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-Harmonic functions on Hilbert space and the Lévy Laplacian

Nobuaki Obata (Nagoya Univérsity)

F. Y@ A% ) (Br-FE )

Introduction.

In his celebrated book [14] P.Lévy introduced an infinite dimen-—
sional Laplacian for functions of infinitely many variables {ﬁn}zzl

by the formula:'

M=
o
[\™]

, o 1
» | A= lim N

N—> n

1 3&

=

This is called the Lévy Laplacianrn and has been studied by many
authors from various points of view (see, e.g., [1,2,4,6,7,8,11,13]
and references quqted there). In this paper the Lévy Laplacian is
defined as an operator acting on functions on Hilbert space (for.‘
definition, see the formula (2) below) and discussed along with
infinite dimensional rotation groups.

The first topic is harmonic functions. Motivated by Lévy’s
notion of regular functionals and white noise analysis, we propose a
notion of regularly analytic functions on Hilbert space which
genéralize ordinary Brownian fuhctionals. The mean value theorem for
regularly analyfic functions (Theorem 2. 1) then naturally implies the
‘harmoﬁicity of ordinary Brownian functionals (Theorem 3.2).

The second topic, that is, invariance of the Lévy Laplacian
under infinite dimensional rotation groups, is discussed with great
interest because the Lévy Laplacian depends upon choice and arrange-—
ment of complete orthonormal systems of Hilbert space. We determine
the maximal rotation group under which the Levy Laplacian is

invariant (Theorem 4.2) and discuss its subgroups.
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During the discussion on invariance of the Lévy Laplacian we
find a quite interesting permutation group called the Lévy group. In
Appendices we shall illustrate a close connection between the Lévy
group and certain notions of additive number theory, namely; the

density of natural numbers and uniformly distributed sequences.

81. The Leéevy Laplacian and the mean operator

I.et H be a real separable Hilbert space with inner productA<,>
and norm f-0. We fix a complete orthonormal system (=CONS) of H{ say,
{en}:=1 . For any C%-function F (in the sense of Fréchet) defined in
a neighborhood E € H, put
69 AF (&) = lim %, ; F* (&) (e ,e ) , £ € H,

N0 n=1 :
if the limit exists. The operator A is called the Lévy Laplacian.
Evidently the expression (2) coincides with (1) through the Fourier
series expansion.
n-—1 < R®

For each n > 1 the unit sphere S is regarded as a subset

of H by means of the map:

n .
= e ﬁ n-1
h = ¢y, +,h) — kzl he, €H, hes

N1 The mean of

Let dSn_l(h) be the normalized uniform measure on S
a function F over the sphere of radius p € R with center at &€ € H is
defined by

MF(E, p) = lim J'

n—— n
S

ty ,

F(&+ph) dSn__1

1
if this limit exists.
The following result, - which has been noted in,Somewhat'different

forms Ce.g., [2,14]), shows one of the most distinctive features of



the Lévy Laplacian. The proof is easy and omitted.

Proposition 1.1. Let F be a Cz—function defined in a neighbor-

hood of £ € H. If F admits the mean MF(&,p) for |p|] < R, then

AFe) =2 1im YECE.0) = F(B)
p——>0 [e]

whenever the limit exists.

§2. Mean value theorem for regularly analytic functions

Assume that a function F admits the expression:

(3) F = 3 <a_ , (g—go>@“ >, a_ € S"H,

n=0 n n
in some neighborhood of 50. Then F is called regularly aralytic at &0
if the poWer series Z:=0 Han“tn has a non—zero radius of convergence.
The expression (3) is called the power series expanrsiorn of F at &0 .

A function defined on an open set ® of H is called regularly aralytic

or ® if it is regularly analytic at every point of ®. The space of

all regularly analytic functions oh ® will be denoted by R« (@),
Example. Consider a quadratic function

F(¢) = < A8 , &€ >, £ € HL A € BAD,

where B(H) denotes the algebra of all bounded operatoré on H. Then F
is analytic in the usual Sense ([15]). However, it is regularly

énalytic if and only if A is of Hilbert—Schmidt type.
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The following is one of the most remarkable properties of

regularly analytic functions.

Theorem 2.1 (Mean value theorem). Assume that F is regularly

analytic at £ Then there exists some R > 0 such that

MF (¢, p) = F (& whenever el < R .

Here we only mention a rough idea of the proof. By means of the
polar coordinate one can show that the assertion is valid for mono-

mials of the form:
F) =<a, @-82®" >, a € s"H, n > 0.

For arbitrary regularly analytic functions one may carry'out an
approximation argument.
The next result is now immediate from Proposition 1.1 and the

above theorem.

Corollary 2.2, Every regularly analytic function is harmonic,

i.e. AF = 0 on 0O whenever F € R4 (®.

§3. Harmonicity of ordinary Brownian functionals

We now start with a Gelfand triple E ¢ H c E*, where E is a
nuclear space-containea in H as a dense subspace and E* denotes the
topological dual space of E. The canonical bilinear form on EXE* is
also denoted byA<,5. The standard Gaussian.measure‘p on E* is defined

by the characteristic functional:
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—1g12 : ‘ .
C) = ¢ 1encrs2 __.J’ el<x,E_.>_ du(x) , £ € E .
*
E

We put (L2) = L2(E*,#).for simplicity. Any element of (L2) is called
an ordinrary Browrian funrctionral.

Following‘[ll] we introduce -the transformation:

Sf(g) = f £ (x+E) du(x) = C(g>f txe<X 8 quo
k3 XK

E E
for’f € (L2) and £ € E. As is easily shown, Sf is continuously
extended to a C —function on H also denoted by Sft. ‘Let S™H denote
the n—th symmetric power of H and put SH = ano S™H (usual direct sum

of Hilbert spaces). It is known (Ce.g., [5,11,20]) that the transform

S is an analytical expression of the isomorphism (L2) ~ SH, namely,

Proposition 3.1. For each f € (L2) there exists a unique element

a € SH with Ufl = Hall such that

Sf(g) =< a, exp £ >,

where exp & = zn:O (n!)_l/2 Egn . The correspondence f +—— a gives

an isometric isomorphism from.(L2)vonto SH.

The next result, which has been noted in a weaker forms C(e.g.,

[5,8,13]), is known as harmonicity of ordinary Brownian functionals.

Theorem 3.2. The Lévy Léplacian annihilates (L2) in the sense

that ACSE) = 0 for every f € (L2).

. Proof, In view of Proposition 3.1 we can show that Sf{ G.ﬁd(H)

for any f € (L2). Hence, by Corollary 2.2 we have A(Sf) = 0. Q. E.D.
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§4. Invariance of the Lévy Laplacian

In what fbl;ows every subset of B is assuﬁed to be furnished
with the operator—-norm topology. It is known that the orthogonal
group O is a Banach-Lie group. We denote by o(H) the Lie algebra
of OH). The set

1 N ~
BO = { A € BaD ; Niifw N n§1< Aen, e, > = 0 }

bgcomes-a closed subspace of B(MH). Set

OMH; 8y = { g € O ; giﬁog_l = 8, } .

Proposition 4.1. om,xoj is a closed subgroup of OCH). More-—

over, it is a Banach—-Lie group with the Lie algebra

o(H;ﬁo) = { X € o ; ad(X)£0 c £0 }

Let Dom({A) be the space of all Cz—functions on H which admit the
limit (2> at every point £ € H. We take Dom(A) to be the domain of
the Levy Laplacian A. The orthogonal group O() acts on functions on

H by means of the map:
WM @ =F le) , 6 eH g€ oD,

We say that the Leévy Laplacian is invariant under a rotation g € O(H

if Udg)A = AUC(g). With these notations,

Theorem 4.2, O(H;ﬁo) is the maximal rotation group under which
the the Lévy Laplacian is invariant.
Proof. (outline) Assume that F is a Cz—function on H. Then, for

each &€ € H, we have
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F”(&)(en,en) = < A(E,)en , e, >

for some A(E) € BM®D. Therefore, F € Dom(A) if and only if A(®) € 3B,
where B is the space of all bounded operators A € B({H) which admit

the limit

N
nzl <Ae , e >.

LA = lim

N-———)oo

1
N
It is easily shown that O(H;%O) is the maximal rotation group which

leaves the functional L invariant. On the other hand, we have

. | _ -1,y -1 -1
UM (e ,e ) =< Alg '8¢ "e_ , g e,

for any g € O(H). Therefore, A is invariant under g € O if and

only if g € O(H;ﬂo). Q. E. D,
Remark. The Lévy Laplacian is invariant under any translation,
i.e. AW = WA for any » € H, where W(%) is défined by

WP (&) = FE-7.,

§5, Subgroups of OM:8,.)

0

For g € B() we put

2

N
I'(g) = limsup % 3 1c-gde I

N——w n=1

N
limsup > <x, (1-gde >2du(x).
N—— ¢ px © n=1 n

Z|

Motivated by [5, p.190] we call this the irtegral of average power.

The set
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OMH;I = { g €O ; I =20 }

becomes a closed subgroup of OCH). Furthermore, we can show the

following

Proposition 5.1, OH;I < O(H;xo). In particular, the Levy
Laplacian is invariant under every orthogonal operator g € O(D such

that 1—-g is compact.

- Finally we shall devote ourselves to coordinate permutations.:
Let N be the set of all natural numbers and Aut(N) the group of all
permutations of N. Then Aut(N) is regarded as a discrete subgroup of

O() through the fixed CONS {en}:=1 . VWe set

¢ = { g € AutN) ; lim % {1 €£n<Ng; gtn) >N}l =0 } ,
N—c :
where |+| denotes the cardinality. It is shown that & is a subgroup

of Aut(\N) and we call it the Lévy group after [7].

Proposition 5.2. ¢ c OW;8;, i.e. the Levy Laplacian is
invariant under the Lévy group.

Proof. With the notation introduced in Appendix B, one can show
that O(H;%O) N AutND = €0.,92. The assertion is then follows from
Proposition B. 1. | | Q.E.D.

Proposition 5.3, OM;I n Aut(N) = @0 , where 90 is the group
of all permutations g € Aut (ND) whose supports are of null density,
i.e. Sﬁsupp g) = 0. Furthermore, we have @0 c ¢ .

Prpof. "From the equality

I'g) = 2 S(supp g) , g € AutN\),
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which is verified by a direct éalculétion, the assértion follows.

Q. E.D.
Appendix A, Density of natural numbers and the Leéevy group

For any subset S ¢ N, N being the set of all natural numbers, we

put

T = ﬁfffﬂﬂ % | Sn {1,2,---,N} |
and

8() = liminf & | S n {1,2,---,N} |,

N—s

where |-| aenotes the cardinality. These are called the upper and
Lower (asymptotic) denrsity of S, respectively. If the two are equal,
we refer to their common value as the (asymptotic) dersity of S and
denote it by 8(3).

We denote by & the collection of all subsets of N which admit
the density. The triple N,Z, & being regarded as an analogue of a
probability space, certain problems of additive number theory were
discussed by M.Kac [9,10]. Although % is nof finitely additive, we

have the following
Proposition A.1. If S € F, then S° € # and 8% =1 - 5(3.

Proposition A.2. Let S; and S, be members of . Then the

following four conditions are mutually equivalent:

‘i) Slu 32 € F ;3 (iD S1 € ¥ ; (iiid> S —52 € F ; (4w 52—51 € 7.

ok 1

2 B

If one of the above conditions is satisfied, we have

8(Slu S2) = S(Sl) + 8(52) - 8(Slﬂ 82)
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The proofs are immediate from definition. The next result means

that the density is morn—atomic. For the proof, see [19].

Proposition A.3. Let A € # For any A, 0 € A € 8(A), there

exists a subset B é A Such thatVS(B) = X.

Let Aut(ND) be the group of all pérmutatioﬁs of N and @ (8> the

subgroup of all permutations which preserve the density:
) = { g € Aut(N); gF = F and §(g(S)) = §(3) for any S € F }.
For any g € Aut(N) we put
supp ¢ = {n € N; gn) =n 1} .

Then g is a bijection from supp g onto itself. In particular,

supp g€ = supp g—l. From the inequality

$(S ) + 8(54) , S

1 9 € F, S

USz) € 8¢S € 7,

1 1 2

which is verified easily, we see that the set
go = { g € Aut(N) ; §(supp g) = 0 }

forms a subgroup of Aut(N), Obviously, the group of all finite

permutations, denoted by G _, is a proper subgroup of 90 .

[

Here we recall the Lévy group introduced in Section 5. Put

+

Fyn

@ ={1 <n<N3; gn >N}, g € AutND..
The set

g = { g € AutN>) ; lim IFf | =0 }

N——c

Zj—

becomes a subgroup of Aut(N) and called the Lévy grbup.'The following
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characterization is given in [16].

Proposition A.4. The Lévy group ¢ is the maximal permutation
group which keeps § (or &) invariant.

Proposition A.5. 6, < @0 c® c .

Proof. The last inclusion relation follows immediately from

Proposition A. 4. The rest is obvious. Q. E. D.

Example. Let 0O = N0 < N1 < e be an increasing sequence of
integers. Assume that g € Aut(N) leaves every interval { Nk—1+1’

<., Nk } stable, k = 1,2,:--. Then,

. 1 + .
limsup & |F, ()] <€ limsup ( N./N, ., — 1 ).
o pimsup ¢ NNy
In particular, g € € whenever lim Nk/Nk_1 = 1.
Ko

Remark. From the above example it follows that @0 is a proper
subgroup of . Furthermore, it may be shown that € is a proper

subgroup of ¥(&8).

Lemma A.6. LetA={a1<a2<~--}andB={b < by < +++ }

be members of F with the same density. Put AC¢ = { ai < al < +++ }
and B¢ = ¢ by < by < -++ }. Assume that A, A€, B and B® are infinite
sets. Define a permutation g € Aut(N) by

g(an) = bn , g(ah) = ba , h=1,2,---
Then g € &.

Proof. For each N € N we put
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o =] An {1,2,---,N} | and BN = | Ban {1,2,--+,N} | .

By assumption we have

lim M = s = 5@ = 1im £
N— N——c
On the other hand, we can show that IF;(g)I = |a(N)-BWM)|. Therefore
S 1 + .. o (N) 8 (N)
limsup = |F (@] = limsup - = 0.
Ne——w N N Ne— 300 N N
Hence g € @. . Q. E.D.

Theorem A.7 (Ergodicity). Assume that A € % is almost invariant

under the Levy group, i.e.
S(AGg(A)) = 0 for all g € @,

where © denotes the symmetric difference. Then 8(A) = 0 or 1.

Proof. Suppose that 0 < 8§A) < 1.1.Replacing A with'Ac in case
of 1/2 € §(A) < 1, we may assume that 0 < §CA) < 1/2. With the help
of Proposition A.3 we take a subset B ¢ A® such that §(B) = 8§(CA). We

define a permutation g € ¢ éccording to Lemma A. 6. Then
S§(ABg(A)) = §(AGB) = 8CAUB) = §CA) + 6B > 0 .

This contradicts the assumption on A, hence, 8(A) = 0 or 1.‘ Q. E. D.

Appendix B. Uniformly distributed Sequences and the Lévy group

We begin with another characterization of the Lévy group. Let
2 be the Banach space of all bounded real.sequences a = (an)::=1 with
the norm Hall = sup Ianl. Put
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+ _ 1 N - 1 N
L () = limsup y 2 a, , L (@ = liminf g 2 a ,
N——>x n=1 N—— n=1
where . a =_(an);:=1 € 0% ‘Clearly, L+(-a)i=‘—L—(g). The group Aut (N

<0 . .
acts on £ as coordinate permutations, i.e. by means of the maps: -

a = (an)n___1 — ga = (ag—l(n))n___1 , g8 € Aut(ND,
The following result is shown in [16].
Proposition B.1. The Lévy group is. the maximal permutation

group which keeps L+ (or L) invariant.

Let 9 be the space of all a € ¥ such that Lf(a) =L (a). Then

9 becomes a closed subspace of &  and the functional:

M=

— . 1
L) = 1lim N

N N . a , a = (an)n 1 € 2 ,

1 =

is continuous and linear. We denote by ¥((.,2) the group of all

permutations which leave L invariant:

@L,? = { g € Aut(N) ; g2 = 92, L(gad) = L(ad for all a € 2 } .

Then the following assertion is easy to see.
Proposition B.2. L c@lL,D < ¥&.

We give notation after [22]. A sequence (x> _, , 0 < x <1,

is called uriformly distributed on the interval [0,1) if

lim
N—><

| {1 €n <N ; a<c< x, < b} | =b - a

2=

for any pair a, b of real numbers with 0 € a < b € 1. This .property

depends upon arrangement of the sequence as J.von Neumann discussed
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in [21]. Here we mention the following
Proposition B.3. Assume that x = (xn):=1 is uniformly distrib-
uted on [0, 1). Then, for any g € ¥, the rearranged sequence gx is

also uniformly distributed on [0, 1).
Proof. Let f be a real-valued continuous function defined on

the interval [0,1] and put
a, = f(xn)

By virtue of the Weyl’s theorem (see, e.g., [12,22]), we can show
that a € 2 and that
1 N 1
L = lim & 3 fx) =f £ dx .
N——c n=1 0
For any g € ¥, viewing Proposition B.2, we have
1
L(ga) = L(a) =J' f(x) dx .
0

Consequently, using the Weyl’s theorem again, we see that the

rearranged sequence gx is uniformly distributed. Q. E. D.
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