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A Self-Dual Yang-Mills Hierarchy:

Periodic Reduction, Ansatz Solutions and Transformation Group

Yoshimasa Nakamura (# 4% 4% &)

Department of Mathematics, Gifu University

1. Introduction

M. Sato and Y. Sato [1] introduced the Kadomitsev-Petviashvili
(KP) equation hierarchy and completely characterized the solution
space of the KP equation being a great interest. Here the KP
hierarchy is a GL(=)-invariant infinite system of integrable
nonlinear evolution equations having an infinite number of time
variables. They also showed that many other integrable nonlinear
equations called soliton equations are derived from the KP hierarchy
by periodic reductions. It is noted that there are some integrable
nonlinear equations which seem to be outside of the KP hierarchy.
They are the stationary axially symmetric Einstein equation, the
Bogomolny equation and the self-dual Yang-Mills (SDYM) equation. The
first two are derived from the last by specializations. Being
inspired by Sato's pioneer work, Takasaki [2] presented a formulation
of the GL(n, C) SDYM equation and constructed formal power series
solutions by making uses of certain infinite matrices. However, it
has not béen clear how to define an SDYM equation hierarchy.

Recently M. Sato and his coworkers [3] develop a theory of higher
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dimensional integrable nonlinear equations including the SDYM
equation in terms of D module. In this note, we shall consider the
SDYM hierarchy from an alternative point of view and introduce an
infinite system, in which every GL(k, C) SDYM equation (KE€N) is
embedded, as a candidate for the SDYM hierarchy (Sect. 2). Secondly,
we derive sub-hierarchy found in the previous work [4] from the SDYM
hierarchy by a periodic reduction. We call it a GL(n, C) SDYM
hierarchy and discuss a class of ansatz solutions taking the form of
Toeplitz determinants (Sect. 3). It is shown that an infinite
dimensional transformation group acts on the solution space of the
(n=22) sub-hierarchy. We also obtain a parametric solutidn as a
repreéentation of the transformation group (Sect. 4). In appendex we
give ansatz solutions and an exponential operator of the stationary
axially symmetric Einstein equation which are similar to those of the

SDYM equation.

2. A Self-Dual Yang-Mills Hierarchy

Let A=(aij)i jel be an oX» matrix whose elements are arrayed as
4.1-1 %10 2%-11 -

A= 1. ag_1 g0 anq . (1
4.1 %10 %11 -

Let ==(Eij)

y=(yk)k€N’ z=(zk)kew and Z=(Zk)k€N are sets of infinite complex

i,jez be a projection matrix with &ii=1 for i=20, gij=

(y, ¥, z, z) for i<-1 and j20, ﬁij=0 for others, where y=(yk)k€N’
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variables. It is noted that columns for j20 of £ span an infinite
dimensional subspaces CN in @Z, and E describes affine coordinates of
an infinite dimensional Grassmann manifold GM(«) [1]. Let A be a
shift matrix defined by A=(J,

) The product of ox« matrices

ij+17i, j€l"
is defined by (aij)i,jEZ(bij)i,jGZ =(k§Zaikbkj)i,j€Z' Let H be an
isotropy subgroup of GL(») of matrices A=(aij)i,j€Z’ where aii=1 for
i€Z, aij=aij(y, ¥y, 2z, z) for i<-1, j=0 and aij=0 for others.

Solutions to the usual SU(k) SDYM equation are given by solving

-1 -1, _
8_ (ay Qk Qk ) + 8_ (82 Qk'Qk Yy = 0, QkEGL(kf 9} (2)
Y k 2y K

under reality conditions. Here (s ;k, 2y ER)GC4, 8y = a/ay and

k k
so on. We consider an infinite system of linear equations
DU = UAa_E, D= 8, +A¥a_ (3)
zk Kk zk
DyU = -uats_ =, Dy= 8, -ats (4)
) [ Yy

for k, 2€N, where U€H. The integrability conditions of U and E w.r.t.

(y, ;, Z, z) are easily found to be second-order nonlinear equations

on GM (=)
5, ato_= o a¥o_m + ta¥e_ =, afa_=1 = 0, (5)
k Yy ') 2y Zy g
a, (Fo_ 5 - 8, s = - a¥a_ &, Al =1 = o,
'} 2y k zg ) zy
o, A¥a_= - o, o_= + a¥e_ =g, ato_=1 = o, (6)
[ Yk k Yo Yk )
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(11

for k, 2€N. If there is a GL(»)-valued matrix Q such that Aka_

’k

and Aﬂa_ g = 82 Q-Q-l, then (5) and (6) are automatically
Y [

satisfied. We note that each GL(k, C) SDYM equation (2) is embedded

-1
= -9 Q'Q
Yk

in (6). To see this let us define kxk matrices

SoCi+Dk, ik 7 S-(i+Dk, (k-1

=G, iy _ .
Ey = : . s 7))
g-ik—l,jk g—ik~1,(j+1)k-1
. . . -~ (0,0) .
for i, jeENU{0}. It is not hard to see that B satisfy
3. 9 E(O’O)+ 3 9 E(O’O)+ [d E(O’O), 2] E(O’O)] = 0. (8)
'yk -}; k Zk 2 k Z k '}; k
k k k k

Egqs.(8) are zero curvature conditions, there are GL(k, C)-valued

~(0,0) _

-1
K = —Sy Qk Qk and

functions Q,= Q, (y, ¥, 2z, 2z) such that 8
k k - K

"

- (0,0) -1
o_ = = 82 Qk-Qk » and consequently we have (2) from (8). Thus
y Kk

k .
solutions to every GL(k, C) SDYM equation (k€N) are given by solving
linear system (3) and (4). We say that thé system (3) and (4)
defines an SDYM hierarchy (5) and (6).

We now discuss transformations of solutions to the SDYM

hierarchy. Let G (€H) satisfies DkG=O and DEG=O for k, 2€N. If U
(€H) is a solution to (3) and (4), then U'= GU is also a solution

which corresponds to a solution ' to (5) and (6). Solutions E and

E' are related as

d_ E-G. (9)
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We call the transformation from E to E' a gauge transformation for
the SDYM hierarchy. There is the following nontrivial symmetry. Let
M be a GL(=)-valued matrix such that DkM=O and DZM=O for k, 2€N. VWe

consider a factorization of U IMU into

-1 -1

U "MU = XY 7, (10)

where X€H and Y is an invertible matrix. If the factor X exists, we

have a new solution £ to the SDYM hierarchy which is defined by a

~
—

solution U = UX = MUYEH to (3) and (4). Solutions E and E are

related by the formulae

A%o_ = = x7'A\*a_z-x + x7lpx,
Zk Zk

Ata =2 = x A% =-x - X~ 'pjx. (11)
Ve )

It is concluded that GL(») acts on solutions to the SDYM hierarchy as
a symmetry group. We note there ‘always exists the factor X of the

factorization problem for M=exp m, where m€gl(«), D

- *—-
km—o and Dﬁm—Q.

0
For a given initial value U=U(y, 0, z, 0)€EH, the linear system (3)

and (4) is locally in y and z solved to

0
Qay U, (12)
[}

U = exp{ X (?QA_Q

8 -z,A
2eN zg "¢

)

where exp X= Z Xk/k!. Since U€EH, U gives a formal power series
k=0

solution to the SDYM hierarchy through (3) and (4).
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3. Periodic Reduction
Let us consider a sub-hierarchy by imposing an additional
constraint which will be called an n-periodic condition. Let E

depend also on infinite real parameters t=(tm)m€N through
8, £ = A"z, =1, (13)

for méN. These are locally in t solved to

m, o 0 m.o, -1
E = exp( Z th YE{(I - B + exp( X th =y o, (14)

meN meN
—— pe— o — .
where Iz(aij)i,jGZ’ iijzgij(y’ Yy, 2, 2z; t) and &ij=§ij(y, y, 2z, z; 0).

A set {M=sexp( X thm); tGRN) forms an abelian subgroup of GL(®). We
meN

remark here the exponential operator exp( Z t A™) describes the time
meN

evolution of the KP hierarchy [1]. The parameters t=(tm)mew have

some hidden meaning in the theory of SDYM equation. We assume that =

satisfies for a positive integer n
(A"z, =1 = o, (15)

or equivalently, St =0, After a calculation we have [AmE, 21=0 and
n

at E=0 for m=0 (mod n). We refer to (15) as an n-periodic condition
n .

for the SDYM hierarchy. Let us regard the j20 part of W =(wij)i jez
?

as homogeneous coordinates of GM{(«) corresponding to E,

-1

is-17 Mi?i<-1 M504, 5200
i20 20 |

(8. .) (16)

1]

For k=2=0 (mod n) we can reduce (3), (4) and (15) to



D.W = O, D,W = 0, A", w1 = o, (an

respectively. The last equation implies that W is a (block) Toeplitz
matrix; w=(wj—i)i,j€Z’ where wj—i are nxXn matrices. We note that the
system an = 0, D:W = 0 and [An, Wl = 0 is an infinite matrix
representation of linear system for a single GL(n, ) SDYM equaticn
discussed by Takasaki [2]. The sub-hierarchy characterized by the
constraint (15) is regarded as an embedding of the GL(n, C) SDYM
equation into GL(k, ) SDYM equations for k=0 (mod n). The n=1
sub-hierarchy is a Laplace equation hierarchy. We shall call the
system (5), (6) and (15) as a GL(n, O) SDYM hierarchy. In Ref. [4],
it is shown that an infinite dimensional subgroup of GL{(») acts on
solutions to the GL(n, {), n22, SDYM hierarchy. Let us remember the
fact that the K-dV hierarchy and the Boussinesq hierarchy are derived
from the KP hierarchy by 2 and 3-periodic reductiohs, respectively
[11.

From the first two of (17) we have (matrix) Laplace equations

(9. 38 + @_9 HXW. .= 0 for keN, i,j€Z. The formula (16) implies
y. o zZ, = j-i
k yk k zk

that solutions to the GL(n, €) SDYM hierarchy are given by a
nonlinear superposition of solutions to the Laplace equations. If
W,_;= 0 for |j-il>g20, then £;; are well-defined and take the form of
ratio of Toeplitz determinants. Setting k=£=2 and n=1, we obtain the
well-known Atiyah-Ward ansatz solutions dg to the SU(2) SDYM equation
[5]1. Two types of Cauchy problems for (17) are locally solved by

using Lie transforms of initial values. The results are
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W = exp{ = (anAlna_ -anAQ“a_ )IW(0, ¥, 0, Z),
2€N Yon 2y
W=oexpl Z (v, A8 7 ATEny ey, o, 2z, 0). (18)
on 2 an y o

2€eN n £n

The corresponding power series solutions to the GL(n, ) SDYM
hierarchy are given through (16). " We note that there are two

(mutually commuting) independent time evolution operators.

4. Transformation Group

Let s =(sj)jez be a set of complex parameters and h k€Z, be

k’

gl(n, C)-valued constant matricies. Define

H = diag(hk)Akn,

k (19

for k€Z, where diag(hk) denotes an infinite (block) diagonal Toeplitz
in

Hk] = 0 for k, 2€Z. Let us consider a

one-parameter transformation for the matrix W defined by

matrix. We note [A

<ask- Hk)W(y, Yy, 2, 23 8) = 0, 20)

for some k€Z. A parametric solution W(s)= W(y, y, 2z, 2z; 8) to the

system (20) gives Z(s)= E(y, ¥, 2z, z; 8) by (16) which satisfies

as E(s) = [Hks(s), E(s)1, SS Z2(s) = [H_Q, E(s)1, (21>
k -4
for k€N and 2€Nu(0}. If we focus on the nxn matrices E;I’J) defined
by (7), we have from the first system of (21)
(i, i (i+k, i) (i, j*+k) k-1 (i, (k-8-1,3)
9 E "*'¥ =z h =B il B h, - Z 5B °*>"h E ey (22)
S N K™n n Kk 0=0 K™ n
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for i, j€ENU{0}, k€N. The transformation described by (22) is very
similar to the Kinnersley-Chitre (KC) transformation of the Geroch
group acting on the stationary Einstein equations. See [4].
Analogue of the KC transformation for the SDYM equation has been
known as an infinitesimal Riemann-Hilbert transformation [61.

We now exponentiate the linear system (20) for a given data
which satisfies the linear system (17). Let w°= Wy, §, Z, E; 0>

satisfing (17) be an initial data for (3.2). Then a solution

- 0 '
W(sk) = exp (ska)W (23>

to (20) for some k€Z also satisfies (17). This implies that E(sk)
corresponding to W(sk) gives a solution to the GL(n, C) SDYM
hierarchy. In other words, the one-parameter transformation (23)

for W gives rise to a symmetry of the hierarchy. It is noted that

. 0 0 _ - -. . . .
if (wij)i,jzo’ where wij'wij(y’ y, 2, 23 0), is invertible then
(wij)i j20 is so. Let EO be the projection matrix corresponding to

wo. Then E(sk) defined by

) = exp(ska)EO-{I - EO + exp(s, H )EO}-I, (24)

=(s kHk

k

for some k€Z is a parametric solution to the GL(n, C) SDYM hierarchy
(5) and (6) with (15). Proof is given in [4].
Next we discuss an algebraic structure of a whole set of

one-parameter transformations induced by {H k€Z}. We note

K’

4 (k+%)n
[Hk, HQJ = dlag([hk, hﬂl)A s (25)
for k, L€Z. Since [H ., Hy 31 = [H., Hyl providing [h, _.,h, 1 =
[hk, hQJ, an algebra which the {Hk; k€Z} action on the matrix W forms

- 9 -
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is homomorphic to the loop algebra, a subalgebra of gl(«),

glin, ©xCrx, 1 11, (26)

where X is a complex parameter such that |Axl=1. Hence it is
concluded that the {Hk; keN} action on E forms a Lie algebra
homomorphic to (26). Let us recall the fact that the KP hierarchy
and its solutions are obtained from a representation of gl(«) and
sub-hierarchies such as the K-dV hierarchy and the Boussinesq
hierarchy are associated with infinite dimensional subalgebras of
gl(=) [1]. This infinitesimal property reflects a group theoretical
structure of the transformations (24). 1In Ref. [4], we prove that
the transformations (24) form a (Banach Lie) group & acting on a
solution space to the GL(n, €) SDYM hierarchy. 1Indeed it is shown
that the infinite dimensional transformation group having the
representation (24) acts on the GL(n, €) hierarchy in the case that
nz2. 1If we choose n=1 in (19), then we see that a one-parameter
transformation group having the representation (24) acts on the

hierarchy (a Laplace equation hierarchy).

5. Concluding Remarks

The facts proved in this note and [4] look rather promising and
it is reasonable to expect that we can prove a complete integrability
of the GL(n, ) SDYM equation. We also have an interesting question
to understand how our GL(«)-invariant SDYM hierarchy can be realized

as a dynamical system on GM(=),.
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Appendix
Here we consider ansatz solutions and an exponential operator of

the stationary axially symmetric vacuum Einstein equation

1 ¢
-1 -1, 1
Sp(papQ Q ) + az(pazQ Q ") =0, Q = tlo f2+w2 R {(AD)
where f=£f(p,2z) and ¢=¢(p,z). Let w=(wij)i,j€Z’ Az(si—j+1,0)i,jel’

o2y
and T=((-p™) 5i+j+1,0)i,j€Z’

associated with the ansatz solutions is

where wij=wij(p’2)' The linear system

(Gp—pAaz)w = 0, [A, W1 = 0, [T, W]l = 0. (A2)
See the linear system (17) for k=0=2, n=1. The system (A2) implies

SpAk—pazAk_1= o, SZAk+{pap-2(k-l)}Ak_1= 0, (A3)

for k€N, where Aj—i=wij' The integrability conditions are

2 2 _
(P9, °+(3-2K)8 +p8 )4, ;= 0. (A4)

We suppose the AO is a harmonic function on R3, where pz=x12+x22,

Then we have a set of Cz-functions {A

2=Xq. k; 0sk<2-1}, L€N,

satisfying (A4). There is a useful lemma proved in [7]1 that the

functions f. and @, defined by f.=A. "} and ¢,=-iA. ) satisfy the
1 2 1 70 1 0

Einstein equation (Al), where 12=—1. Let us call the family of

solutions the ansatz $i. The second and the third ansatze $é and ﬁé
were also found in [7] by using a Backlund transformation: (f, @) -

x, o,



117

1

T = pt 1(£%40%), 8. = 1pf‘2(f2+¢2)282{¢(f2+¢2)‘ y,

2.-1

54 =_ipf‘2(f2+¢2)29p<w(f2+w y "1y (A5)

The general ansat:z $i defined by the same manner is given in [8] as

L 1-4. -1 Bo By v By
£, = pt%p "lp

.9. .Q -Q—lg —2 .

B T
D,= detW,= A0 . , (A6)
iy C1% . . N
®g = (=17Dy "Dy 220, A
P 2-1 0

where 32_1 is the (1, &) minor of WQ. We see this family of
solutions takes the form of ratio of Toeplitz determinants and their
minors. Elements of these Toeplitz matrices are solutions to the
first order linear equations (A3).‘ It is noted that the celebrated
Kerr solution is a special member of the ansatz $é.

Let D(z) be an «x» diagonal matrix function of only z satisfying
[A, D(z2)1=0. Set W(0, 2z)= exp(-%A_laz)D(z), which is lower

triangular and Toeplitz. Then (ap-pASZ)W(p, z)=0 is integrated to be
1 2
W(p, 2) = eXp(Ep A@Z)W(O, z2). (A7)

Observe that W(p, z) satisfies [A, W(p, z)1=0, and hence the operator
exp(%pzAaz) acts on the space of ansatz solutions. The formula (A7)
is analogous to the time evolution formulae for soliton equations
[1]1, the SDYM equation [2] and the GL{(n, €) SDYM hierarchy (18).
Recently Nagatomo [9] also has obtained the operator exp(%pzAaz)
generating formal power series solutions. It is expected. these
observations play an important role in the study of solution space to

the Einstein equation.
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