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0. In this note, we report that our investigation[7] is generalized
as follows: The vertex operators(primary fields) are constructed for

theAconformal field theory on Pl also by integrabie modules of any

non— twisted affine Lie algebra Xél), and in the case that Xé1)=
Aél), the commutation relations of vertex operators induce monodromy

representations of the braid group on the spaces of vacuum
expectations of compositions of vertex operators which give all
unitarizable modules of Hecke algebras of type AN constructed by

H. Wenzl[5].

1. The 2—-dimensional conformal field theory is initiated by A.A.
Belavin, A.N.Polyakov and A.B.Zamolodchikov[1] and they pointed out
the significance of thevprimayy fields for this theory. Since then
the theory has been developed by many physicists, e.g. [2,4,6]. V.G.
Knizhnik and A.B.Zamolpdchikov[4] developed the theéry with current
algebra symmetry, and proposed a notion of primary fields with gauge
symmetry, and’gavevthe diffeféntial equations of multipoint correla-—
tion functions. QOur aim here is to give rigorous mathematical founda-—
tions to the work of [4], aha to reformulate and develop the operator
formalism in the conformal field theory on the complex projective

line Pl. Main results are the existence and uniqueness theorem of
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primary fields and that the monodromies on N-point functions coincide
with the representations of the Hecke algebra HN(q) constructed by
H.Wenzl1[5] for some roots q of the unity.

2. Let & = g@@[t,t—1]$€c be the affine Lie algebra of type X512
wheré‘g,isifhe classical Lie algebra of type Xn‘ Fix a Cartan
subalgebra bh of a, a root basis ﬂ={a1,°°-,an} of the root system A
for (g,h), and tﬁe nondegerate g—invariant bilinear form C, D wifh
the normalized condition (8,08)=2, where 0 is the maximal root. Let:

{Hl,-'~,Hn} be the coroot basis and {Ei,--~,E i F

-wF_ '} be “the
n n

TR
Chevalley generators of g. Denote X(m)= Xx@t™ (X€q), then [X(m), Y]

= [X,Y](m+n) + mbd (X,Y> ¢ and [X(m),c] = 0 (X,Yeqg, m,n€ld). The

m+n, 0
Lie aigebra § has a'décomposition a = m+®g$€c$m_, where n, =
gec[t*1]¢*! |
1 We fix the value £(positive integer) of the central element ¢ of &
on the space #£{(defined below)> of operands. Denote by Pi the set of
all weights 1€h* with <A;Hi>6220 and 0<(6,4)<8 . For any dominant
integrai weight lePl, there is a unique integrable (irreducible)
highest weight left &—module %1 with the highest weight yecto: 11>,
such that the subspace V, = {VE%A; m,v=0} is an irreducible g-module
of highest weight 1.

We can define the corresponding irreducible highest weight right
aCor g)-—module WI (or VI) (and fix a lowest weight vector <il), and

the nondegenerate bilinear pairing (called vacuum expectation value)

+ » :
< 1> #,x#,——C such that <il1> = 1 and <valw> = <vlaw> for any

LT ~ | +
vewl, a€aq, weﬁl. Its restriction on le\/'/.L is also nondegenerate.

v . o
- The Virasoro algebra ¥ acts on each %l and %l through the Sugawara

form L(m),meZ, that is,

1 L i Y
L = gy {2 sl con @+ 3 T eox mio ),
208 ez bz : YEA !
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where (H'eb (1<i<n), XVeg_, (veéa)} and (H,eh (I<i<n), X €q,. (ve)}
(1

n’
ntl (for Xn:An or Bn), = 2n~1 (for Xn:Cn)7 = 2n—-2 {for anﬁn), = g

are dual bases of‘g and g is the dual Coxeter number of X i.e. g =

(for Xn =E. or F4), =18 (for Xh=E7), = SO(fqr Xn=E Y, = 4(for Xn:G J.

6 2

The normal ordering ¢ ¢ is defined by

8

XM Y M) = XmY ) if m<n, = YMO)Xdam if m>n;

Lxmym+y@xm} if men.

+
Then %]’and %l have the eigenspace decompositions w.pr.t. the operator
+ + +
L %l= > \%l,d and %l= > %i,d’ where %i,d and #l,d are the
deZ_ s deZ_, .

. , . . : _{a,n+2L, 01}
eigenspaces with the same eigenvalue Al+d’ where Al- PACETD)

and P is the half sum of positove roots of (g,h,TD.

‘r
and ¥ = 2 %+

) +
Introduce the spaces ¥ and # defined by #= 2 # 2
lEPQ

AGPQ

Lo + +
and extend < | > to < | >: # x¥——C by <%il%l’> = 0 for Ai=1'.

1

By an operator, we mean a linear mapping ®:¥——¥%, where # is a

completion of #(see [7] for the definition). Note that an operator @
is characterized by bilinear mapping ®: %*x% —— { defined by
<v|®lw> = <v]|dw)> for any v€$+ and w€¥. An operator—valued function
®(z) on a complex manifold M ié cailed holomorphic, if the function
<v|i®(z)lw> is holomorphic in z€M for any <V|€%T and |w>€X.

An ordered pair {®, ¥} of operators on ¥ are called composable, if

m
Mg
2 S <vidlu, ,><u, .|¥|lw>]| < »
d=0 'j=1 d, 37 7, |
. + .
for any vectors <v|€¥ and |w>€X, wherev{lud g ISiSmd} and {<ud jI;

.’" 3
1<i<m.,} are dual bases in 2 # and > #® , and m,;,= dim > ¥ .
d iep, *nd rep, *id d sep, 4. d
9 2 2
In this case, the composed operator ®¥ is defined by
" ;

<vig¥lw> = 3 2 <vidluy .><u
d=0 j=1 ‘ »J

Note that two operators may not alwa&s be composable.

d’jl‘l’lw> .
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3. For each X€g, the field operator X(z) = I Xz ™! obeys the
meT

equations of motions:

[Lm), X(z)] = " [zg—z + m+1] X (2) (m€Z) .

The currents X(z),X€a and the energy momentum tensor T(z) =

> L(m)z_m—-2 preserve each space %A, which can be considered as a
meZ .

free theory. In order to introduce operators describing the inter-

actions in the theory, we define the vertex operators due to. [4].
A triple v = [ 1 ] of dominant integral weights 15,4, and 4 is
Aol , | 2: M

called a vertex. Introduce. the space #(¥) = Hom (V.®V., ,V. D
a A ll 12

A multi-valued, holomorphic, operator—valued function @(ﬁ;z) on
the manifold M1={z€€§ z#0} linearly parametrized by uGVl is called a
vertex operator of weight i, if for any ueVl and ZGMI’ an operator
®(u;z): ¥ —— # satisfies the conditions:

m

(Gauge Condition) [X(m), ®u;z)] z" ®Xu;zd (X€a, meZ) ;

(Equation of Motion) [L(m, ®u;z2)] = zm{z%2+(m+1)bi}¢(u;z) (meZ) ,

where the number AA is called conformal dimension of the vertex
operator ®(z).

A vertex oﬁerator d(z) of weight A is called of type v for a vertex

— l . PR ] . — .
v = [1211] with liepl(1—1,2), if dCu;z) = ﬂlztb(u,z)ﬂ

the projection of ¥ C(or # onto %l(or @l respectively).

1. where ﬂl is
1 .

. Then we get the condition for the existence of vertex operators:

Theorem 1.

i A vertex operator ®(z) of type Vz[lll ] is uniquely determined
2™1

, O defined by

by the form (initial term) o e‘Homg<vI V. 8V
. 1

9 ‘l 3
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e (v ,u,w) = {ZA(V)<v1¢<u;z>rw>1}'_ (veVT | uev,. wev, ),
J1z=0 i A 24
where A(y) = A1+A11—A12.

ii) There exists a nonzero vertex operator ® of type v on ®, if and
only if the vertex v satisfies the f—constrained Clebsch-Cordan

conditjon (CG)Q

CG v> # 0 and (A,+1,+4,0> <22 .

4 1

2

Remark that the existence of a nontrivial vertex operator of

weight 4 implies that AGPQ.

For each vertex VG(CG)Q, we choose and fix a basis BP(yv) = {wé;
lsiSm(v)}‘of 7(v) where m(y) = dim?(v), and denote by ¢¢(Z) the

associated vertex operator of type v with the initial term @e€?7(¥).

let ®#(z) be a vertex operator of weight A. Define the actions of

the Lie algebras & and £ on ®(z) by

fame = —— [ 4t ¢-2" X0 (Xea, melD),
2rn/-1 “C ,
and )
famez = —t j dee-2™ ! Tor e (meZ)
2n/-1 “C

for some contour C around z such that 0 is outside C. Then

Xmd;z) = 0 (m=1, Xe€g, uev,);
ROz = (X, Gz ] = @ Xus2) (Xeq, uev,);
fmow;z) = 0 (=1, uev,);
Low;z) = 4,0W;2) (uev,);
LeDowsn = Sown | (uev,>.

From the relation of the irreducible &-module %l, we get
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Theorem 2.

X, -1

)l—(l,6)+1
0

d(li>;2z> =0

. ) ) + .
4. Now we call the vectors lO>€%0 and <0|€%O‘the Virasoro vacuum.

They satisfies the equalities

X(m 10>= L) 10>= 0 ; <0iX(-m)= <0IL(-n)= 0 (X€gq, m=0, n>-1).

For an N-ple A = (1 "',11) of weights li with lePl, let VYV (O =

ND

., and let VE(A); Hom (V 8"-®Vl ,L) denote the invariant
. 1 . o

vY @---evY A
a ‘N

Ly Ay
subspace of VV(A) under the diagonal g—action, where VX denotes the
dual g-module of Vl. Let @i(zi) be a vertex operator of weight li

(1<i<N). Then the vacuum expéctation value of the composed operator

<¢DN(2N) .- '®1(21)> = <OI(I)N(ZN) . '@1(21) | 0>

is considered as a VV(A)—Valued, formal Laurent series on (ZN""’ZI)
and is called an N—point function (of weight A. If @i(zi) is of type

v, (1<i<N>,

N . :
_ i '
<¢N(ZN) @1(21)> = E z. 2C ..z zy R

where C_ evY (&) and the sum is taken over integers m,€Z (1<kx<N)
my oy k

with mNZO apd mlso‘

Let ni‘denote the g—action on the i—th component of VV(A) and

introduce the operator Qik defined by
. o , . ,

Q.. =3 ni(Hj)n

: Y
ik k(H.) + > xi(X bR

X.)
j=1 J vEA kvt
and denote Q,=Q.,, then Q, = {(1,,20+2(1, P }id on vV .

Then we get a system of differential equations and a system of

algebraic equations for N—-point functions:

Theorem 3.
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Let ©.(z,) be a vertex operator of weight 1, (1<i<N), then the

N—-point function <¢N(ZN)~--®1(21)> satisfies the following equations:

(I>. (projective invariance) For m=-1,0 and 1,

N
< m 2 _
121 zi<zi5;i + (m+1)Ali)<®N(zN)'--®1(zl)> =0
(II> (gauge invariance) For any X€g,
o 3 ;
igl,ni(X)<¢N(zN)"'¢1(21)> =0 .
(I1I> For each i=1, ---,N,
[<1+g)§— ~ § Pik ]<@ (z:) @, (z,)> = 0
p— 1 - .
Szi k=1 Z{ %k NN 1 1»
k=i
(IV) For each i (1<i<N) and any'ukev] (k=i),
“k
Li —my my; ' ’ my
> [m.] H.(zk—zi) <£I>N(Xe uN;zN)~°®i(lli>;zi)--®1(x9 up3zd> = o,
mi i‘k=i
where m, = (my, +~-,m.,--,m)> € Z_ >N 1 with Sm =L. = 0-(1., 8 +1
i N’ S R | >0 k i ‘ i’ :

k=i

Remark that the equations (ID~(III) are obtained in [4] and the
equations (IV) are obtained by Theorem 2. The equations (II) and
(ITI> imply (I), and the system (III) of differential equations 1is

completely integrable.

b, Consider the systems E(A) of differential equations and BC(A) of

algebraic équations for VH(A)—valued functions ¢(zN,---,zl) on the

. _ . N .
manifold XN = {(ZN, ,zl)eC oz Pz (izk) }

| 9 N Ry

E (A [(1+g)—— - 3 ——:——]@(z Lo, z) =0 (1<i<\D
Dz ., <., z.-z N 1 :

- . i k=1 i “k .

k=i

and for each i (1<i<N) and any ukevl (k=i),
L5



B ( S L ¢ y Kg ¢ "N xolyy =0
A [ ] z,=z,) "®(zy, c,z) X5 Uy, s 1>, -+, X, u = ,
PRI k N 1 Kg uy i 0 Y1
_ ~ N-1 . S 1 = ae
where m, = (mN, U ,ml) € (Zzo) with 2 m = Li’ 2 (Ai,6)+L

k=i

Introduce the set ?Q(A) defined by
?QCA)= {]P'—'(IJN, M .’ul’MO;CPN’ A .’(plt(po); “iepl 3 p'N=tu'o=0’

1.
L 1 BAO [
v,= [# ‘ui-l]e(CG)'Q" 0. €8PV}

i
For each pG?Q(A), the N-point function

o (z ez = <0

. >
p 2N ¢¢ (z,D

1 1

of type p is a formal Laurent series solution of the joint system

( r)..
@y °N

EA) and B(A). By the theory of partial differential equations with

regular singularities, we get

Theorem 4.
i> for any pG?Q(A), the Laurent series QP(ZN’...’ZI) is absolutely
convergent in the region %Z = {(zN,"-,zl)eﬁN; lzN|>---> Qzll} and is

analytically continuated to a multivalued holomorphic function on XN.

ii)‘{@p(zN,---,zl); pE?Q(A)} gives a basis of the solution space of
joint system ECA) and BA.

As a corollary of Theorem 4, we get

Theorem 5.

Let @i(zi) be the vertex operator of weight li and uiG\/]L (1<i<N).
, i

Then {¢N(uN;zN),--~,¢1(u1;21)} is composable in the region ® 4 =

{(ZN,°-',21)GCN; lzN|>°'°>!zll>0} and the composed operator.

M;zN)"~¢1(u1;zl) is analytically continuated to a multivalued
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holomorphic function on the manifold MN = {(zw,"',zl)exy; zi¢0}.

7 7 |
6. For vertices vy = [143“] and v, = [p ?1] satisfying (CG), and

mappings wieﬂf(vi) (i=1,2>, the composed operator ®¢ (w)@@\(z) of the

1

vertex operators ®¢ (w) and ®¢ (z) is multi-valuedly holomorphic on
2 1

2

the manifold M2.

For a quadruple A =(14,13,19,11) of wéights li with AiGPQ,

introduce the set IQ(A) of intermediate edges, defined by

i . A
=1 .= . . - 3 g _ 2
IQ(A)—{M—(A,¢2,¢1), “epl’ WZ(“)#[AZ M]G(CG)Q’ vl(u)—[# 11]E(CG)Q

@ieﬁf(vi(u)) }.

Let A = (14,12,13,11), then we get the g—isomorphism T: VYA —s
VY (A defined by
(T¢)(u4®u2®u3®u1) = @(u4®u3®u2®u1)

v - —
for eV (A = Hom(Vl4®V13®V12®V11,C) and u4®u2®u3®u1€V(A).

For an intermediate edge E=(E,52,51)EIQ(£), similarly define the
A A

. - = _ 2 - o~ _[_"3 .
vertices wz(u)—[lz M]’ wl(“)ﬂ[u ll]e(CG)l and consider the composed
operator ®— W) ®— (z) of the vertex operators ®— (w) and = (z2).
P9 1 P9 1

Assume that IQ(A)¢ﬂ anﬂ take m=(u,¢2,¢1)€IQ(A). For a point (w, z)€
(z)®» (w) denote the analytic
2 \S|

coninuation of the composition ® (w)$¢ (z) of the vertex operators
2 1

along the path b({(t), where the path b(t) = (W), t¢W)) from the

. 2.
12— {(ZZ’ZI)GR ; 22>21>0}, let ®¢

point (w,z)612 Fo the point (z,w)ET2 = {(22,21)€R2; 21>Z2>0} on the

manifold M2 is defined by

per) = MEE 4 JYTIV Moz gy = M2 o VI 2 e, 1)),

\v]

Then
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Proposition 6. . i) There exists a square constant matrix CA=

[cn
{Cy(A)],MEI

T ®¢2(z)¢¢l(w) = B > B @62(w>®6
MGIQ(A)

W, Jrel ) such that for each intermediate edge mEIl(A),
2 ' 3

(z>) c*w
1 M

ii) Let A = (1,13,12,11,0), then the braid relation holds:
C (14, 13, 12, o) C (r, 13, ll’ 12)C (ll, 13, 2,2, D)

= C(t,1,4,1 Lo,k O‘)C(t,lz,ll,ls)

3’ 27 39 1!

z,ll)C(l

Now our fundamental problem is

Fundamental Problem,

Determine the matrix C(A)=[Cﬂ(&)] for any quadruple A with IQ(A)¢Q.

7. Fix a quadruple A =(l4,13,12,11) of weights li with liepl‘ By
the projective invarianée,;the system E(A of differential equations
is reduced to a differential equation REC(AY for Vg(h)—valued
functions of one variable, that is,‘bn the projective line Pl. This
equation REC(A) is of Fuchian type and has regular singurities at 0,1
.and «. The fundamental problem is reduced to the problem of how to
determine the connection matrix of the equation RE(AY from 0O to

We can solve the fundamental problem for the case where Xn=An, LS

= 1y = L@ in A.
Now we prepare some notations and results on a=s{ (n+1,C) and its

n+l |

representations. Let h = gn > CEjj be a Cartan subalgebra of g, where
i=1

E.. denotes the matrix element in gl(n+1;€). A coroot basis is given

as {H1=E11_E22".”Hn=Enn—En+1,n+1} and {Al,---,An} denotes the

fundamental weights, that is , <Ki,xj> = 6ij . Introduce the
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nondegenerate invariant bilinear form on g as X,Y>= trXY (as in

al (n+1>), then (x,a)=2 for any root €A for (g, h).

Denote by Ak the set of all Young diagréms Y=[f1;f -, f with

: 2!'. k]
~dep th (YD) <k, where fj means the number of the j—th row of Y. To any

ntl

Young diagram Y=[f1,~--,fn+1]€A , define the dominant integral

o ' n
and 2 (Y)= fl_fn+1:.§

’ n
weight L (D= 3
< 35

b.A.€P
j=1 44

bj= Y, 0e 7 by

2 YD “=0

bjzfj_fj+1 (1<j<n). Each weight lePl has thé Young diagram expression

A=1Cr) with YeA™ ! and 2= 20
Introduce Ejeh*rdqfined by A(Y)+Ej = 1(Y+Ej), where the Young
diagram Y+Ej is
Y4E | = [fl,-.-,fj_l,fj+1,fj+1,-1-,fn+1]‘
Consider a quadruple A =(14,1(D),A(D),11) of dominant integral

weights with (1.,8)<¢ (i=1,4), then we get that dimvg(&)SZ. Write 4,

as 11=kzlbkAk = A(Y), where Y= [fl,---,fn+1]. Then dimvg(A)=2 if and

only if

(D2) 12 = 1,+€ .48, (i<)), b._,=1 and b,_,=1 (b,=+= for conveniece),
4 1 i i ‘ i-17" i—-1 0

where 12 is the anti-weight of &, i.e. —-1? is the lowest weight of v,
In this case, put'd=d(A\)=j--i+fi—f‘j . The case (D2) is divided into
the following cases:

i—1
_1f._ . J . ) _ - -
(D2)21 £q = E{J itl+ 3 bk} < 1 and j—-i<n ;I (A)—{11+€i, 11+8j}

k=i L
DDy £g<l, mi=n and (6,1 < g P T, D={A+E,, 1 +E;}
02> , £y=1, j-i=n and (8,1 =8 P T, W={a,4E,, ).

The condition that dimVE(A)=1 is:divided into the two cases:

a _ - . _ —

(Dl)1 14 = 11+2€j - -and bi_lzz . H IQ(A)—{11+61}
a - —— — . - . - —

(D1)2 Ay = A ,+E . +e b._lzl and bi—O ) ; IQ(A)“{11+81}'

4 171 Ti+1 2 i
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Proposition 7. Let q = exp[zn'_l] (k=0+g=0+n+1).

K
i) Cases (D2)21 and (D2)22:
-1 Ja[d+1][d-1]
~(n+2) [ -1 “Td] (d] Yy
C = 2D + B
Y- | AqTEeF a1 g4 Y-
[d [d]

where [v] denotes the q—integer

2’1 e
[v] = a-1 and Yy T [F[+d+f]r[id—1}]1/2 .
KX X
- (n+2)
ii) Cases (02>, and DD 4: CMH) = - g2 Mt
—(n+2)
iii) Case (D, : C = q-¢2 D

8. Let N22 and fix a dominant integral weight t with (t, 8)<f. For
the (N+1)-ple A_ = (t®, 2@ ,1@, -+, 1@, introduce the set P, (N;D
defined by

?Q(N;t) = {p=(lN,~",ll,lO); AN=t, 10=0, liGPQ

L.=1.,_,+&. for some j (lsisN)},
i i-1 73
and for each pe?Q(N;t), define the VS(At)—valued, multi—-valued

holomorphic function ‘}’E)(z,\T

3
1

-,zl) on XN by
TP(ZN,---,zl)(v,uN,-~°,u1) = <V(v)!@N(uN;zN)---@1(u1;21)10>

for vEVta and uiGVl(D) (1<i<N), where @i is the vertex operator whose

initial term is a unique glement of ff(vj) for the vertex Vi(p)=

YR (=) +

(l 1 ] (1<i<N> and v is the isomorphism V:Vta———% Vt defined by
i"i-1 j

p(l-t?>) = <t] and vXv) = V(v)vg(X) (vtha, X€q), where I-t2> is the

image of 11> by the longest element of the Weyl group and Vg is the
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anti—atomorphism of g détermined by W XO=-X (=isn).

Let W(N;t) be the space spanned by {?p(zw;---,zl); pe@Q(N;t)},
then {Tp(z)} pG?Q(N;t)} gives a basis of W(N;t)‘and the space WWN; ©
coincides with fhe solution space of the’analogous equations as E (A

and B(AY in 8§5.

The braid group BN of N strings of Artin is fhe fundamental group
of the»quotlent space of XN by the 6N~act19n: (zN,~-~,zl)G = (ZCN)G’
"Z(l)a)’ o € GN' Hence the group BN acts on the space W(WN;t) as

monodromies. The commutation relations of vertex operators gives a
factorization of this monodromy representation (EN t,W(N;t)). By the

explicit formulae of the representation TN ¢ obtained from
. 3

Proposition 7, we get

Theorem 8. lLet q = exp(gzi:l).
n+2
i> The monodromy representation q2<n+1) TN ¢ of the braid group BN

on the space WN;t) gives an irreducible and unitarizable
representation of BN.

ii) This representation factorizes to a representation of the Hecke

algebra HN(q) of type AN—I'

n+2

iii) Our representation (q2(n+1)n t,W(N;t)) of the Hecke algebra

N,

HN(q) is equivalent to the representation (xég,n)’vég,x)) constructed
by H.Wenzl1[5], where t = A (YD) for any Y GAég’K), that is, for any

Young diagram Y=[f1,--~,f ] on N nodes with fl—fggm—g(=£).

g
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