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HIGHER CODIMENSIONAL BOUNDARY VALUE PROBLEM
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Department of Mathematics, Yokohama City University

Introduction.

Let M be an n-dimensional real analytic manifold and N be
its d-codimensional closed real analytic submanifold. Let X and
Y be compléxifications of M and N respectively such that Y is
a closed complex submanifold of X. Let M be a coherent @leodule
(i.e. a system of linear partial differential equations with
analytic coefficients) for which Y 1is non-characteristic. Our
purpose is to define the boundary value of a hyperfunction solution
of M defined on a 'wedge-like' domain with edge N. In fact, the
boundary value bf such a solution can be defined as a hyperfunction
solution on N of the tangential system MY of M to Y.
Moreover we can prove local and microlocal uniqueness theorem of the
Holmgren type. By‘introducing the notion of F-mild hyperfunctions,
we can also give an explicit meaning to the boundary value of a
hyperfunction solution of M through its defining functions. We
remark that Schapira [7] has recently defined the boundary value of
a solution of M defined on a domain not necessarily wedge-like by
using the theory of microlocalization of sheaves.

Ih Sections 1 and 2 wé assume the existehce of‘a 'partial
compiexification' M of M. However, it will turns out in Section
3 that this assumption is unnecessary by resortiqg\to’the theofy of

‘higher—codimensional F-mild hyperfunctions (generaiization to higher



codimensional case of the l-codimensional theory ([41)). This

theory also enables us to express the boundary value explicitly.

§1. Several sheaves attached to the boundary.

Let AM be an n-dimensional real analytic manifold and N be
its d-codimensional closed real:analytic submanifold. We denote by
.MonN(M) = (M\NN U SNM
‘'the real monoidal transform of M with center N, here SNM is the
sphere bundle of N in M. Then MonN(ﬁ) becomes a real analytic
manifold with real analytic boundary S M (see [6, Chapter 1] for

N

real monoidal transform). Roughly speaking, SNM in MonN(M) will

represents the direction along which the boundary value is taken.
We denote by BM the sheaf of hyperfunctions on M and by 1 : M\N

i MonN(M) the inclusion map. Then we put

Definition 1.1.

B t=

N, M e Byl B

NiM *7 BN,MlsNM ©

on SNM and an

For this purpose

In{the sequel we shall define a sheaf gNlM

injective sheaf homomorphism o : BNIM — gNIM’

we assume, for the moment, that there exists a real analytic
submanifold M of M containing N such that the triplet (N, M,
M) are locally isomorphic (by a complex analytic local coordinate

system 2z = (zl,'-°,zn) of X) to the triplet ((O}XRn_d, Rn,

R

). We call such a local coordinate system admissible.
Hence M is a ‘partial complexification' of M. Then we can take a
ccmplexification Y of .N so that it is a’closed real analytic

submanifold of M (then YN M = N holds). Let us consider the
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real monoidal transform Mony(ﬁ) = (M\Y) U SYﬁ and dehote by 7

\NY — MonY(ﬁ) the inclusion map. There is a sheaf BO of

hyperfunctions with holomorphic parameters on M. Note that

Mony(ﬁ) (resp. SYﬁ) can be viewed as a partial complexification of

MonN(M) (resp. SNM). In the same way as Definition 1 we define
Definition 1.2.
BOy & = '« By’ BOy 1 *= Bey,ﬁleﬁ :
VA
Lemma 1.1. R l*(Belﬁ\Y) =0 for v # 0.
Lemma 1.2. Suppose X = C", ¥ = R%c™ %, n =R", v = (oyxc™ 9.
Then for any open proper convex set U of Sd—l and for any Stein
open set Q of c"79,
H (UXQ BGYlM = 0 for any Vv # 0,
where S%1 x ¢® % s identified with S, i.

Y

Lemma 1.3. Under the same conditions as Lemma 1.1

v

H _ (BO, )| . =0

s¥ 1y (" 9. /STy YW |gd-1y pn-d
for any proper convex closed cone G of Rn_d dnd v # n~d.
Lemma 1.4. There is a sheaf isomorphism

By.m ~ HMonN(M)(BeY W ®u /i
where wM/ﬁ denotes the sheaf of relative orientation of M in
Now we define a sheaf gN!M as follows:
e aps . .. ynh-d

Definition 1.3. gNlM 1= HSN (BeYIM)ew
where denotes the sheaf of orientation of N.

N

.RZ
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By definition it is. easy tefsee that there is a natural sheaf
homomorphism o : By . — gNIM' By Lemma 1.3 and the fact that

the flabby dimension of RO is n-d, it follows that gNiM is a

flabby sheaf on SNM.

Now let us microlocalize these sheaves. For the sake
of simplicity .of the notation we put
L= Mong (M), L = Mony (M), L, =S5 M, D, = S M
and denote by

%k

_ a~ %k o
L ) = (L \LO) U SL LO

(I = (I\L) U szt, Mon® (I, 0
0 0

the comonoidal transforms of 1 (resp. EO) with center L (resp.

Mon

L.), here S:i denotes the conormal sphere bundle of L in L (cf.

0

[6, Chapter 11). Let

nt s Mon¥() —— ¥  and n. : Mon® () — T
: L - Mo ¢ Momp (L 0

be the canonical projections.

Definition 1.4.

Cn,Mi s Hs*i(n' BOy iw®yiic  Onimi= SnomlnetlL e
L | 0
.. yh-d ,_-1 y
GN,M.- HULS (g BOy ) 8wy
SL L0
-0
Note that we can identify S; io with the subset n'—l(LO) of
0 : ‘
ko~ ko~ ~ Ao
S;LL by the map T L X L, —— T L,.. Now let
L T 0 » 0
T' ¢ MonL(L) — L, tO : MonLO(LO) —_— LO

be canonical projections associated with real monoidal transforms.



Definition 1.5. Y S (¢, (BO

N,M° Y,ﬁli\L))lsLi,

Ao 1= (&), (BO

. ~ |~ ) ~
NI M Y|M|;O\LO lsL "

’
0 0

where ¢&': L\NL — MonL(L) and 80: LO\LO ———-*lMonL (LO) are

inclusion maps.

~

Note that SL L can be regarded as a subset of SLE‘ By the
0 :

same arguments as Sato-Kawai-Kashiwara [6, Chapter I] or Morimoto

{31, we can show that there exist injective sheaf homomorphisms

(boundary value maps)

b': A . — 70713 Y ¢

-1
N, M N,M’ 0 NIM > T, 8

NIM
and surjective sheaf homomorphisms (spectral maps)

-1

sp': ' "B — ¢

N, M N, M’ SPy ¢ Mo Bnim
Note that the usual spectral map is denoted by sp : % By — &y

where n S*X -—> M 1is the canonical projection.

M
Proposition 1.1. (i) There exists an exact sequence
0 —— BOy glo = By,m — My,w O

(ii) Let U be an open convex subset of SLZ (i.e. each fiber of

U with respect to T’ is a convex set of Sn_d-l) and let f be a
section of BN " over T'(U). Then there exists a section F of
XN y over U such that ®'(F) = f if and only if supp(sp’(f)) C

Uﬂ, where U' is the polar set of  U.

Proposition 1.2. (i) There exists an exact sequence

(no)*éNlM — 0.

0 — BO

; YIM!LO i gN

IM

L

(ii) Let U be an open convex subset of S EO (i.e. each fiber
fs] .



of U with respect to TO is convex) and f be a section of

ﬁy]” over tO(U)f ’Then there exists a section F of XW'M

U such that bO(F) = f if and only if supp(spo(f)) cu .

ocver

There is a sheaf homomorphism o CNIM —_ CNIM compatible

with the homomorphism o : BN!M —_— gNIM’ i.e. there is a
commutative diagram
-1g sp' ;
%o BNiM CNiM
L@ | o
Sp
-1 0
o PNIM > S\iu
Theorem 1.1. o : BNIM _— gNIM and o : éN!M _— eNIM are

injective homomorphisms.

Proof. We can prove this theorem in the same way as the case d = 1
(see [5, 8§11) by using the curvilinear wave expansion for

hyperfunctions with holomorphic parameters.

§2. Formulation of boundary value problem.

Let M be a coherent Sx—module (i.e. a system of linear.
partial differential equations) defined on an neighborhood of N in
X. Here QX denotes the sheaf on X of rings of linear partial
differential operators (of finite order) with holomorphic
coefficients.- We assume that Y is non-characteristic with respect
to. M, i.e. the characteristic variety SSM) C T*X of M does not
intersect T?X = T?X \ 0. Then the tangential systém MY of M fo

Y is a coherent ﬁY-module (cf. [11). We denote by < : L0 = SNM
— N, ¥ S* L, — S;Y, and n*: s L, — LO the canonical

*
L0 0 Lo Q
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projections.

Proposition 2;1. Assume that Y is non-characteristic with respect

to M. Then there are shedaf isomorphisms

& . , . ~ : - 1 :
Y : RHdmzx(M, ﬁN,M)V—————a T RHdmﬁy(My, By)»

o~ . a *—1 ,
¥ : RHGmbx(M, &N|”) — 7 RHdmzy(My, ¢y -

Proof. We shall prove only the first isbmorphism {(the second one
can be proved in the same way as the first one). We denote by T
L, = S8 —— Y the canonical projection (note that T is its

restriction to SNM). Let us first prove the isomorphism

N-l bl ~
(1) RHGMQX(M, T (BGlY)) E— RHdmax(k, BGYIM)'
Define a sheaf JF on io by the exact sequence
s , x-1 -
0 > F > T (EGEIH)-—-——-9 BGY‘M-———* 0.

Then it suffices to prove RHdma M, ) = 0. We may assume that X
X

",f= R x ¢, M =R, N= (0} x R"Y. Put x* = (1,0,-,050)
¢ Sd—l > Cn-d

= C

ne

SYﬁ, By definition we have

F = lim [ (U_; BO
x* _Eﬂ U e

with U, = {((x',2"™ € M; Ix'| < &, Izl < & and I, = {((X',2") €

M; &Xl > Ile + s 4 lxdl}; here we use the notation X' =
(Ryyrooxy4), 2" = (2d+1,°-~,zn). Since M is coherent we have
RHom, M, &) = RHom, (M, lim I’ (U, ; BO)N
s , 111 N
bx <* QX . U, F& &

lig RHom, (M, I (U, BO)
e . O UNg 8

lzg RHdm”X(M. RFZg(Bﬁ))O,



where Za = M\ F&} By using Corollary 2.2.2 of [2] we can'provei
RHGmDX(M, RFZ (BO))O = 0,
Hence we get the isomorphism (1). Since Y 1is non-characteristic

with respect to M, we have

(2) RHomg, (M, BO|,) = RHomy (M, O

X X

where 6X denotes the sheaf on X of holomorphic functions. On

0 xly?

the other hand, the Cauchy-Kowalevsky {heorem due to Kashiwara (cf.

[1]) gives the isomorphism

) — RHdmﬁY(MY’ g,).

Y

(3> RHGmQ (M, GXlY

X
Combining (1)-(3) we finally get an isomorphism

~ ~—1 |
Applying the functor RFS M(')ewN we get the isomorphism
N

~ . v ~ — 1
Y : RHomg, (M, ENIM) —— T "RHomg, (M, B).
X X
Combining Proposition 2.1 and Theorem 1.1 we get

Theorem 2.1. Assume that Y is non-characteristic with respect to

M. Then there are injective homomorphisms
. -1

Y : Hdmg M, ¢

*-1

The first homomorphism repfesents the boundary value (as a
hyperfunction solution on N of MY) of a hyperiunction so1uti0n of
M defined on a wedge—like'domain with edge’ N. This homomorphism
means thé{ fhe boundéry value does not depend oh the direction along

which the boundary value is taken. Its injectivity means thét the
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solution vanishes near N if the boundary value vanishes on N
(Holmgren's type theorem).

Now let us clarify the meaning of thé second homomorphism.
First note thét there is a natural map

% %

¥~
p : SMX N SMX _— SMM.

S:Y is regarded as a subset of S§ﬁ. We denote by = : S;Y -— N
. . . . * > ok _ * ~
the canonical projection. Since SLL MA\N = SMM MA\N S(M\N)(M\Y),

B .
restricted to SLLIM\N’ 6N,MlM\N can be regarded as a sheaf on

*
S (M\N)

sheaf homomorphism

(ﬁ\Y). Then it is easy to see by definition that there is a

| -
v ip * Ny > Cyls*

(MN\N) (M\N)

such that the following diagram is commutative:

Cy,uls (ﬁ\Y)ﬂ(S;X\S§X)

-1 ¥

p & * ~ )y — & * ~
N,MIS(M\N)(M\Y) Mls(M\N)(M\Y)
sp'l 1 sp
By, mlMan > Bylman

Hence the second homomorphism of Theorem 2.2 implies the following

microlocal version of Holmgren*s type uniqueness theorem:

Theorem 2.2. Let x* be a point of SNM and U be an open set of

M NN such that U U SNM is a neighborhood of x* in MonN(M).

Let y* be a point of S;Y such that n(y®) = r(x™). Let ux)

be a hyperfunction solution of M defined on U such that the
singular spectrum of its boundary value Y(u) does not contain y*.

Then there exists an open set U' of M\N such that U' N SNM is

a neighborheood of x* in MonN(M) and that the closure of the

singular spectrum of does not intersect p-l(y*).

U,U,



§3. F-mild hyperfunctions.

4%

In the previous sections we assumed that there exists a partial

. complexification M of M. Now let us introduce the sheaf of
F-mild hyperfunctions. By using F-mild hyperfunctons, we can show
that the homomorphism Y ‘of boundary values introduced in Thearem
2.1 can be defined independently of M (hence we don't have to
assume the existence of M in the long run). We think, however,
that the advantage of F-mild hyperfunctions consists in making
possible the explicit and concrete expression of boundary values.

- We use the same notation as in the previous sections. 1In

particular, we assume at present that there exists such an M as

described in §1. For an admissible local coordinate system =z Qf‘

X, we use the notation =z = (z',z") with 2z2' = (zl,---,zd), z" =

2. ), z' = x' + /-1y', etc.

(qu-l".. Zy

Definition 3.1. Let x* be a point of SNM and z = (z',2") Dbe

an admissible local coordinate system arocund i = t(x*) such that

z(x) = 0. Let u(x) be a germ of B at x*. Then u(x) is

NIM
*

called F-mild at x “if there exist open convex cones (with vertex

n-d

at the origin)y [ I in R with an integer J, and

17"y
holomorphic functions Fj(z) defined on a neighborhood in X of

{(x',2") ¢ Rd X Cn_d; (x',x") € T, lz"l < &, Im 2" ¢ Fj}

with an & > 0 and a neighborhood U of x* in MonN(M) such

that

(4> ‘ u(x) =

"M B

F. (x',x"+/-1",0)
. J J

j=1
as a hyperfunction on T(U) N (M\N). We denote by BF

NIM the

subsheaf of 8

NIM consisting of sections of ®

NIM which are F-mild
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at each point of its defining domain.

On the other hand, since SNMv is the l-codimensional boundary

F
SNM,MDnN(M) NIM

sheaf of F-mild hyprfunctions in the l-codimensional case introduced

of MonN(M), there exists the subsheaf & of B (the

. F
by Oaku [41). We denote Bs MIMon (M
P N N

1 is invariant under local coordinate

transformations of M fixing N ([41).:

by Bf for short. Then it

is known that B

§IM is ¢« subsheaf of BF.

Lemma 3.1. B 1

This lemma follows immediately from the following well-known fact:

Sublemma. Let F(Z) be avholomorphic function on a neighborhood in

n = ce ) . cen '
C" of {z = (x;,x,, ,xn_l,xn+/ 1y )i x,, X, ¥, € R, Ile < e

(j = 1, +,n), X g 0, 0 < yn < &} with an & > 0. Then there

1
exists a 8 > 0 and an open convex cone I of Rn—l suCh fhat

(0,-+,0,1) € I’ and that F(z) is holomorphic on a neighborhood in
c" of  {z = (X;,2,,0°%,2,) € BRX c" 1 121 <8, X, 20, Imz' €T},

By using Lemma 3.1 and the invariance of Bg

coordinate transformation we get the invariance of B

under local

F o
NIM’

Proposition 3.1. For a real analytic manifold M and its cldsed
real analytic submanifold N, the sheaf 3§IM of F-mild
hyperfunctions is defined and is invariant under real analytic local

coordinate transformations of M fixing N.

len). Let x* be

a point-of SNM and U be a neighborhood of x* in MonN(M). Let

Proposition 3.2. (Edge of the wedge theorem for

0 be a neighborhood in X of X = T(x*) and z be an admissible



49

local coordinate system of X over (. Let Fj(z) be a

n

holoemorphic function on a neighborhood in C of

{z = (x',2") € QN M; (x',x") € T(U), y" € Fj}

such that

J
L F . (x',x"+/-1" .0) = 0
j=1 9 J

as a hyperfunction on T(U) N (M \N). Then for any open convex cones

F} CcC Fj, there exist a neighborhood U’ C U of x* in MonN(M), a

neighborhood Q' CQ of x in X, and holomorphic functions
ij(z) on a neighborhood of
{z = (x',2") € Q' N M; (x',x") € TU"), y" € Fj + I

such that

J
Fj(z) = ) F,

o Jk(Z)’ ij(z) + ij(z) =0 (1 ¢ i,k ¢ n).

This proposition is proved by means of curvilinear wave
decomposition of hyperfunctions with holomorphic parameters and the
edge of the wedge theorem for F-mild hyperfucntions in the
l1-codimensional case (cf. [4]). By virtue of this propositon we can

define boundary values of F-mild hyperfunctions:

Proposition 3.3. There exists a sheaf homomorphism

F : -IB

b BNIM T

N

F

NiM is written as

J
such that b(u) = z F (0,x"+/-11.,0) if u € B
(4). Moreover, b is independent of local coordinate system.

Now we can prove that the B -solutions of a coherent

NIM

Dx—module M are F-mild if Y 1is non-characteristic with respect

to M. For this purpose we introduce a sheaf ﬂA.
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Hn"d

Definition 3.2. gh .= .

(GX'Y)GwN.
Lemma 3.2. There are injective homomorphisms
-1xA F -1xA

T8 ——5—>§ B /BNlM——-—-—*@NIM/t B2,

NIM’ NIM

By using this lemma we can prove

Proposition 3.4. Let M be a coherent Qx-module for which Y is

non-characteristic. Then we have

F -
and in particular,
Homg, (M BF ) = Hom, (M, B )
”X * UNIM QX ' UNIMTT

By means of Propositons 3.1, 3.3, 3.4 we can finally prove the

invariance of the local boundary value homomorphism Y:

Theorem 3.1. The sheaf homomorphism
. -1
Y : Hdmax(M, BNIM) —_— T HOMQX(MY’ BN)

coincides with the one

F F

-1
N!M) —_— T Hdmbx(MY’ B
induced naturally from b : Bglﬂ —_— t_lBH. Thus the above Y is

Y )

Hom, M, B
9X N

defined independently of M (hence without assuming the existence

v

of M).
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