalar curvature.

Riemannian metric of K
As an application toward C*-algebras, we state a generalized
Kadison conjecture for the existance of nontrivial projections in

group C*-algebras:

Generalized Kadison Cbnjecture Suppose G is a torsion

free discrete group, then the reduced group C*-algebra C;(G) of G
has no nontrivial projections.
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In fact, let us consider the geometric K-theory Kg(pt,G) for a
dynamical system (pt,G). By the definition of the K-index mapping
4, given any C(X,£)] € Kg(pt,G)'there exists a G-invariant elliptic

diFfeEential operator D§ on X such that
nixX,&) =. inda Df and 0(05) = £,

As G is torsion free, it acts on X freely. By Atiyah’s result, it

follows that
tr*(inda Dg) € Z

Wwhere try, is the 1ift of the canonical normalized trace tr of C;(G)

to KO(C:(G)). Suppose 4 is onto, it implies that

tre (K (C;(G)) cz.

0
Therefaore, C;(G) has no nontrivial projections. Summing up the

argument discussed above, we obtain the follouwing observation:

Observation Suppose the Baum—-Connes conjecture II holds
for one point manifold, then affirmative are all the tnnjectures due

to Novikov, Kadison and Gromov-Lawson—-Rosenberg.

Remark The generalized Kadison conjecture is affirmatively
solved for the free groups with finite generators due to Pimsner-

Voiculescu.

§3 Miscellaneous results Let (A,G,ax) be a C*-dynamical
system where G is a simply connected solvable Lie group-: Due to
Iwasawa, G is the multisemidirect product of R. Usingvthe duality
for C*-crossed products, Connes showed that Kj(AxaR) is isomorphic

to K (A) under the Thom isomorphism. Since crossed products are

i+l
compatible with semidirect products, it follous the next theorem:

.—'3..
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Theorem 1. Let (A,G,a) be a C*-dynamical system where G is
a simply connected solvable Lie group. Then Kj(AxaG) is isomorbhic

to K (A) under the Thom isomorphism.

j+dim G
Given a differential dynamical system (M,G,9) uwhere G is simply
connected solvable, it follows fram Theorem 1 that Ka(M,G) is equal
to Kdim G(M)vvia the Thom isomorphism. On the other hand, since G
has no torsion, it implies from Baum-ConnesC1] that Kg(N,G) is iso-

morphic to K(Bt/Sr)'where T = EGx-T*(M) and Br,St its ball, sphere

G
bund]e,respectively. By the assumption of G, there exists a strong
retraction from EGxGH to ”deim G with respect to which Kg(H;G) is

dim G

isomorphic to K M. Combining this with the previous theorem,

we have the following proposition:

Proposition 2. LLet (M,G,¥¢) be a differential dynamical
system where G is simply connected solvable. Then the Baum—-Cannes

conjecture II holds for the triplet.

Suppose G is a compact Lie group, then the situation is quite
simple, namely the conjecture 1I is nothing but the Atiyah-Singer

index theorem:

‘Propositiaon 3. 'Let (M,G,9) be a differential dynamical
system where G is compact. Then the Baum=Connes conjecture 1l is

affirmative.
Due to the above propositions, we may restrict our interest to

the case where G is a noncompact semisimple Lie 'group in the next

stage. Let G be as above and K its maximal compact subgroup. If
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G/K has a G-invariant sPinC structuﬁe, we know from Baum—-Connes[1]

that

dim G/K

(M,K).
9

Kg(H,G) = K

By Proposition 3, it follows that
Kg(M,K) = Ka(M,K)_
up .to the K-index mapping. Thus it suffices to show that

dim G/K

Ka(N,G) = Ka "M,K).

The next result is one example supporting-the above equality:

Proposition 4. Let G be a connected Lie group and'K‘the
maximal compact subgroup of G such that G/K has a G-invariant spin®
structure. If there exists an amenable normal subgroup H of G such
that G/H is locally isomorphic to the finite product of SOD(n,l) and
compact groups, then we have that

dim G/K

Ka(N,G) = Ka "M,

(cf3L7). Especially, suppose M is a point, then the Baum-Connes

conjecture 11 is verified affirmatively for more wider classes of G:

Proposition 5. Let be a connected reductive Lie group and

K as in Proposition 4. Then we have that

dim G/K

Ka(pt;G) = Ka

(pt,K).

When G is a discrete group, there is no theorem supporting the
Baum-Connes conjecture 11 affirmatively at the present stage. The
only nontrivial example is the following due to Natsume[101:

Observation 6. Kg(pt,SL(Z,Z)) = Ka(pt,SL(Z,Z)).

In fact, the above result,fs deduced from the fact that SL(2,Z)
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is the amélgamated product of 24 and 26 with respect to 22. Since

SL(n,Z) (n.> 3) have no such fashion, we may ask the following:

Question 1. Is it true that
Kg(pt,SL(n,Z)) = Ka(pt,SL(n,Z))

for all n > 3 ? . More generally, suppose G is a discrete subgroup

of a connected Lie group, can we show that Kg(pt,G) = Ka(pt,G) ?

We no@ discuss the Baum—-Connes conjecture I; which is verified
‘affirmatively only for feuw cases. In what follouws, we shall list

up several examples:

Proposition 7. The ‘Reeb foliations on 2?t0rus or 3-sphere

satisfy the Baum—Connes conjecture I affirmatively ([171).

Proposition 8. The same result as Proposition 7 holds for

the Anosov foliations on infra-homogeneous mani?olds (L15D.

Suppose an ambient manifold has an Anosov foliation, its rank
is 1 automatically. The next example is the case where the Baum-
Connes conjecture I holds for foliated manifolds with an arbitrary

rank:

Proposition 9. Given any n € N, there exists a foliated

manifold (Mn'Fn) such that
(i) rank Mn = n and (ii) Kg(Mn,Fn) = Ka(ﬂn,Fn)

(Section 4).

Although the fgliations cited above have nontrivial holonomy in
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general, the next two cases are without holonomy:

Proposition 10. The Baum—Connes conjecture I is true for
all codimension 1 foliations without holonomy on smooth manifolds

(L9 .

Observation 11. The K-index mapping is injective for all
Anosov foliations by topologically transitive diffeomorphisms of any

compact smooth manifold.

Inorder to verify the Baum—Connes conjecture I, the following

questions are quite fundamental:

Question 2. Givén a K-oriented foliation whose leaves are

all contractible, does the conjecture I hold affirmatively ?

Question 3. Can we show the conjecture I for all foliated

bundles ?

Question 4. Is it true that the conjecture 1 holds for any

foliated manifold whose fundamental group is SL(n,Z) (n > 3) 7

§4 Generalized Anosov foliations In this section, we
shall examine the Baum-Connes conjecture 1 for generalized Anosov
foliations on infra—-homogeneous manifolds.

Let (M,G,9) be a differentiable dynamical system. The action
¢ is called Anosav if there exist anelement g € G and subbundles E®,

EU, EC of the tangent bundle T(M) of M such that
(i) Tah = E%e EY e EC  and dwg(E‘j) = g4,

(ii) EJ are completely integrable and E¢ = T(p(G)), and
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(iiid Hd¢g(§)ﬂ < RUEN (E€E®) ,  ulEN < ud¢2<§>n (¢eeY ,
2EN < udwg(§>u < pUEN (£€ES)  for some O<A<1<u.

Then there exist foliations F®,FY,FC of M such that T(F¥) = EJ for

j = s,u,c. Each leaf ui e Fd (j = s,u,c) is given by the following

fashion:
u:; = (ye ’ | d(¢gix>,¢g<y>) 1f" —54 0 (n—=)),
Wy = (yenm| -d(¢;n(x),¢;n(y)) g" -— 0 (n—=)},
u§ = @(G)x. |

Let us now take a nbncompéct semisimple Lie group G with finite.
center and K its maximal cOmpact'subgroué{ We denote by G’ the Lie
algebra of G. Let G = K'+ P’ be a Cartan decomposition of G’ and
A’ a maximal abe]ién subalgebra of P’. If A is fhe root system of
A, theﬁ we have the root épace.decomposi{ion of G’ with fespéct to
A as follows:

6

G = M e A @3, ,

where M’ is the centralizer of A’ in K and Gi is the 1-eigen space

of ad(A*) in G’. Given a.regular element a € A = exp A, we define
(=)

two subsets AZ oF,A by
A;‘") = {(21eAl 200oga)>0(<0))

respectively, where log a.is the element of A’ such that exp(log a)

= a. Let us define N? ;(,) )

Y-y 3s the direct sum of Gi (2 €A

respectively. Let M exp M and cdhsider the dfffeomorphism ¢a’of

G/M de?ined by ¢a(gm) gaM (Q € G). Then it follows that

G/M defined by ®_(gM = gaM (g « G). Then it follows that
2(log a)

d¢a(f) = zléAi e 2

for all ¢ € Nj and j = +,—. Therefore thereeexists a

= 2,cad &
lEAa A
- 18 —
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canstant ¢ > 0 such that
deé(f)” < eTCnEN (¢ e N o, lde ()0 2 eCIEN (£ € N,

As the tangent TM(G/H)‘DY G/M at M is NLIQ A’ @ N, it implies that

¢ is an Anosov action of A on G/M.

Remark. If a € A is singular, then the decomposition of
G’ /M with respect to a is obtained as follows:

G/ = NLe A e NL® 2159 ay=0 O1

Therefore d@a has no Anosov condition in general.

Let I' be a torsion free uniform lattice of G and define an
action ¢ of A on '\G/M by wa<rgm> = F?a(gﬂ) = TgaM (a€A,geG). Then

we have the following lemma:

Lemma 1. The action ¢ is an Anosov action of A on I\G/M.

Except the foliations F‘j of '\G/M with respect to ¢ (j=s,u,c),

there exist other fo]iétions FJ (jics,cu) such that
T(FC®) = ESe E¢, T~ = gYe EC.
tach leaf Ui e FY (j=cs,cu) has the following form:

cji J o '
Ux = UYE¢(G)X Uy (j=s,u).

We now check the structure of leaves in F (j=s,cs) on I'\G/M.

For any gM € U;, there exists a smooth curve g(t) in G such that

_ _ S
| g(O} = e, g(1) = gM and d/dt(g(t)M) € Eg(t)Nf

Putting

X(t) = d/ds(g(t)”}

g(s)N)lS=t € N;- (t €« R),
it follows that
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d7dt(g(t)r) = d?Q(t)(X(t)) , g(OXM =M.
Let us define one parameter family h(t) of NT = exp N, by
het) = exe |5 xct) at.
Then we easily check that g(t)M = h(t)M (t € R), thch implies that

(g(tIK,g(tIP) = (h(IK,h(tIP) = (h(t),P) € (N+K/K)X(P)

for all t € R where P = MAN+. This means that

ug < (NTK/K) (P} .

Similtarly, we obtain that

uﬁs C (G/K)x{P).

Conversely, given a gM e G/M (g € P), there exist a € A and n ¢ N
such that galM = nM.  Therefore, gaM € U5 implies gM € WZ®.  The
similar method as above is taken place for Ué (j=u,cu) with respect
to G = N AK, P~ = N AM where N = exp N’. Let e be the canonical
projection from G/M to \G/M. Identifying G/M with (G/K)x(G/P) by

gM — (gK,gP), we obtain the following lemma:

Lemma 2. The Anosov dynamical system (T\G/M,A,¥) gifts

five foliations F‘j of '\G/M (j=s,u,c,cs,cu) whose leaves U#gm are

given by
W3 = x- CINTK/KIx{gP}) = I\ CNTK/K)x(gP})
r'gM r '
u _ - - c _
quM = T\NUIN K/K)x{gP )}, UFgM = ¢ AT g,
€S = I\ ((G/K)x{gP}) U = ING/KIx{gPT)).
quM ' UFgN
Remark. The following observation can be viewed as a sort
of geometric approach to the above lemma. According to Oshimalf113],

there exists a real analytic closed manifold (G/K)™ containiné G/K
as an open submanifold and G/P as the boundary of G/K. For the
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! is embedded in

Jwasawa decomposition G = N AK, we know that N x R
(G/KY™ and N~ x Rl is isomorphic to G/K by the mapping defined in the

following way:
(n_,exp—ll(]og a),+++,exp-1,(log a)) -— n_aK

Where 1 = rankRG and (lj}}=1~is a restricted positive simple root
system of A. Moreover, G/P can be identified with N_x{O}]. Using
the fact that g exp(t log a)K —— gP as t — =, uwe can see that the
geodesic half lines {g exp(t log a)K}tzo and (h exp(f log a)K)tzo
are asymptotically approaching each other (t — «) if and only if hM
€ U;; . On.the other hand, Ugm is interpreted as the horosphere

whose boundary passes through gP. The leaves Ucu’ WY are simitarly

translated as UCS, we.

We now study the foliations Fj (j=s,u,cs,cu) of '\G/M in more
detail. As G/M = G/K x G/P, it follows that I'\G/M is a G/P -bundle

over I'\G/K. Applying Lemma 2, we have the following lemma:

Lemma 3. The foliated manifold (F\G/N,FCS) is the foliated
G/P -bundle over T\G/K whose holonomy group is the image of the left
translation action of T on G/P. The same is true for (I'\G/M,F°Y)

replacing P by P .

Let us consider the principal M-bundle I'\NG over I'NG/M and Ty be
the natural projection from '\G to I'\G/M. Then the following 1émma

is also verified:

*

Lemma 4. The pull back foliations nR(FS),xn(FU) of F%, F!
by "y are MN, N'M -orbital by the right translation action o of G on

'\G respectively,
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Since Hausdorff are the holonomy groupoids of FJ(j=s,u,cs,cu),

it implies the following lemma by Lemma 3 and Natsume-Takai’s result

for foliated bundlesf{15]:

Lemma S. Concerning (F\G/N,FJ) (j=cs,cu), we have that

(CG/PIx ) @ BC(L2(M\G/K)),

* cS
Cr(F\G/M,F ) 1

(C(G/P—‘)xll")r ® BC(Lz(F\G/K))

It

C:(F\G/M,Fcu)

up to isomorphisms where (-x~)r means reduced crossed products and

BC(H) is the C*-algebra of all compact operators on H.

By Rieffel’s work on Morita equivalence, C(G/P)xlr)r is stably
isomorphic to (C(F\G)xpP)r, which is equal to C(F\G)xpP. | Since N~
is equal to #(N') for the Cartan invaolution 8 of G, it follows that
CX('\6/M,F®) is stably isomorphic to CH(I\G/M,FY). By Hilsum-

Skandalis’result[ 18], ue have the following lemma:

Lemma 6. Cx('\G/M,F®) is isomorphic to c;(r\s/m,F°“> if

FY are nontrivial (j=cs,cu).

By Lemma 4, we also can see the following:

Lemma 7. Cuncerniné (F\G,nﬁ(FJ)) (j=s,u), we have that
* * S - * ‘:* u — -
CP(F\G,ﬂ”(F )) = C(F\G)gpNN , CP(F\G,KM(F )) = C(F\G)XPN M

up to isomorphism.

Let (X,F) be a foliated manifold and § be a bundle over X whose
fibres are a compact manifold C. . Consider the pull back n*(F) of F
by the natural projection = from § to X. Then we can obtain the

next lemma:
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Lemma 8. C:(f,n*(F)) = C:KM.F) @ BCIL™(X)) up to

isomorphisms.

Combining Lemmas 7 and 8, the following lemma is automatically

deduced:
Lemma 9. - Concerning (F\G/M,FJ) (j=s,u), we have that
* S 2 +
CP(F\G/H.F ) ® BC(L™(M) = C(F\G)xpN M,
C;(F\G/N.Fu) ® BC(LZ(M)) = C(F\G)xpN'N.

Applying Hilsum-Skandalis’result[18] again, it follows from Lemma 9

that

Corallary 10. C:(F\G/M,FS) is isomorphic to c;<r\e/m,F”>

if FY are nontrivial (j=s,u).

We now compute the analytic K-theory Ka(F\G/H,FJ) of (F\G/N,FJ)

(j=s,u,cs,cu) using Lemmas 5;9. It certainly follows that
Ka(F\G/H,FS) = Ka(F\G,N+M) , Ka(F\G/M,Fu) = K (T\G,NM),
Ka(F\G/M,FCS) = K (G/P,I) , Ka(F\G/M,FCU) = K (G/P7,I).

Since (C(G/P)x F)r, (C(G/P‘)xll")P are ‘stably isomorphic to C(F\G)xpP

A
. C(F\G)xpP_ respectively, it then means that

Ka(G/P,F) = Ka(F\G,P) , Ka(G/P Ty = Ka(F\G,P ).

To analyze the right hand sides of the above equalities, we prepare

a generalized Thom isomorphism essentially due to Connes and Julg:

Lemma 11. Let (A,G,ax) be a C*-dynamical system where G is
the semidirect product R“#Sc of R" by a compact group C. ‘Then there
exists a Thom isomorphism between Ka(A,G) and Kg’C(A) where Ka’c(-)

means the analitic C—équivariant K-theory.
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Remark. If C is trivial, the above lemma is due to Connes

and if n = 0, it is thanks to Julg.

Since P is the semidirect product of N+ by MA, it follows from

Lemma 11 that

K_(I\G,P) K_(C\G)x MNT,A)
a a o)

K:im Arg, N

dim AN

a,M ("G,

K

As I' is torsion free, it has no nontrivial intersection with M.
Therefore, o is a free action of M on F\G. By Segal’s resultl193,

we have that

. + . +
Kglﬂ‘AN NGy = KIIM AN Gy,
Consequently, it follows that
. +
K PNG/M,Fe%) = k9Im AN e\ g/

We shall next compute the geometric K-theory Kg(F\G/M,FCS) of
("\G/M,F ). Let us look at the leave structure of F“® in what

follows. Since we know that G/K is contractible and
€S = x.((G/K)x{gP}) (g € &)
UFgH r ’

it implies that all of them are K(x,1)-spaces. Since I' is torsion
free, so is B = Hol(F®®), v Let T is the vector bundle over BB whose
fibres are those of the dual normal bundle v* of FCS, We obtain

from Baum—Connes[1] the next lemma:
Lemma 12. Kg(F\G/M,FCS) = K B% .

by definition, we can see that % is isomorphic to ((G/P)xlF)x(BFxBF)

as a Borel groupoid by Natsume-Takai. However they are no longer
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isomorphic as a topological groupoid in general. Let us study this
correspondence more closely. Consider the map & from G to BI'xBI by
taking ®(7) = (KBF(S(T)),nBr(r(T))), 7 € G. Then we check that the
groupoids é_l(x,y) (x,y € B[') are isomorphic to the principal one

(G/P)xlr, namely we have that

(6/P)x;T —t— B 2, grxEr .

Taking the classifying spaces of the above spaces, we have that

B((G/P)x,I) Be, g -BY, gerxEr) .

Since B(B'xBI') is homotopic to a point, we have that BG is homotopic
to B((G/P)xlr) under B¢, Let us consider the pull back o = Be* ()
of T by B:. Since B is a homotopy isomorphism, we obtain the next

lemmas

Lemma 13. K7 (BC(G/P)x,T)) = K* (BE) .
By definition, v™ is equal to T*(G/P). Sinbe I' is torsion free, it

implies from Baum—-Connes[1] that

Since (G/P)erF is the base space of a principalv(G/P)xlr -bundle,
there exists the classifying map f of (G/P)erF to B((G/P)xlr) Wwhich
realizes the above bundle. Let us take the pull back bundle f* ()
of ¢ by f. By definition, E((G/P)xlF) is nothing but (G/P)xEl up
to '-equivariant homotopy equivalence(cf:L201). Therefore, f is

homotopic to id. We then have the following lemma:
w
Lemma 15. K (B((G/PYx,T)) = k@ cerpysEry
Since v* = T*(G/P), it follows from the definition of & that

*
Lemma 16. Kf (a)((G/P)erF) = KG((G/P)xFEF) .
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Combininé the lemmas 12 ~ 16, we obtain the following:
Lemma 17. Kg(F\G/H,FCS) = K (G/P,I) .

Let HJ be two closed subgroups of G (j=1,2). We compare the
geometric K—-groups Kg(G/H1'H2) and Kg(HQ\G’H1) of (G/Hl,Hz.l) and
(H2\G,H1) respectively. By the same phenomenon as in the case of

Ka’ we can verify the following crucial lemma:

Lemma 18. If H, is torsion free and Hlﬂ Hy = g , then

Kg(G/Hl,H ) = Kg(H \G’Hl) .

2 2

Applying the above lemma to H1 = P and H2 =T, it implies from Lemma

17 that
Lemma 19. Kg(F\G/m,FCS) = K '\G,P) .

Since P is the semidirectrproduct N+xSMA of N+ by MA, it follous

the next lemma:

. +
Lemma 20. Kg(M\G,P) = Kglm AN ) .

Summing up the argument discussed above, we obtain the following

‘main theorem:

Theorem 21. The Baum—Connes conjecture 1 is affirmative

for the foliated manifolds (F\G/M,FJ) (j=s,u,c,C5,CU) .

In fact, the similar method takes place to show the conjecture

even in the case of j=s,u,c,cu.



L1l

£21

£33

£4]

£33

61

£73

[83

£33

L1013

[111]

£123

C133

127

References

P.Baum-A.Connes, Geometric K-theory for Lie groups and folia-—
tions, Preprint (1982).

s Chern character for discrete groups,

Preprint (1987).
A.Connes, A survey of foliations and operator algebras, Proc.
Symp. Pure Math., 38(1982) Part 1, 521-628.
»  Noncommutative di?Ferentia] geometry, chapter 1,11,
Publ.Math.I.H.E.S. 62(1986), 257-360.
» Cyclic cohomology and the transverse fundamental
class of a foliation, Pitman Res.Notes Math.,Ser 123(1986),
52-144.
G.G.Kasparov, Group C*-algebras and higher signatures,
Chernogolovka, Preprint (1981).

s The index of invariant elliptic operators,

K-theory and Lie group representations, Chernogolovka,
Preprint (1982).

A.S.Miscenko-T.Fomenka, The index of elliptic operators over
C*-algebras, Izv.Akad.Nauk,Ser.Math.,43 .(1979) 831-859.
T.Natsume, Topological K-theory for codimension 1 foliations

without holonomy, Adv.Stud.Pure Math.,3 (1985) 15-27.
y» On K*(C*(SLz(Z))), J.0perator Theory, 13 (1985)
103-118.
T. Oshima, A realization of Riemannian symmetric spaces,
J:Math.Soc.Japan 30 (1978) 117-132.
J. Rosenberg, C*-algebras, positive scalar curvature and the
Novikov conjecture, Publ.Math.IHES., 58 (1983) 197-212.

, C*-algebras, positive scalar curvature and the

Novikov conjecture II, Res.Notes Math.Ser.123,Pitman (1986)
‘ - 27 —



128

[143

£1313

[16]3

[1713

£(181

£191

£201]

341-374.

y C*-algebras, positive scalar curvature and the

Novikov conjecture 111, Topology, 25 (1986) 319-336.
H. Takai, C*-algebras of Anosov foliations,
Lec. Notes Math., Springer 1132 (1985) 509-516.
» KK-theory for the C*-algebras of Anosov foliations,
Res.Notes Math.Ser. 123, Pitman (1986) 387-399.
A.M.Terp, K-theory for the leaf space of foliations by Reeb
components, Jour. Func. Anal., é1 (1985) 15-71.
M.Hilsum-G.Skandalis, Stabilite des C*-algebres de
Feuilletages, Ann.Inst.Fourier, Grenoble 33, 3(1983),201-
208.
G.Segal, Equivariant K-theory, Publ.Math. IHES. 34 (1968)
129-151.
» Classifying spaces and spectral sequences,

Publ.Math. IHES. 34 (1968) 105-112.



