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An invariant of spatial graphs
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Introduction. Some useful invariants for links have appeared

in the last few years, e. g. Jones polynomiai, 2-variable Jones
polynomial, Kawffman polynomial, etc. But these invariants are not
defined for spatial graphs. The Alexander ideals and the Alexander
poclynomials of spatial graphs [3,4,5,7] are determined by the
fundamental groups of the complements of spatial graphs. Therefore
they are neighborhood equivalence class invariant of spatial graphs.
So, the two spatial graphs shown in Figure 7 can not be
distinguished by them.

In this paper, we will introduce a l-variable Laulent
polynomial invariant for non-directed spatial graphs. It is a
simple and useful invariant. We will define two types of spatial
graphs, one is of spatial graphs with flat vertices, and the other
is of spatial graphs with pliable vertices. Our polynomial is an
invariant for flat vertex graphs. Also, it is an invariant for
pliable vertex graphs whose maximum degrees are less than 4. In

the case of en—curves, our argument will be made more precisely by
the twisting number of diagrams of en—curves.

The restriction of our invariant to 2-regular graphs is an

invariant of links. We will show that it is a specialization of
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Kauffman’s Dubrovnik polynomial, moreover, it is the Jones

polynomial of the (2,0)-cabling for a.knot.

1. Spatial graphs, diagrams and Reidemeister moves.

Throughout this paper we work in the piecewise-linear category.
Let G=(V,E) be a graph émbédded in R3, we say G 1is a spatial
graph. 1f for each vertex v of G, there exist a neighborhood
B, qf v anda small flat plane P, such that GnBchV,'then we
say that G is a flat vertex graph. For two spatial graphs G,
G’, if there exists an isotopy ht:R3—aR31te[0,l] such that hozid
and hl(G)zG’ then we say that G and G’ are ambient isotopic
as pliable vertex graphs (pliably isotopic). For two flat vertex
graphs G, G’, if there exists an isotopy ht:R3—+R3 te[0,1] such
that hozid, 'hl(G)=G’ and ht(G) is a .flat vertex graph for each
te[0,1] then we say that G and G’ are ambient isotopic as
flat vertex graphs (ftatty isotopic) .
‘Let GcR® be a spatial graph. We say that a projection
p:R3—R?2 1is a regular projection corresponding to G if each
multi point of p(G) is a double point of transversal two edges.

Then we say the image p(G) with the informations about the over

crossings at all crossings of p(G) a diagram of G.

We shall define fundamental moves of diagrams, called

Reidemeister moves, as in Figure 1.

///gigure 1///
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It is easy to see that (0) is generated by (I), (I) is
included in (VI), (II) is included in (IV) and‘that (V) is
generated by (II), (III) and (VI). We say the deformation
generated by (I)~(VI) pliable deformation, one generated by (I)~(V)
flat deformation, and we say one generated by (0), (II)~(IV)

regular deformation.

The next is a primitive lemma in this paper.

Lemma 1. Let Gy and Gy be two spatial graphs. Gy is pliably
isotopie (resp. flatly isotopoe) to G1 if and only if a diagram
of GO is deformable to a diagram of Gl by pliable deformation

(resp. flat deformaetion).

{Proof) Let htzms—ams be an ambient isotopy which transforms
G to G’. We can assume that for any time t, , there exist a
positive real number g and a O-simplex v, of the PL-structure
of G such that for any te(tg-g,tp+g) and for any O-simplex v

of the PL-structure of G except for v, ht(v)=ht(v). Then we
: o

can take a suitable projection p:R3—R? such that the state of
the deformation of poht(G) around v 1is one of the Redemeister
moves (I)~(VI) through te(ty-g,to+teg). Therefore we can trace the
isotopic deformation of ht(G) by a pliable deformation on
diagréms.

Let ht:RS—eRS be an ambiént isotopy which transforms G to

G' as flat vertex graphs. Let v be a vertex of G and Pv be



the small plane which contains GnBv where Bv is a neighborhood

of v. Let p:R®*—R? be a projection. Assume that for a real

number tq,€[0,1], poht (Pv) degenerates and it is turned over at
0 : : :

the time ty. Then the diagram poht(G) is deformed as shown in

Figure 2 through tel[ty-g,ty+g] for some positive real number g.

Figure 3 shows that this deformation is generated by Reidemeister

moves (I)~(V).

The sufficiency is trivial. O

//%igure 9/, //?igure 3/

2. An invariant of spatial graphs.

Let G=(V,E) be a graph , where V 1is the vertex set and E

is the edge set of G. Let pu(G) and B8(G) be the number of
connected components of G and the first Betti number of G,
respectively. Put f(G) = x“(G)yB(G) and define a 2-variable

Laulent polynomial by

h(G) = h(G)(x,y) = 3 (-x) " 'Fle(g-F),
FcE

where F ranges over the family of subsets of E, |F| 1is the
number of elements 6f F, G-F = (V,E-F) and x and y are
indeterminates. 1In particular, define h(¢)=1.

Of course, h(G) is a invariant of graph G. And it is a

specialization of Negami’s polynomial [6] of G. This has the

following properties.
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Proposition 1. Let e be a ﬁot Loop edge of a graph G. Then
h(G) = h(G/e) - 1/x h(G-e). Where G/e is the graph obtained from

G by contracting e to a point and G-e = G-{e}.

(Proof) h(G) = 3 (-x) 'Flgg-F) + 5 (-x)"'Flg(c-F)
eeFcE eeFcE

= (-x)"VFle(gre-F) - 1/x S (-x)"VF'l p(g-e-F)
FcE-e F'cE-e

= h(G/e) - 1/x h(G=-e). n]

For two graphs G1 and GZ’ GluG2 denotes the disjoint
union of G1 and G2 and GIVGZ denotes a wedge at a vertex of
G1 and G2 , 1. e. GIVG2=G1UG2 and GlnG2= {a vertex}. The
symbol v is quoted from [7]. Then the following proposition

holds.

Proposition 2.

(1) h(G,uG,) = h(G;)h(G,),

(2) h(Gy{vGy) 1/x h(Gl)h(Gz),

(3) If G has a cut edge then h(G)=0.

(Proof) (1) and (2) are trivial.
(3): Let e 1is the cut edge of G. Then G-e = GluGz and G/e =
G,vG, for some graphs Gl and G,. By proposition 1, h{(G) =

h(G,vGy) - 1/x h(GyUG,) = 0. @
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Theorem 1. Let v be a vertex of a graph G=(V,E) which is a

terminal point of just two not LOop edges ey and ey,. Then h(G) =

h(G/el),
i e h(> A)=h(>———<).
e v e ' N
1 2 : G/e1

(Proof) The graph G-—e1 has a cut edge e,y SO h(G—el):O.
Therefore from the previous propositions,

h(G/ey) = h(G) - 1/x h(G-e;) = h(G). O
Corollary 1. h(G) is a topological invariant of a graph G.

e. if G is homeomorphic to a graph G’ thern h(G)=h(G’).

//figure 4 /

Now, we will define an invariant of spatiai graphs. Let

be a diagram of a graph. For a crossing c of g, we define
s_ and SO called the spin of +1, -1 and 0, as shown in Figu

Let S be the plane graph obtained from g by replacing each
crossing with a spin. S 1is called a state on g and y(g).
denotes the set of states on g. . Put {gl1s} = Ap—q’ where
and q are the numbers of crossings with spin of +1 and spin
in 8 respectively and A is én indeterminate. We defineka

l-variable Laulent polynomial R(g)(A) as follows.

i.

g

S,
re 4.
P
of -1
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R(g) = R(g)(A) = Z {gIS} H(S),
Ses(g)
where H(S) = h(S)(-1,-A-2-A"1). In particular, define that R(e¢)=1.

This polynomial has the following properties. The next
proposition is derived from the definition of R{(g) and previous

propositions.

Proposition 3.

N _ ) N '
(1) R(/\)-AR(><)+A1R(/\)+R(><),
(2) R(>—<) =R<> <) + R( >< ) s

(3) R(glugz) = R(gl)R(gz)'
(4) R(glvgz) = "R(gl)R(gz)y
{56) If g has a cut edge then R{(g) = 0.

(Remark) Those figures in a equation represent diagrams that
differ only as indicated in the figures.

The next proposition is very useful for the proof of

invariance of R(g) and the calculation of it.

Proposition 4.

(1) R(<:> ) = o, where o¢ = A+1+4A°L,
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A R(><’ ) - (AZ+A) R(> <.
= -at R(§< ) - (AT2+A7) R‘,> <,

at R —<),

1=
-
=
—
Y\
1

R(—)

"
[

>

v

(5) R(—<X)

il
>
)
3
e}

(é> R( ;Q')‘ Az R( ~—~ ), R( ,Q )

(proof)  (1): h((J),y) = xv-1, so () = 1))

h(<:>')(—1, -A-2-A"') = A+1+A-l, Others are easy calculation using

Proposition 3. O

Theorem 2. R(g) is a reguler deformation invariant of a diagram
E.

(Proof) We shall show that R(g) does not change under the"

Reidemeister moves (0),(II)~(IV).

(0): It is derived from Proposition 4-(6).

(ID:  R( O )

R(> () + (A2Z+A"2+5) R(__) + (A+A7) R(><)
+AR( 5 )+ AT R(_O ) + R(EZ)
R() () + (A2+A-Z+o-Ac-Alo+1) R(__)

r(D Q.

(IV): Let v be the moving vertex in the figure of

Reidemeister move (IV). Our proof is an induction on the degree of
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V. If degree(v)=1l +then such diagrams have cut edges, so both of
their polynomials are zero. If degree(v)zz then it is shown in

the case of (II) of this proof. If degree(v)=3,

R(//\\ ) = AZR(%(.) + A'ZR(_) ~) + R(A) + R(,)é

7 ¢’

+ AR(A') + A'IR(7&T) + A-IR(A) + AR(7AC) + R(A)
=R(71\-)+AR(‘JA*—) +A-1R(7|\'“ )+R(7’T). ‘

R(_}_\—) = AR(_JK ) +'A‘1R(7L\~) +R('*)

.
= A R( ij:—) + A-l R(T7<_ ) + R( 7%;‘) + R{( /\ ).

l N
S’RA = R . And R A\ = R =
o (/’\) (/\) n ( yALE ) (AI )
R{ /h ). If degree(v)>3, from Proposition 3-(2) and the

hypothesis of the induction,

R(_AN_ )y =r(_N7 ) -r(_ N AN )

///...\ PN RNV

The other equation is shown similarly.
(III): From the definition of R(g) and its invariance under
the Reidemeister moves (II) and (IV}),

\ N4
R(’K ) = A R( >( ) + Al R( ~ ) + R( >< )
/  \ /N /N /N

-9 -



N/ A N/
A R( >< ) + AT R( \/ ) + R( ><
‘\ /

= R( ).
e

This completés the préof. O

Proposition 5.

R(

(Proof) Our
diagrams have

If n=2 fhen

If n>3 ‘then

R{( ) s

~—
n
—
|
~

proof is an induction on n. If n=1 then such
a cut edge, so both of their polynomials are zero.

it is shown in Proposition 4-(6). If Ln=3,

R ( Q’L))=A2R(§—})=—A3R(m ).
M | an | s

from the hypothesis of the induction,

- 10 -
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The other equation is shown similarly. This completes the proof.

The above proposition implies the next theorem.

Theorem 3. R(g) 1is a flat deformation invarianrt of a diagranm

g up to multiplying (—A)n for some integer n.

Let gi and g2 be diagrams of a graph whose maximum degree
is less thah 4, where the mazimum degree of a graph G=(V,E) is
max {degree(v) iveV}. Then, K3 is pliabley deformable to g9 if
and only if gl ‘is,flatly deformable to gz. Because the
Reidemeister move (VI) is generated by (I)~(V) for such diagrams.

So, we get the next theoren.

Theorem 4. If g is a diagram of a graph whose mazimum degree
is less than 4 then R(g) i8 a pliable deformation invariant of

€ uUp to multiplying (—A)n for some integer n.

For a spatial graph G, define R(G) = (—A)-mR(g) where g
is a diagram of G and m is the lowest degree of R(g). By
Theorem 3, R(G) is a flat isotopy invariant, moreover by Theorem

4, if G 1is a graph whose maximum degree is less than 4 then
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R(G) 1is a pliable isotopy invariant of G.

3. >Cohnected suh of graﬁhs.

Fér a positive integer bn- and graﬁhs. G and G’; let
v (resp. vf) be vertex.of G (resp; G') of dégree n and e
ves g € kfesp. ei, v ; e;) be the eages which are adjacen£ to
v (rgsp. v’). Then, we construct a graph G#nG’ =
(VuV’u{vl,...,vn}\{v,v’}, EUVE’) by removing v and v' from
GuG’' and adding n vertices Vis eees Vp and changing the end
point v and v’ of e, and ei’ to vy for i=l...n. We say

G#nG’ a connected sum of G and G’ of order n. See Figure 5.

‘/Figure 5;

For a positive integer n and spatial graphs G, G', v
(resp. v') be vertex of G (resp. G') of degree n. Assume that
G is in the upper half-space R3I={(x,y.z)e€R®|z220} except for
some small neighborhood of v, and G’ is in the lower half-space
R&={(x,y,z)€eR®12<0} except for soﬁe small neighborhood of v’,
andv GNRg = G'nRg = {n points}, where Rj is the boundary plane of
those half-space. Then the spatial graph (GNRF)U(G’'NR3)eR3® is
called a comnected sum of G and G’ of order n and it is
denote by G#nG’. |

. For a positive integer n and diagrams g, g'cR?, diagrams of

v (resp. v’) be vertex of g (reép. g’) of degree n. Assume
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that g is in upper half-plane R%? except for some small
neighbourhood of v, and g' is in under half-plane RZ? except
for some small neighbourhood of v’, and gnR, = g’NRy = (n
points}, where R, 1is the boundary line of those half-planes.
Then the diagram (gnR?2)u(g’'nRZ) 1is called a connrected sum of g
and g’ and it is denoted by g#ng’.

Let Qn be the gfaph which consists of two vertices and n

edges, which are not loops. We say an the en—graph.

Proposition 6.

(1) h(G#,G’) = h(G)h(G’)/h(8,),

(2) h(G#,G’)

h(G)h(G’)/h(0,) .

(Proof) In this proof let n=2 or 3. Let v, v' ©be the
vertices of GG, G’ which are removed when construct the connected

sum G#nG’ and €11 o €, €

n i, ey eé be the edges of G,
v

G’ which are adjacent to v, ', respectively. It suffices to

assume that G and G’ are connected and has no cut edge. Our
proof is an induction on the number k = |EUE’|-2n, where E and
E’' are the edge sets of G and G’, respectively.

If k=0, G, G’ and G#nG’ are homeomorphic to the

Gn—graph '@n, hence the equalities hold. If k>0, let e be an

edge which is neither of €11 cera €, éi, e eey eé. It suffices to
assume that e 1is an edge of G. We shall prove in the next two
cases,

If e 1is a loop, from Proposition 2 and the hypothesis of the
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induction,

h(G#nG')

1]

(y—l/x)h((G—e)#nG’)
= (y-1/x)h(G-e)h(G’)/h(e,)

= h(G)R(G’)/h(e,).

If e is not a loop, by Proposition 1 and the hypothesis of

the induction,

h(G# G') = h((G/e)# G’) - 1/x h((G-e)# G’)
= h(G/e)h(G’)/h(@,) - 1/x h(G-e)h(G’)/h(e,)
= (h(G/e) - 1/x h(G-e))h(G’)/h(8,)
= h(G)h(G’)/h(6,).
This completes the proof. 0O

This proposition implies the next theorem.

Theorem 5.

(1) R(g#,8’) = R(2)R(&’) /o,

(2) R(g#3g’) R(g)R(g’)/(o-062), where o = A+1+A-L.

(Proof) In this proof let n = 2 or 3. By Proposition 6,

R(g# g') = I {g# g’ |S# _S’}H(S#_S?')
n SGSP(g) n n n
S'ey(g’)

- 14 -
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= 3 (gIS}H(S){g’ IS’ }H(S’)/H(8y)

Sey(g)

S'egy(g’)

= 2 (gISJH(S) 2  [g’I8"}H(S’)/H(8,)
Sey(g) S'eg(g’)

= R(g)R(g’)/H(8_),

And H(@z) = o, H(QB) = o-06<%. Hence we complete the proof. 0O

4, Twisting number and the invariant of Gn-curves.

Let k be a knot diagram i. e. a diagram of a 2-regular

l-component graph. We define the twisting number t(k) as follows,

We fix an orientation on k, and put t(k) = 3 sign{(c), where c¢
c

ranges over the all crossings of k and sign(><:)=+1,

sign(jKj):-l. t(k) 1is not depend on the choice of the orientation

of k.
Let ®n=({u,v}, {el,...,en}) be a spatial en—graph. We say
0 a en—ourue. In paticular we say 93 a @6-curve. Let Cij be

n

the cycle u-ei°v-ej'u of gn (i=j). Let en be a diagram of

e, and C;; be the subdiagram of 6, corresponding to Cij'

Then, we define the twisting number of Gn by
t(e ) = 2 t(c..) /(n-1).
ntoyd Y
More generally, let g = Gn u-~~u9n be a link of some
1 s

en—curves and £ be a diagram of £ and en. be the subdiagram
i
of & corresponding to @ 2. We define the twisting number t(f)

n.
1
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s
of & by t(g) = 2 t(en ). It is easy to see that t(g’)=-t(f)
i=1 i

where £’ is the mirror image of &.

Now we define that S(g) = (-A)~2t(E)R(g).
Theorem 6. S(&) is a flat deformation invariant of E&.
(Proof) "It is easy to see that the twisting number is a regular
deformation invariant. So, S(¢) does not change under the
régular deformation. We shall show the invariance of R(£) under
the Reidemeister move (V). Put ¢ = (ﬁffjw , £ = r// Z .
| o " . o
Then  t(£’) = t(g)+n/2. By proposition 5, R(&') = AnR(g). So,

R(g') = (-a)~2(&I¥N/2) _aynpiey = (CaA) 2% (E)R(g) = S(&). The

other equation is shown similarly. O

So, we define S(E)=S(&). Then S(g) is a flat isotopy
invariant of &. Theorem 4 and the above theorem imply the next.
Theorgm 7. Let E be a link of some churves and knots. Then

m

S(Z8) is a pliable isotopy invariant of

5. Recursive formula of R(g) and invariants of Ilinks,
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From the definition of R(g) and the previous propositions we

get the following formulas.

(1) r( X)) = A R‘:><j’ + A R(>:< )+ RO

(2) R(§>*—g‘<i) = R(§> <f) + R( §><? ), where e 1is a

not loop edge.

(3) R(g ug,) = R(g)R(g,).

(4) R(Bn) = -(-o)n, where B is the n-leafed bouquet (See
Figure 6) and o=A+1+A1,

(5) R(#) =1, R(:) = R(By) = -1, R(()) = R(By) = o.
Figure 6

We can adopt fhe above formulas for the definition of R(g).
In fact, for any diagram g, we can resolve R(g) to a summation
of the invariant of some disjoint union of some bouquets with some
coefficients by using (1) and (2) of the above formulas.
Kauffman discovered a regular deformation invariant
D(2)(a,2) of a link diagram ¢ (i. e. a diagram of 2-regular
graph) [2]. That is colled Dubrovnik polynomial and defined by the

following recursive definition.

p > - X =2 w ) -
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( Q) =an—)

() =atn—)

D(s) = 1, D(()) = (a—ah)/z+1.

The above definition is different from the original one. The

original one defines that D(<:> ) = 1.

The next'equation (1)’ .~ is derived from (1) of the recursive

definition of R(g).

(1) R<>x< = Al R(j)() + A R( )+ R(>x<)

By (1)-(1)’,

RO ) - R = aman kOO —R(X)}.
Moreover R( (Z ) = A2 R(,—), R(ASZJ) = A2 R(~~\) and R((:))

= A+1+A', So R(g)(A) satisfies the defining formulas of

D(8) (A2, A-A"l). Now we get the next theorem.

Theorem 8. Let L be a lLlink diagram, then R(L)(A) = D(L)(AZ,A-A1),

It is shown in [8] that —(t%+tf%)v (2)(t)
Kp

D(R)(t-2,t-t)+1, where V p(Z)(t) is the Jones polynomial [1] of
K ,
the (2,0)-cabling of a knot K and R is a diagram of K such

that t(K)$0. Then we get the next.

Corollary 2. ‘ —(t%+t~%)V ' (t) = R(R)(t)+1.
» Kp(z)
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6. Applications.

Let g4 and go be the diagrams shown in Figure 7. Then
R(g1)=0 and R(gz)=—A5—A4—A3—A2+A4+A'2+A‘3+A‘4. Therefore, the

two spatial graphs G1 and G2 presented by g4 and g, are not

pliably isotopic. Note that (RS, Gl) and (R%, Gz) are also
neighbourhood equivalent (after S. Suzuki [7]), i. e. (RS, N(Gl))

T (R?, N(Gy)).

Proposition 6. Let g’ be the mirror image of a diagram g. T hen

R(g’)(A) = R(g)(A).

This proposition implies the folibwing theorems.

Theorem 9. Let G be a spatial graph. If G is amphicheiral

(i. e. isotopic to the mirror image of it) as a flat vertex graph
then R(G)(A) = (-A)"9 R(G) (A1), where d

R(G)(A).

is the degree of

Theorem 10. - Let G be a spatial graph whose mazimum degree is

less tham 4. [f G is amphicheiral as a pliable vertex graph

then R(G)(A) = (-A) 9 R(G) (A1), where d is the degree of R(G)(A).

Theorem 11, Let © be an amphicheiral 0-curve then S(€)(A?l) =
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s(e)(A).

Let 6; and 6, be the diagram shown in Figure 8. Let 6,

and 6, be the‘spafial graphs presented by 84 and 0y Then
t(04)=0, R(6;)=-AZ-A-2-A"-A"2," t(6,)=-3/2,

R(6,) SA9-AB-2AT+AC-AS+2A3+A24+2A+A1-A~B+A-44+A-S5-A-6+A-THA~ S,
Therefore 92 is not ﬁliably isotopic to triv{al 6-curve Gl.
Moreover, by Theorem 9, 9y is not amphicheiral as a pliable
vertex graph. Note that each of the three cycles of 92 is a
trivial knot.

Those 6-curves shown in Figure 7 and Figure 8 are presented in

[3,41].

//fgfghre [// //%igure g//
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