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“Abstract
A bifurcation of heteroclinic orbits in a two or
more parameter family of autonomous ODEs is studied,
where the unperturbed system has two heteroclinic
orbits joined at a common saddle point. Some cases
of bifurcation of homoclinic orbits are also treated

including the one producing a twice-rounding homo-
clinic orbit along the original one.

1. Introduction

In the qualitative theory of autonomous ODEs,va
trajectory connecting two equilibria O and O’ is called
a heteroclinic orbit or an (0,0’ )-connection. In case
0 =0, it is called a homoclinic orbit based at O.
These heteroclinic and homoclinic orbits play an important
role in the theory of dynamical systems, though they are
structurally unstable. For some information concerning
such orbits, we refer to the textbook by Guckénheimer and
Holmes7)h and by Chow and Ha1e5).

From the bifurcation theoretical point of view, it is

more difficult to study the bifurcation of homoclinic or

heteroclinic orbits than that of equilibria, since the
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analysis of the former needs some global information.

Recent development of the theory of the Melnikov functiong)

and the exponential dichotomye) invoked many works on such
bifurcations. See [2,Chap.41, [7;Chap.4 & 71, [5,Chap.111,
and references therein.

These authors primarily pursue persistency conditions
of homoclinic and heteroclinic orbits in perturbed systems.
In other words, they deal with the case where, in some
sense, the same type of heteroclinic (homoclinic) orbit
persists as the one in the unperturbed system. It is,
however, also the case where a new type of heteroclinic
(homoclinic) orbit is born from several heteroclinic
(homoclinic) orbits coexisting in the unperturbed system.
Figures 1 - 4 illustrate examples of such bifurcations.

The purpose of the present paper is to analyse these

bifurcations of heteroclinic and homoclinic orbits.

0O o! 0] o'
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These kinds of bifurcation have not been studied until
very recent years, but suéh a study is important not only
for the bifurcation theory but also for various other
fields such as the study of the nerve impulse.

In our analysis, we basically treat the bifurcation
shown in Fig.1, and divide the analysis into two cases:

‘the case of non-degenerate eigenvalues' and 'the case of

critical eigenvalues' (see below for the precise statement).

The former case can be easily studied, while the latter
requires more delicate analysis. It is, however,
inevitable to deal with the case of critical eigenvalues
for the study of the bifurcation producing a twice-rounding
homoclinic orbit given in Fig.4. The bifurcations
indicated in Fig.2 and 3 are also studied along the same
line. Throughout our paper, the notion of the exponential

dichotomy and a representation given by Shil‘'nikov!0 11
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of trajectories near a saddle equilibrium, play a very

important role.

2. Statement of the results
Let us take a k-parameter family of (m+n)-dimensional

ordinary differential equations
(1) X = £(X) + g(x,n), x € R™1, 4 ¢ R¥ (x22),

where f and g9 are smooth, and 9(x,0) = 0. We

consider the following situation:

S The system (1) has three saddle equilibria 01(“)’
02(“) and Os(u), and the eigenvalues

i

i i i i i
nm_l(u),.., nl(u), p (ul),v (u),Kl(u),..,Kn_l(u)

of the linearized system at Oi(“) (i=1,2,3) satisfy

-%ené_l(ﬂ) £ ... < —meni(ﬂ) < —pi(ﬂ) <0
<l < mex]0) < ... o< kex] (D)
S2) The unperturbed system
) x = f(x)

for u = 0 has a heteroclinic orbit h (t) connecting

1
01(0) and 02(0) {(i.e. an (01,02)—connection) and a

heteroclinic orbit h2(t) connecting 0,(0) and Oq(ﬂ)

2
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(i.e. an (02,03)—connection) simultaneously. See Fig.l.
(S For u = 0, WU(Oi) (i=1,2) and ws(oi) has
one-dimensional intersection, i.e. for any point P on the

(Oi,Oi+1)—connection, it holds that

W (0. )) = 1.

: u
dlm(T W (0;) n TP i+1

P

Under this situation, the problem can be stated as:
Pr1> Find a condition for the parameter ua so0 that

there exists an (01'01+ )-connection in (1) for 1 = 1,2,

1
respectively.
P2 Find a condition for the parameter u so that

there exists an (01,0 )-connection in (1), passing through

3
a neighborhood of the equilibrium O

9
In order to give an answer to these problems, we

impose the following non-degeneracy hypotheses:

(H1)> The heteroclinic orbits in (2) are generic in the

sense that, as t - -=, ﬁi(t) (i=1,2) approaches the

equilibrium 01(0) along the eigenspace associated with

vi(ﬂ), and, as t - +», it approaches to Oi+l(0) along

the eigenspace associated with —p1+1(ﬂ).

H2) For u = 0, the manifold w“(o2(0)) n wU(OI(O))

is transversal to the eigenspace associated with v2(0)

at 0,(0) in WU(OZ(UJ). Also, ws(oz(o)) N w5(03(0))
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is transversal to the eigenspace associated with —02(0)
. s

at 02(0) in W (02(0)). .

HD For a bounded solution ﬁl(t) (i=1,2) of the

linear ordinary differential equation

5 = —th(hi(t))-i, (i=1,2),

the vectors given by the integrals

+o0

‘ ~1 9 .
(3) f q (s) eMg(hi(s),ﬂ)ds (i=1,2)

-0

are linearly independent, and hence, non-zero.

Remark It can be proved that the bounded solution

ﬁl(t) is unique up to the multiplication by constants.

Now the next theorem gives an answer for (P1).
Theorem A

Under the hypotheses (H1)-(H3), there exist two
hypersurfaces Mi (i=1,2) of codimension I in a
sufficiently small neighborhood of wu =0 1in Rk, so
that Mi consists of parameter values u for which the
and

system has an (01,0 )-connection. Moreover M

i+1 1

M2 intersects transversally at up = 0.

Remark This theorem is not new, since essentially the

same result was obtained by Palmergl, et al. However, the

result as well as its proof is necessary for the folloewing



analysis.

In order to investigate the second problem (P2), we

divide our analysis into the following two cases:

(i) vz(ﬂ) z p2(0) [the case of non-degenerate eigenvalues]

(ii) v2(0) = p2(0) [the case of critical eigenvalues]

The first case is comparatively easy and we can show
the following theorem.

Theorem B (The case of non-degenerate eigenvalues)

Under the hypotheses (H1)-(H3) and for the case of
non-degenerate eigenvalues; there exists a hypersurface M
of codimension ! with the boundary oM = M1 N M2 in a
sufficiently small neighborhood of u =0 in Rk,‘ S0
that M consists of‘parameter values un for which the

system (1) has an (01,03)—eonnection. Moreover,

(a) if v2(0) < p2(0), then M 1is tangent to M at p=0.

2

(b) if v2(0) > p2(0), then M 1is tangent to M at u=0.

1

From Theorems A and B, we obtain the bifurcation diagram as

shown in Fig.b.

Fig.5

For the case of critical eigenvalues, we restrict
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ourselves to the case k = 3, i.e. a three-parameter
family, and impose further hypothesis as follows.

HD The set {u|vi(u) = p2

(n)} forms a surface W in
the parameter space RS and is transversal to both of M1

and M2 at p = 0. In other words, the vector

_d 2 _ .2
dt u=0{v (W)-p= ()}

is linearly independent of both vectors given by (3).

Theorem € (The case of critical eigenvalues)

Under the hypotheses (H1)-(H4) and for the case of
critical eigenvalues, there exisis a surface WM wilth the
boundary oM = M1 N M2 in a sufficiently small
neighborhood of pn =0 in R3, so that it comnsists of
parameter values p for which the system (7.1) with Xk =
3 has an (01,03)—eonnection and the curve given by the
intersection of M and W is tangent to nmeither of Ml
nor M2 at n = 0.

Fig.6 shows the bifurcation
diagram for the case of

<

critical eigenvalues.
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The method to prove these theorems also applicable to
some other types of homoclinic and heteroclinic orbits,
such as the ones indicated in Fig.2 and 3.

In order to study the bifurcation shown in Fig.4, we
distinguish these two kinds of homoclinic orbits; we call
the homoclinic orbit rounding twice around the original one
produced by the bifurcation a twice-rounding homoclinic
orbit. For definiteness, we also call the original type
of homoclinic orbit a once-rounding homoclinic orbit.

Now let us consider a system (1) with m= 2, n =1

and Kk

2, and assume that the unperturbed system (2) has
a (once-rounding) homoclinic orbit h(t) based at a saddle
equilibrium, say the origin O, with eigenvaiues -n < -p
< 0 < v, Furthermore we impose the next five hypotheses:
(H1' The homoclinic orbit is generic, i.e. it
approaches 0 along the eigenspace associated with -p

as t » 4o,

’ S 5 - S .
(H2) wlOC(O) Nn W) wlOC(O) is transversal to the
eigenspace associated with -p in WS(O).

GEI N For a bounded solution q(t) of the linear

ordinary differential equation

5 = -prcncenrz,

the vector given by the integral
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+ o
(4) | f &(s)~£g(h(s),0)ds
is non-zero.
(H4)’ The vector
_d -
du|p=p(VmI-P ()

is linearly independent of the vector given by (4).
(HR)Y’ An exponent 4, which is defined by the

information only of the unperturbed system, is non-zero.

Theorem D (The doubling of the homoclinic orbit)
Under the hypotheses (Hl)’—(HS)’; there exists a

curve M passing through the origin u = 0 in a

0 :
sufficiently small neighborhood of u = 0 in RZ, so that
il consists of parameter values u for which the system
has a omce-rounding homoclimnic orbit.
If v#p at p =10, and even when v = p at
m =10, 4if a tubelar neighborhood T of the unperturbed
homoclinic orbit in W>(0) is homeomorphic to a cylinder,
then there is mo parameter value corresponding to a
twice-rounding homocliniec orbit in a neiborhood of u = 0.
If v=9p at w =0 and 7 1is homeomorphic to a
Mobius strip, then, under additional hypotheses (H4)' and
(H5)’, there extsis a curve M containing u % 0 at an

end, so that it consists of parameter values pn for which

the system has a twice-rounding homoclinic orbit.

-10-



Moreover,

(a) +f the exponent 2 is positive, then M is tangent
to M, at the side of v(p) < p(ul.

(b) 4if the exponent 2 1is8 mnegative, then M is tfangent
to M0 at the side of vp) > p(u).

The bifurcation diagram is given in Fig.7.

(a) (b)

Fig.7

V>p v<p v>p V<P

3. Concluding remarks

(1) The bifurcation of homoclinic and heteroclinic orbits
treated in this paper was first investigated by Yanagidalz)
intending to the study of the pulse tfavelling waves in a
nerve equation, where he obtained almost the same result as
Theorem D of this paper. His argument is, however,
insufficient at the point that he linearizes the system
around the equilibrium using the CO—linearization theoren
due to Hartman and Grobman, which loses the smoothness of
the system. In order to overcome the difficulty, our
earlier version adopted the Belitskii's result of
Cl—linearizationl) under an additional condition on

eigenvalues.

(2) Chow, Deng and Termana) studied the same problem (Pl),

-11-



(P2) of this paper from the topological point of view.
Their results are, hence, weaker than ours under weaker
assumptions. Very recently, I have received their new
preprint4), in which they have obtained analytical results
for this problem. They are dealing with the bifurcation
problem of heteroclinic orbits of the type in Fig.2 for the
case of non-degenerate eigenvalues. They also obtained a
result of the bifurcation of periodic orbits from the pair
of heteroclinic orbits.

10,11)

By using the Shil'nikov's representation of

trajectories near a saddle equilibrium, which plays an
imprtant role in [4]1, it is not necessary to Cl—linearize
the system, hence we can exclude the Belitskii's condition.
The major differences between [4] and ours are as follows:

(i) In [4]1, only the case of non-degenerate eigenvalues

is treated while ours contains the case of critical

eigenvalues.
(ii) In [41, they assume that, in our notation, M1 and
M2 intersect transversally. In our paper, we give an

explicit criterion (H3) of transversal intersection in
terms of the Melnikov-like integrals.

(iii) The bifurcation analysis of [41 covers the periodic
orbits produced from heteroclinic orbits. Since the
unperturbed system for Theorem A-C (Fig.l) cannot give rise
to any periodic orbits by slightly perturbing it, we don't

study the bifurcation of periodic orbits.

-12-



(3) The details as well as the proofs of the theorems in
this article will appear in elsewhere. Especially, the
explicit definition of the exponent 2 in (H5)’ is given

there.
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