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On the Theory of the Polynomial Degrees

of the Recursive Sets

JUICHI SHINODA
THEODORE A. SLAMAN

ABSTRACT. There is an interpretation of first order arithmetic in the theory of the PTIME
degrees of the recursive sets. There is an interpretation of second order arithmetic in the first
order theory of the PTIME degrees. These results characterize the Turing degrees of the first
order theories of these structures.

\S 1. INTRODUCTION

A set of integers $R$ is recursive, if there is an effective method to determine its elements.

Given an integer $n$ , the method can be applied, in finitely many steps, to give the answer
yes, if $n$ is an element of $R$ , and no, otherwise. $A$ is recursive in $B$ , if there is a method

to compute $A$ given a method to compute $B$ . If each of $A$ and $B$ is recursive in the other,

then $A$ and $B$ have the same Turing degree.

The Turing degree of $A$ is a measure of the effective information in $A$ . It gives some

idea of $A’ s$ mathematical accessibility. In particular, if $A$ is not recursive, there is a

substantial impediment to uncovering information about $A$ .
Similarly, it is possible to givea finer notion for the degree ofA in order to discuss finer

distinctions in relative computability. In this context, it is more appropriate to study

sets of finite strings $x$ in a finite language. Use $|x|$ to denote the length of $x$ .
In Cook [2], $A$ is said to be PTIME computable in $B$ , if there is a polynomial $u$ and

a method using $B$ to determine whether a string $x$ belongs to $A$ , such that, for every
$x$ , the answer is always found in less than $u(|x|)$ many steps. Here, we will not specify

any particular model for computational step, except to assume that the computational

method is deterministic. We write $A\leq_{p}B$ and call the induced degrees the PTIME

degrees. Let $\langle REC, \leq_{p}\rangle$ and \langle $\mathcal{R},$ $\leq_{p}$ } be the structures of the PTIME degrees of the

recursive sets and of all sets, respectively, with the partial ordering induced from PTIME

relative computability.
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In this paper, we will apply recursion theoretic technology to develop some of the

metatheory of these structures. In particular, we will calculate the Turing degrees of

their first order theories. We show that each of these structures is undecidable.

Let $N$ be the usual structure of arithmetic on $\{0,1, \ldots\}$ . The first order language of

arithmetic has symbols for addition, multiplication, $0,1$ , variables to refer to integers
and quantifiers to range over the integers. The second order language has, in addition,

variables referring to sets of integers, a membership symbol indicating that an integer

belongs to a set and quantifiers ranging over sets. We will show that there are interpre-

tations of the first order theory of $N$ in the first order theory of $\langle REC, \leq_{p}\rangle$ and of the

second order theory of $N$ in the first order theory of \langle $\mathcal{R},$ $\leq_{p}$ }.

THEOREM. (1) There is a recursive function mapping $\varphi-\rangle$
$\varphi^{*}$ such that, for all first

order sentences $\varphi$ ,

$N\models\varphi\Leftrightarrow\langle REC, \leq p\rangle\models\varphi^{*}$ .

(2) There is a recursive function $\varphi\mapsto\varphi^{*}$ such that, for all second order sentences $\varphi$ in

the language of arithmetic

$N\models\varphi\Leftrightarrow\langle \mathcal{R},$ $\leq p$ } $\models\varphi^{*}$ .

Using G\"odel’s Incompleteness Theorem, we can conclude that these structures are un-

decidable as a corollary.

Since \langle $REC,$ $\leq_{p}$ } is defined in first order arithmetic and $\langle \mathcal{R}, \leq_{p}\rangle$ is defined in second

order.arithmetic, there are canonical interpretations of the theories of the PTIME degree

structures in their associated levels of arithmetic. Thus, the theories of $\langle REC, \leq_{p}\rangle$ and
$N$ have the same Turing degree; similarly, the theories of $\langle \mathcal{R}, \leq_{p}\rangle$ and the structure

associated with second order arithmetic have the same Turing degree.

For the moment, we focus our attention on the interpretation of arithmetic in $\langle REC,$ $\leq_{p}$

$\rangle$ . First, we give an interpretation of arithmetic in the theory of a fixed recursive partially

ordered set $P_{N}$ . Second, we give a coding scheme whereby a sequence of degrees $\tilde{p}$ defines
a subset of $REC$ with a partial $ordering\preceq$ . The coding mechanism is analogous to ones
that have been successful in substructures of the Turing degrees. It combines ingredients

from Harrington-Shelah [4], Harrington-Slaman [5] and Slaman-Woodin [10].
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Next, we give a criterion that is definable in \langle $REC,$ $\leq_{p}$ }, to pick out a set sequences $\vec{p}$

that code partial orders canonically containing a copy of $P_{N}$ . In this step, we adapt a

device from Shore [9]. We require that $\vec{p}$ code a partial order that canonically contains a

model $M$ of a finite fragment of arithmetic. Further, the partial order coded by $\vec{p}$ contains

enough extra structure that the ideal $(S)$ generated by standard part of $M$ is definable in

terms of an a exact pair: $(H_{0})\wedge(H_{1})=(S)$ . Further, we arrange that the integers of $M$

are an independent set so that the standard part of $M$ is definable from the parameters
$H_{0}$ and $H_{1}$ . But then, $\vec{p}$ codes a standard model of arithmetic” is a definable property

of $\vec{p}$ .
Finally, we prove that the set of sequences coding a standard model is not empty by

explicitly constructing one.

Our proofs are organized using the priority method from recursion theory. For example,

see Soare [11]. In section \S 2, we give an introduction to the method. In short, we build

sets by a recursion in which the action taken during each stage is effective. During

each stage, we specify the values of finitely many sets on finitely many strings. This is
called specifying a condition. We also impose some constraints on the conditions that

will be allowed during future stages. This is called specifying an environment. For each

requirement of the theorem being proven, we define a strategy to impose a stage by stage

sequence of environments that ensures that the requirement is satisfied in the end. In
section \S 2, we give a sufficient notion of compatibility between families of strategies for

there to be a recursive construction that respects a strategy from each family.

In section \S 3, we use the priority method as formulated in section \S 2 to classify when

an ideal can be represented as the meet of two principal ideals in each of $\langle REC, \leq_{p}\rangle$ and
$\langle \mathcal{R}, \leq_{p}\rangle$ : in the first case, if it has a recursive presentation; in the second case, if it is
countable. Our analysis of the existence of exact pairs duplicates work that was done
independently and substantially earlier by Ambos-Spies [1].

In section \S 4, we define $P_{N}$ , formulate the coding machinery and prove that there is a
definable set consisting of codes for standard models of arithmetic.

Sections \S 5, \S 6 and \S 7 are devoted to showing that the set of codes for standard models
is not empty. In section \S 5, we give a sufficient list of requirements. In section \S 6,

we give a family of strategies for each requirement. In terms of the classification of

priority methods given in Groszek-Slaman [3], these are all $\Pi_{2}$ -strategies, making this an
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“infinite injury” construction. However, exploiting special properties of our strategies,

we can avoid much of the complexity of the $\Pi_{2}$-priority method. In section \S 6, we prove,

for each requirement, any construction following one of its associated strategies produces

sets that satisfy the requirement. In \S 7, we prove that the strategies are compatible in

the sense of section \S 2. Hence, there is a construction building sets that satisfy all of the

requirements.

By organizing our proof in this way, we have attempted to make our presentation as
modular as possible. In reading the proof, it is illuminating to look at the simplest

strategies from each family and check compatibility. We also recommend that while

reading section \S 2, the reader look for examples in section \S 3.

In section \S 8, we draw a further conclusion from the ability to represent models of

arithmetic. Following an argument of Nerode-Shore [8], we show that any automorphism

of $\langle \mathcal{R}, \leq_{p}\rangle$ must preserve arithmetic degree on all sufficiently large elements. We end with

several questions.

\S 2. RECURSION THEORETIC GROUNDWORK

In the following, the reader may choose any particular deterministic model for compu-

tation. We will only need to fix some measure of time in order to interpret the notion of

a polynomially time bounded procedure. We will use PTIME as a prefix indicating that

there is a polynomial $u$ such that the method of evaluation at a given string $x$ uses at

most $u$ of the length of $x$ many steps.

We will work exclusively with the object language $\{0,1\}^{*}$ , the set of finite binary strings.
For an integer $\ell$ , let $\{0,1\}\leq\ell$ be the set of strings of length less than or equal to $\ell$ . We
use lower case Roman letters $x,y,$ $\ldots$ to indicate strings. Let $|x|$ denote the length of $x$ .
A predicate is a subset of $\{0,1\}^{*}$ . We use upper case Roman letters $A,$ $B,$ $\ldots$ to indicate
predicates. We will not make any distinction between the predicate $X$ and the function

from $\{0,1\}^{*}$ into $\{0,1\}$ that is equal to 1 exactly on the $e$lements of $X$ . Using a PTIME
pairing function, let { $x,y\rangle$ denote the string coding the ordered pair of strings $x$ and $y$ .
We will assume that $|\langle x,y\rangle|$ is greater than either $|x|$ or $|y|$ . Through pairing, we can
regard a predicate as an infinite sequence of predicates. Let $X^{(n)}$ denote the nth element

in the sequence coded by $X$ ; we will refer to $X^{(n)}$ as the nth column of $X$ . We let $X\oplus Y$

denote the PTIME join of $X$ and Y.
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We use upper case Greek letters $\Psi$ to indicate Turing functionals. For the most part,
$\Psi$ will indicate a PTIME binary valued functional. In this case, $\Psi(Y)$ is the predicate

computed by $\Psi$ relative to $Y$ . For a string $x,$ $\Psi(Y, x)$ is this predicate’s value at $x$ . We

use lower case Greek letters to indicat$e$ the computation associated with the evaluation

of a functional. For example, $\psi(Y, x)$ is the computation of $\Psi(Y, x)$ . By $Y\uparrow\psi(Y, x)$ , we

mean the information used about $Y$ during the computation of $\Psi(Y, x)$ . We use $u_{\Psi}$ to

denote the polynomial time bound on the computation of $\Psi$ . It is safe to assume that

an index for $u_{\Psi}$ is uniformly obtained from an index for $\Psi$ . Note that every string in
$Y\uparrow\psi(Y, x)$ is shorter than $u_{\Psi}(|x|)$ .

We use the priority method from recursive function theory to organize our construc-

tions. The reader may consult Soare [11] for a general introduction to proofs of this sort.

Here, we give a treatment that is tailored for our applications.

Uniformity. In the most general sense, say that $A$ is uniformly given from $B$ if there

is a known way to specify $A$ in terms of $B$ . In the context below, we will speak a recursive

function $f(\vec{x})$ being uniformly determined from some parameters $\vec{p}0$ . This means that

there is an unspecified recursive function $F(\vec{x},\vec{p})$ such that $f(\vec{x})$ is equal to $F(\vec{x},\vec{p}0)$ . The

uniformity of $f$ can be usually be deduced from constructive nature of the proof that it

exists.

Conditions and Environments. We build predicates by recursion. The steps of a

recursion are called stages. During the $s+1st$ stage, we will work with finitely many

predicates. We say that a predicate is named, once we begin to work with it. For each

named predicate $X$ , we specify finitely many strings that belong to $X$ and finitely that

belong to its complement. During subsequent stages, we extend the definition of $X$ to

more strings. Ultimately, we define $X$ on every string. It is helpful to look at this

situation in the abstract. We will leave the recursive coding in the next definition to the

reader.

2.1. DEFINITION. A condition $p$ consists of

(1) A finite collection of names.
(2) A positive integer $\ell_{p}(X)$ , for each $X$ named by $p$ .
(3) A function $p(X)$ into $\{0,1\}$ with domain contained in the set of strings of length

less than or equal to $\ell_{p}(X)$ , for each $X$ named in $p$ .
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We will refer to $p(X)$ as a condition on $X$ . If all of the elements of $arrow X$ are named in $p$ ,

let $p(X)arrow$ be the condition $onarrow X$ induced by $p$ .

2.2. DEFINITION. Say that $q$ extends $p$ if for every set $X$ named in $p,$ $X$ is also named in

$q$ , the domain of $p(X)$ is contained in that of $q(X)$ and $q(X)$ agrees with $p(X)$ on their

common domain.

In addition to specifying finitely many atomic facts about $X$ , we may also impose global

constraints on the conditions and their extensions that we allow in the construction of $X$ .
A collection of such constraints is called an environment. Depending on the context, we
will also refer to the set of conditions that fulfill the constraints as an environment. To
give a simple example, one $e$nvironment is the set of conditions $p$ such that $p(X)(x)=0$ if
$x$ is in the domain of $p(X)$ and $x$ is not a string of $O’ s$ . If $X$ is assembled from conditions

in this environment, then $X$ is contained in $\{0\}^{*}$ .

Forcing. In building a sequence of conditions ordered under extension, if we impose

the constraint that the $s+1st$ condition must come from the environment $E(s+1)$ ,

we have implicitly ensured that the sets constructed will have some specific properties.

When the sequence of environments ensures that the sets constructed will satisfy the

formula $\varphi$ , we say that $\varphi$ is forced. We isolate the forcing relation as applied to individual

bounded time computations in a specific environment.

2.3. DEFINITION. Work in the environment $E$ with condition $q$ . $Letarrow X$ denote a finite

collection of the sets named by elements of $E$ .

(1) Write $q\geq Er$ to indicate that $r$ is an extension of $q$ in $E$ .
(2) Say that $q$ strongly forces $\Phi(Xx)arrow,=i$ if every element $ofarrow X$ is named in $q$ , every

string queried in $\varphi(Xx)arrow$, is in the domain of $q(X)arrow$ and the computation yields

answer $i$ . Write $q|\vdash*\Phi(Xx)arrow,=i$ . We will similarly speak of $q$ strongly forcing an
inequality between functionals or the value of a composition of functionals.

(3) Say that $q$ forces $\Phi(Xx)arrow,=i$ in $E$ if

$(\forall r\leq Eq)[r|\vdash*\Phi(Xx)=jarrow,\Rightarrow j=i]$ .

Here, $q$ forces $\Phi(Xx)arrow,=i$ when $i$ is the only value for $\Phi(X)arrow$ at $x$ that is consistent

with extending $q$ and staying in $E$ . Write $q|\vdash\Phi(Xx)arrow,=i$ , leaving $E$ to be

understood from the context.
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(4) Say that $q$ decides $\Phi(Xarrow , x)$ , if there is an $i$ such that $q|\vdash\Phi(Xx)arrow,=i$ . We say

that $q$ decides $\Phi(X)arrow$ on a set of strings if $q$ decides $\Phi(X)arrow$ on each element of the

set. Similarly, $q$ strongly decides $\Phi(7_{x)}$ if $q$ strongly forces a value.

If $q|\vdash*\Phi(Xx)arrow,=i$ , then $q|\vdash\Phi(Xx)arrow,=i$ in every $E$ . However, the converse need

not apply.

2.4. NOTATION. $Let*denote$ the several possible concatenation operations used to ex-

tend conditions. If $p(X)$ is a condition on $X$ , let $p(X)*O$ be the predicate that is evaluated
$0$ on every string not in the domain of $p(X)$ . Given an extension $X$‘ of $p(X)$ , let $p*X^{/}$ be
$e$qual to $p$ except at the Xth coordinate where $p*X’$ is equal to $p(X)*X^{/}$ , the natural
$e$xtension of $p(X)$ by $X^{/}$ .

Requirements and Strategies. A requirement is a property to be satisfied by the

sets under construction. A strategy is a dynamic method to ensure that the requirement is

satisfied. We represent a strategy as a finite collection of states and transition conditions

and rules for changing states. During a construction, we begin with $S$ in its initial

state. During stage $s+1$ , a strategy is given input parameters: $C\uparrow s$ , the state of the

construction at the end of stage $s$ and in$(s+1)$ , the number of steps it takes to determine
$C\uparrow s$ together with the action that has already taken place during the current stage.

$S$ changes stat$e$ during stage $s+1$ , if its transition condition is satisfied with these inputs

during that stage. The transition conditions will have the form, if there is a condition

satisfying certain properties relative to $C\uparrow s$ that can be found by a search of length

monotonically depending on in$(s+1)$ , then change state according to the appropriate

rule. Thus, if a transition condition is met with input $C\uparrow s$ and in$(s+1)$ then it will also

be met for any larger second input.

The strategy returns its new state and $E(s+1)$ , the environInent it imposes during

stage $s+1$ . In effect, during each stage, the strategy imposes the constraint that the

condition chosen during that stage must be an element of $E(s+1)$ . We design the strategy

to force the statement of its requirement.

Constructions.

2.5. DEFINITION. (1) A construction consists of a recursive sequence of conditions $p(s+$

1) ordered under extension, finite sequences of active $strategiesarrow S(s+1)$ , with for

each $i$ less than the length of $arrow S$ , associated values of $in_{i}(s+1)$ and state $\sigma_{i}(s+1)$
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for the ith element $ofarrow S(s+1)$ , and a uniformly recursive sequence $f_{0},$ $f_{1},$
$\ldots$ of

auxiliary functions. The auxiliary functions are optional. For all $s$ and each set $X$

named in $p(s),$ $\{0,1\}^{\leq s}$ is contained in the domain of $p(s)(X)$ .
(2) The state of the construction $C$ at the end of stage $s$ is denoted by $C\uparrow s$ . It consists

of the first $s$ values of $p,$
$arrow S,\vec{\sigma}$ together with, for $i$ less than the length of $arrow S$ , the

first $s$ values for $in_{i}$ , and the first $s$ values of $f_{i}$ (where appropriate).

(3) A construction eventually respects a strategy $S$ if there is an $i$ and an $s_{0}$ such that
$S$ is equal to the ith active strategy for every stage greater than or equal to $s_{0}$ ; $S$

is in its initial state during stage $s_{0}$ ; for all $s+1$ greater than or equal to $s_{0}$ , the

stage $s+1$ state of $S$ changes according to $S’ s$ rule, if $S’ s$ transition condition is

met during stage $s+1$ ; and $p(s+1)$ is an element of the environment imposed by
$S$ during stage $s+1$ given inputs $C\uparrow s$ and $in_{i}(s+1)$ . We say that $C$ respects $S$

after stage $s_{0}$ .
(4) A construction is eventually coherent relative to strategy $S$ if there is an $s_{0}$ such

that $C$ respects $S$ after $s_{0}$ and for all $s+1$ greater than or equal to $s_{0}$ , the following

hold. First, the graph of $S’ s$ input function $in$ is PTIME. Secondly, for all $s+1$

greater than or equal than $s_{0}$ , either $S$ changes state during stage $s+1$ or $p(s+1)$

is uniformly recursive by a computation of length in $(s+1)$ .
(5) A construction is coherent if it is eventually coherent for all of its eventually active

strategies. Further, the PTIME methods of computing the graph of $in_{i}$ and $p(s+1)$

in $in_{i}(s+1)$ many steps are uniformly presented in terms of $i$ and the associated

activation stage $s_{0}$ .

A device analogous to coherence appeared independently in the work of Ambos-Spies

[1].

2.6. PROPOSITION. If $C$ is a coherent recursive construction, then any name appearing

in a condition in $C$ is associated with a recursive predicate.

PROOF: Since $C$ is recursive, the only point to check is that each named set defined on
all of $\{0,1\}^{*}$ . This is ensured by clause (1) in 2.5. $\theta$

Priority. Using the priority method to organize a construction, strategies are assigned

a decreasing priority ranking in order of their activation. When a strategy changes state,

all strategies of lower priority are cancelled. Each strategy changes state only finitely
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often, so each requirement will eventually be assigned a strategy that is never cancelled.

A strategy $S$ must have three properties: for each possible terminal state, $S$ must ensure

that any sets constructed within its sequence of environments satisfy its requirement;

the environment imposed by $S$ must be compatible with those created by higher priority

strategies; the set of strategies associated with the remaining requirements must be dense

in the limit environment created by $S$ .

During the $s+1st$ stage of a construction, we work with $C\uparrow s$ , the state of the con-

struction at the end of stage $s;arrow S$ , a sequence of strategies in states $\vec{\sigma}$ ; and an integer

OUT. We $definearrow m(s+1)$ by letting $in_{n}(s+1)$ equal OUT, letting $in_{i}(s+1)$ equal the

sum of $in_{i+1}(s+1)$ and the number of stages needed to execute $S_{i+1}$ given inputs $C\uparrow s$

and $in_{i+1}(s+1)$ .

2.7. DEFINITION. (1) We say that $C,$ $arrow S,\vec{\sigma}$ , and OUT define a stage $s+1$ environment

if for every $e$ less than the length of $arrow S,$
$S_{e}$ does not change state from $\sigma_{e}$ given

inputs $C$ and $in_{e}(s+1)$ as above.

(2) The defined environment is the conjunction of the constraints returned by the ele-

ments of 7.
(3) The sequence $in_{n}(s+1),$ $\ldots,$ $in_{1}(s+1)$ is called the input sequence.

2.8. DEFINITION. A finite sequence 7 of $n$ strategies in states $\vec{\sigma}$ is compatible if there

is a recursive method, given $C,$ $arrow S,\vec{\sigma}$ , and out as above, and an integer $\ell$ , to produce a
condition $q$ extending $p(s)$ such that one of the following occurs. $Letarrow m$ be the input

sequence obtained using the given parameters with OUT equal to the sum of out and the

number of steps needed to compute $q$ .
(1) There is an element $S_{i}ofarrow S$ that changes to a new state $\tau$ with these inputs to

produce a compatible $sequencearrow S\uparrow i$ in states $\langle\sigma_{1}, \ldots , \sigma_{i-1}, \tau\rangle$ . Further, the new
recursive method of finding conditions referred to above is uniformly determined

by the new sequence of states.

(2) $q$ is an element of the defined environment. For all $X$ named in $q,$ $\ell_{q}(X)$ is greater

than or equal to $\ell$ .

Thus, a sequence of strategies is compatible if there is a recursive method to either

change state or extend the current condition up to an arbitrary length while staying in
the defined environment. Note that the environment is defined after the condition is
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computed.

2.9. DEFINITION. A sequence of families of $strategiesarrow S$ is compatible if there is a re-
cursive method such that given any length $n$ compatible sequence of $strategiesarrow S$ with

states $\vec{\sigma}$ , where each $S_{i}\in S_{i}$ , the method produces an element $S_{n+1}$ of $S_{n+1}$ such that

the $sequencearrow S*S_{n+1}$ with $S_{n+1}$ in its initial stat$e(1)$ is uniformly compatible.

2.10. THEOREM. Suppose $thatarrow S$ is a compatible sequence of families of strategies such

that each strategy mentioned $inarrow S$ can change state at most finitely often. There is a

coherent recursive construction $C$ that eventually respects some strategy from each $S_{i}$ .

PROOF: Define the construction $C$ by the following recursion. We define an auxiliary

function OUT to bridge the transition between stages.

Stage $0$ . Let $p(O)$ be the empty condition. Set OUT(O) $=0$ . There are no active

strategies during this stage.

Stage $s+1$ . Let $C\uparrow s$ be the state of the construction at the end of stage $s$ . Let
$7=\langle S_{0}, \ldots, S_{n}\rangle$ be the sequence of active strategies during stage $s$ . Let $\vec{\sigma}(s)$ be

the sequence of states these strategies occupied at the end of step $s$ .
We use the given recursive method to $extendarrow S$ and $\vec{\sigma}(s)$ by adding $S_{n+1}$ from

$S_{n+1}$ in state (1), respectively.

We execute the following nested recursion. Begin with $i$ equal to $n+1$ and OUT
equal to the sum of OUT$(s)$ and the number of steps needed to compute $S_{n+1}$ .
Iterate the following procedure until no strategy of index less than or equal to $i$ is

seen to change state. In going from one iteration to the next, use the least index

fora strategy that changes state to be the next value for i, the sum of the previous

value of OUT and the number of steps required to do the previous iteration as the

next value for OUT, and $\vec{\sigma}\uparrow i-1$ followed by the state $S_{i}$ changed into as the next

sequence of states for $\not\supset\uparrow i$ .
(i) Since $\langle S_{1}, \ldots, S_{i}\rangle$ is compatible, use the given recursive method to find a

condition $q$ extending $p(s)$ (depending on OUT and $C\uparrow s$ ) such that for every
$X$ named in $q,$ $l_{q}(X)$ is greater than $s+1$ . Let out be the number of steps

needed to compute $q$ . See definition 2.9.
(ii) Let $in_{i}$ equal $OUT+out$ and let $in_{k}$ equal the sum of $in_{k-1}$ and the number

of steps needed to execute $S_{k+1}$ given input $C\uparrow s$ and $in_{k}$ .
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Use final to refer to values occurring in the iteration in which no strategy changed

state. Let $n_{0}$ be the final value of $i$ . Define the new sequence of active strategies

to equal the initial segment of 7 of length $n_{0}$ . All other strategies are cancelled.

Define $\vec{\sigma}(s+1)$ to be the sequence consisting of the initial segment of $\vec{\sigma}$ of length

$n_{0}-1$ followed by the final state that the $n_{0}th$ element $ofarrow S$ entered. For each $k$

less than or equal to $n_{0}$ , let $in_{k}(s+1)$ be the final value of $in_{k}$ . Let $p(s+1)$ be

equal the final value of $q$ .
Set OUT$(s+1)$ to equal the number of steps required to calculate the action

taken during stage $s+1$ .

First, since 7 is coherent, the recursive methods referred to above are uniformly pre-

sented and total. In each stage, the strategies can change state only finitely often so

there is a final iteration. Thus, $C$ is defined at every stage. Further, the method by which
$p(s+1)$ is found ensures that $p(s+1)$ extends $p(s)$ and, for $e$ach set $X$ nam$ed$ in $p(s+1)$ ,

$p(s+1)(X)$ is defined on $\{0,1\}\leq s+1$ . Hence, $C$ is a construction in the sense of 2.5.

Fix $n$ . Again, since each strategy can change state only finitely often, there is a last

stage in $C$ when some strategy associated with a strategy of index lower than $n$ changes

state. After at most $n-1$ additional stages, some $S_{n}$ in $S_{n}$ is added to the list of active

strategies, never to be removed. Let $s_{0}$ be the stage when $S_{n}$ is permanently added to

the sequence of active strategies. At the beginning stage $s_{0},$ $S_{n}$ is in its initial state. Let

$s+1$ be greater than or equal to $s_{0}$ . By examination of $C$, either $S_{n}$ changes state or
$p(s+1)$ is an elem$e$nt of the environment imposed by $S_{n}$ during stage $s+1$ with inputs
$C\uparrow s$ and $in_{n}(s+1)$ . Thus, $C$ eventually respects $S_{n}$ .

Now consider the graph of $in_{n}$ . Let $s+1$ be a stage after $s_{0}$ . Since no strategy of

ind$ex$ less than or equal to $n$ changes state during stage $s+1$ , either $S_{n}$ changes state or
$in_{n}(s+1)$ is the number of steps needed to compute an iteration starting from $i$ up to the

point where $S_{n}$ is tested without first having seen a strategy of higher index change state.

In the second case, the value of $in_{n}(s+1)$ is essentially the number of steps needed to

compute it. Thus, the graph of $in_{n}$ is PTIME. Further, for all $s+1$ after the state of $S_{n}$

has reached its limit value, the choice of $p(s+1)$ is uniformly decided by a computation

of length less than $in_{n}(s+1)$ . Thus, $C$ is eventually coherent relative to $S_{n}$ with the

correct uniformity property.

This is enough to show that $C$ is coherent. $\theta$
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Organization of a Proof. First, we write the statement of the theorem as an in-

finite family of requirements. Second, we introduce the strategies associated with the

requirements. For each strategy, we prove that any coherent construction that respects

the strategy produces sets that satisfy its requirement. Next, we show that the families of

strategies are compatible. Then, we apply Theorem 2.10 to give a recursive construction

executing a strategy for each requirement.

\S 3. IDEALS AND EXACT PAIRS

3.1. DEFINITION. An upper semi-lattice is a partially ordered set $P$ with a binary oper-

ation V mapping $X$ and $Y$ to their least upper bound $X\vee Y$ . Call $X\vee Y$ the join of $X$

and $Y$ .

If $P$ is an upper semi-lattice, then the join operation can be defined in terms of the

partial ordering in $P$ . However, having it as a primitive operation makes the language

much more succinct. Our degree structures are upper semi-lattices due to the presence

of a PTIME pairing function.

Note that all of the following definitions are first order in $\mathcal{I},$ $\mathcal{J}$ and $\mathcal{K}$ .

3.2. DEFINITION. (1) In an upper semi-lattice $D$ , an ideal is a set $\mathcal{I}$ that is closed under

join and closed downward.

(2) Intersection gives an operation of meet on ideals. Union followed by closure under
$D’ s$ join gives an operation of join for ideals. Let $\mathcal{I}\wedge \mathcal{J}$ and $\mathcal{I}\vee \mathcal{J}$ denote these,

respectively.

(3) Given a $K$ in $D$ , let $(K)$ denote $\{X|X\leq \mathcal{D}K\}$ . $(K)$ is an ideal. Similarly, if $\mathcal{K}$ is a
set of elements in $D$ , let $(\mathcal{K})$ denote the join of the ideals $(K)$ such that $K$ is in $\mathcal{K}$ .

(4) If $\mathcal{I}$ is an ideal, then $K_{0}$ and $K_{1}$ in $D$ are an exact pair over $\mathcal{I}$ if

$(K_{0})$ A $(K_{1})=\mathcal{I}$.

One of the first theorems in the study of the Turing degrees is the Kleene-Post theorem

[6] that the Turing degrees do not form alattice. Ladner [7] used the same construction to

show that the PTIME degrees do not form a lattice. In the Turing degrees, Spector [12]

gave an abstract version of the Kleene-Post argument to show that there is an exact pair
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over every countable ideal. We observe that Spector’s argument applies to the PTIME
degrees and that the effective version of Spector’s argument can be applied in $\langle REC, \leq_{p}\rangle$ .

These results were proven independently and substantially earlier by Ambos-Spies [1] We

include their proofs to be complete and to give the reader a simple context in which to

view the strategies involved. Variants of these strategies will reappear in section \S 6.

3.3. THEOREM. For any countable ideal $\mathcal{I}$ in \langle $\mathcal{R},$ $\leq_{p}$ }, there is an exact pair $K_{0}$ and $K_{1}$

over $\mathcal{I}$ .

PROOF: Let $F_{0},$ $F_{1},$
$\ldots$ be a list of the elements of $\mathcal{I}$ . Let $P$ denote the collection of

conditions naming only $K_{0}$ and $K_{1}$ . Let \langle $p0,P\iota$ } denote the condition $p$ where $p(K_{i})$ is

equal to $p_{i}$ . Order $P$ by extension. For each $n$ , let $\langle q0q_{1}\rangle\leq p_{n}\langle p0p\iota\rangle$ be the ordering

of $P$ given by \langle$p0,p_{1}$ } is extended by $\{q0, q1\}$ and for $i$ in $\{0,1\}$ and $e$ less than $n$ ,

(3.4) $(\forall x)[\langle e, x\rangle\in domain(qi)-domain(p;)\Rightarrow q;(\langle e, x\})=F_{e}(x)]$ .

In $P_{n}$ , an extension must code $F_{0},$
$\ldots,$

$F_{\iota-1}$ into the first $n$ columns of $Ii_{0}$ and $K_{1}$ .
Let $\Phi_{n},$ $\Psi_{n}$ be a list of all of the pairs of PTIME functionals. We build $K_{0}$ and $K_{1}$

by recursion. During the $s+1st$ stage of the recursion, we are given $p(s)$ equal to

\langle$p0(s),p1(s)$ }. Let $\{p0(S+1),p_{1}(s+1)\}$ be defined so that

(1) Each coordinate of $\langle po(s+1),p_{1}(s+1)\rangle$ has domain containing all length $s+1$

binary strings.

(2) $(p0(s+1),p1(s+1)\rangle$ $\leq P_{l+1}\langle po(s), p1(s)\rangle$ .
(3) If there is a string $x$ and $q$ extending $p(s)$ in $P_{s+1}$ such that $q$ strongly forces

$\Phi_{s+1}(K_{0}, x)\neq\Psi(K_{1}, x)$ , then $p(s+1)$ is such a condition.

Let $K_{0}$ be the union of all of the $p0(s)$ and $K_{1}$ the union of the $p\iota(s)$ . By (1), $K_{0}$

and $K_{1}$ are defined on all binary strings. By (2), for each $n$ , except for the strings in
the domain of $p0(n)$ or the domain of $p_{1}(n),$ $K_{0}^{(n)}$ and $K_{1}^{(n)}$ are equal to $F_{n}$ . Thus,
$\mathcal{I}\subseteq(K_{0})$ A $(K_{1})$ .

Suppose $\Phi_{n}$ and $\Psi_{n}$ are given. There are two cases. In the first case, there are a string
$x$ and two extensions $q0$ and $q_{0}’$ of $p0(n-1)$ that satisfy equation 3.4 for all $e$ less than or
equal to $n$ relative to $p0(n-1)$ and that strongly force incompatible values for $\Phi_{n}(K_{0}, x)$ .
We could take any extension $q1$ of $p_{1}(n-1)$ that satisfies 3.4 for all $e$ less than or equal

to $n$ and strongly decides $\Psi_{n}(K_{1}, x)$ ; one of $q0$ or $q_{0}^{/}$ would give a value for $\Phi_{n}(K_{0}, x)$
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that is incompatible with the value forced by $q1$ . By (3), $p(s+1)$ would be chosen to

strongly force $\Phi_{n}(K_{0})$ to be unequal to $\Psi_{n}(K_{1})$ .
For the second case, suppose for every $x$ and every two extensions $q0$ and $q_{0}’$ of $p0(n-1)$

that satisfy 3.4 as above and strongly decide $\Phi_{n}(K_{0}, x),$ $\Phi_{n}(q0, x)$ is equal to $\Phi_{n}(q_{0}^{l}, x)$ .
Then, for all $x,$ $\Phi_{n}(K_{0}, x)$ is decided by $p(n-1)$ in $P_{n}$ . Every $p(s)$ extends $p(n-1)$

in $P_{n}$ , so if $p(s)$ strongly forces a value for $\Phi_{n}(K_{0})$ then that value is equal to the one

forced by $p(n-1)$ . Thus, $\Phi_{n}(K_{0}, x)$ can be computed by evaluating $\Phi_{n}(-, x)$ relative

to the any extension of $p0(n-1)$ in $P_{n}$ that strongly forces a value. In particular, the

conditions that extend $p(n-1)$ by coding $F_{0},$
$\ldots,$

$F_{n}$ on the first $n+1$ columns and being
$0$ elsewhere can be used to evaluate $\Phi_{n}(K_{0})$ . Since, this set of conditions is PTIME

relative to $F_{0}\oplus\ldots\oplus F_{n},$ $\Phi_{n}(K_{0})$ is PTIME relative to $F_{0}\oplus a\ldots\oplus F_{n}$ .
Hence, if $\Phi_{n}(K_{0})$ is equal to $\Psi_{n}(K_{1})$ then their common value is in $\mathcal{I}$ . $\phi$

Now, we turn to the effective version of Theorem 3.3.

3.5. DEFINITION. Let { $R_{e}|e\in N\rangle$ be a uniformly recursive list of the partial recursive
subsets of $\{0,1\}^{*}$ . An ideal $\mathcal{I}$ in REC has a recursive presentation if there is a recursive

function $f$ such that

$\mathcal{I}=\{R_{f(e)}|e\in N\}$ .

(In particular, each $R_{f(e)}$ must be a total recursive set.)

3.6. THEOREM. See also [1, Ambos-Spies] Let $\mathcal{I}$ be an ideal in $\langle REC, \leq_{p}\rangle$ . There are
recursive sets $K_{0}$ and $K_{1}$ such that $\mathcal{I}$ is equal to $(K_{0})$ A $(K_{1})$ if and only if $\mathcal{I}$ has a
recursive presentation.

PROOF: First, let $K_{0}$ and $K_{1}$ be recursive sets. The set of reals that are PTIME in $It_{0}’$

and $K_{1}$ can be recursively presented as follows. Let $\Phi_{n}$ and $\Psi_{n}$ be a recursive list of all

of the PTIME functionals. Define $X_{n}$ by

$X_{n}(x)=\{\begin{array}{l}\Phi_{n}(K_{0},x),if(\forall y)[|y|\leq|x|\Rightarrow\Phi_{n}(y)=\Psi_{n}(y)]0,otherwise\end{array}$

The proof of the other direction of Theorem 3.6 is the effective version of the proof of

Theorem 3.4. Instead of taking the diagonal steps directly, we use strategies to meet the

diagonal condition if possible.
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Let $\Phi_{n}$ and $\Psi_{n}$ be a PTIME listing of all pairs of PTIME functionals. The diagonal

requirements are, for each $n,$ $I(n)$

$\Phi_{n}(K_{0})=\Psi_{n}(K_{1})=Z\Rightarrow Z\in \mathcal{I}$.

We define a strategy for $I(n)$ assuming that the total effect of the higher priority

strategies is to impose $P_{n}$ for the sets $R_{f(0)},$ $\ldots,$ $R_{f(n-1)}$ . The strategies in this section

are easier to work with than in the general case. During stage $s+1,$ $I(n)$ is defined from

inputs $s+1,$ $p(s)$ and in$(s+1)$ .
(1) Transition: If there is an extension $q$ of $p(s)$ and a string $x$ with $|x|$ less than

in$(s+1)$ such that $q\leq p_{n}p(s)$ as verified by computations of $R_{f(0)},$ $\ldots,$ $R_{f(n-1)}$

such that
$q||-*\Phi_{n}(q0x)\neq\Psi_{n}(q_{1}, x)$

go to (2).

We look at all strings of length less than in$(s+1)$ for a possible diagonal step.

Note, this involves the evaluation of the first $n$ recursive sets on no more than the

strings of length bounded by the maximum of $u_{\Phi_{n}}(in(s+1))$ and $u_{\Psi_{\mathfrak{n}}}(in(s+1))$ .
Since $f$ only gives indices for total recursive predicates, either we find a condition

strongly forcing an inequality or we check all relevant conditions.

Environment: No restrictions.
(2) Environment: Require

$p(s+1)|\vdash*\Phi_{n}(K_{0})\neq\Psi_{n}(K_{1})$ .

Use the diagonal condition found in (1).

3.7. LEMMA. Suppose that $C$ is a construction that is eventually coherent relative to $I(n)$

and eventually respects $I(n)$ . The requirement $I(n)$ is satisfied by the sets produced.

PROOF: If $\Phi_{n}(K_{0})$ is not equal to $\Psi_{n}(K_{1})$ then the requirement is satisfied. Assume

otherwise.

Let $s_{0}$ be the least stage such that for all $s+1$ greater than or equal to $s_{0},$
$C$ respects

$I(n)$ and is coherent with respect to $I(n)$ during stage $s+1$ . $I(n)$ cannot reach state (2)

after stage $s_{0}$ or we would be in the first case. Given $x$ , we compute $\Phi_{n}(Ii_{0}, x)$ from
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$\mathcal{R}_{f(0)}\oplus\cdots\oplus R_{f(n-1)}$ and a table of values of $\Phi_{n}(K_{0})$ at arguments of length less than

or equal to in $(s_{0})$ as follows.

If $|x|\leq in(s_{0})$ ,

Then look up $\Phi_{n}(K_{0}, x)=answer$ in the table of values;

Else:

Compute the least $s$ such that in$(s+1)>|x|$ ;

Compute $p0(s)$ ;

Simulate the computation of $\Phi_{n}(K_{0}, x)=$ answer responding to a

query $y$ by:

Cases:
$p0(s)(y)$ , if $y$ is in the domain of $p0(s)$ ;

$R_{f(e)}(z)$ , if $y$ is of the form $\{e, z\}$ and $e<n$ ;
$0$ , otherwise;

End if;

Output answer;

End.

The same argument as in the proof of Theorem 3.4 applies to show that the answer

computed above is equal to $\Phi_{n}(K_{0})$ . The coherence of the construction implies that the

computation of $s$ in the first line and the later computation of $p0(s)$ are both PTIME in
$|x|$ . Thus, the entire algorithm is PTIME in $R_{f(0)}\oplus\cdots\oplus R_{f(n-1)}$ . $\phi$

The coding requirements $\Pi(n)$ have the form, for all $n$ ,

$R_{f(0)}\oplus\cdots\oplus R_{f(n-1)}\in(K_{0})$ A $(K_{1})$ .

Let $P_{n}$ be defined as in the proof of Theorem 3.4, for the sets $R_{f(0)},$ $\ldots,$ $R_{f(n-1)}$ .
Our strategy at stage $s+1$ , is to impose the environment $P_{n}$ given by the sets

$R_{f(0)},$ $\ldots,$ $R_{f(n-1)}$ . Clearly, this strategy ensures the satisfaction of its requirement.

3.8. LEMMA. The sequence of strategies

$arrow S=I(O),II(O),$ $I(1),II(1),$ $\ldots$

is compatible.
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PROOF: We identify a strategy with the singleton family it generates. The coding strate-

gies operate on different columns and the diagonal strategies only change the environment

to impose a finite constraint when they change state.

The method to find a condition in the common environment imposed by an initial

segment of strategies is to first assume that no diagonal condition will be found. Given
7, an initial segment of 7, an integer $\ell$ and construction respecting 7 wherein the

elements $ofarrow S$ have achieved states $\vec{\sigma}$ , we extend $p(s)$ to $q$ as follows. Let $P_{n}$ be the

coding environment imposed by the type II elements of $\not\supset$ . Let $q$ extend $p(s)$ by being
$0$ on every string of length less than or equal to $\ell$ , that is not involved in the coding

strategies of type II and as determined by equation 3.4, elsewhere. If, a diagonalizing

condition is found during the subsequent generation of the $sequencearrow m(s+1)$ , use the

same method to extend the least diagonalizing condition relative to the initial segment
$ofarrow S$ before the one that diagonalized. $\theta$

We can now complete the proof of Theorem 3.6. Since each strategy of type $I(n)$ or
$II(n)$ can change state at most once, from (1) to (2), they change state finitely often.

Thus, by Lemma 3.8, Theorem 2.10 applies: there is coherent recursive construction of

sets $K_{0}$ and $K_{1}$ that is eventually respects all of the strategies $I(n)$ and $II(n)$ . By Lemma

3.7 and the fact that the type II strategies satisfy their requirements, the sets produced

by this construction satisfy the requirements of Theorem 3.6. $\theta$

\S 4. INTERPRETATIONS OF ARITHMETIC

Representing partially ordered sets. Let $D$ be an upper semi-lattice with $join\oplus$ .

4.1. DEFINITION. Let $U$ be an element of $D$ and $I$ be a subset of $D$ .
(1) $I$ is independent over $U$ in $D$ if for every finite set $F=\{X_{0}, \ldots,X_{n}\}$ contained in

$I$ and every $X$ in $I$ , if $X$ is not an element of $F$ , then $X\not\leq_{p}X_{0}\oplus\ldots\oplus X_{n}\oplus U$ .
(2) $I$ is strongly independent over $U$ in $D$ if for every $X$ in $I$ there is a $Y$ in $\mathcal{D}$ such

that

$(\forall Z\in I)[Z=X\Leftrightarrow Z\not\leq v^{U}\oplus Y]$ .

If $I$ is strongly independent over $U$ then $I$ is independent over $U$ . We introduce strong

independence because it is a first order property.

17



107

4.2. DEFINITION. Let $\preceq$ be a partial ordering of $N$ , the nonnegative integers. The

parameters $A,$ $B,$ $C,$ $K_{0},$ $K_{1},$ $L$ and $U$ (from $D$ ) $code\preceq$ in $D$ if and only if there is a set

of degrees $\mathcal{G}$ equal to $\{G_{i}|i\in N\}$ such that the following conditions are satisfied in $\mathcal{D}$ .

(1) For each $Y$ in $(\mathcal{G})$ , either

(a) $(A)$ A $(B\oplus Y)\not\subset(C\oplus U\oplus Y)$ or
(b) There is a $G_{i}$ in $\mathcal{G}$ such that $G_{i}\leq v^{U}\oplus Y$ .

(2) For each $G_{i}$ in $\mathcal{G},$ $(A)\wedge(B\oplus G_{i})\subseteq(C\oplus U\oplus G_{i})$ .
(3) $\mathcal{G}$ is strongly independent over $U$ .
(4) For all $i$ and $j$ in $N,$ $G_{j}\leq vG_{i}\oplus L\oplus U$ if and only if $j\preceq i$ .
(5) $(K_{0})$ A $(K_{1})$ is equal to $(\mathcal{G})$ .

4.3. PROPOSITION. Suppose that there are parameters as in Definition 4.2 $coding\preceq in$

D. There is a recursive translation $\varphirightarrow\varphi^{*}$ such that for any sentence $\varphi$

$\langle N, \preceq\rangle\models\varphi\Leftrightarrow D\models\varphi^{*}(A, B, C, K_{0}, K_{1}, L, U)$ .

PROOF: It is enough to show that therea relation on elements of $\mathcal{D}$ that is an isomorphic

copy of $\langle N, \preceq\rangle$ and uniformly definable from $A,$ $B,$ $C,$ $K_{0},$ $K_{1},$ $L$ and $U$ .
By (5), $(\mathcal{G})$ is definable in $D$ . By (4), the set

$\mathcal{G}\oplus U=\{G_{i}\oplus U|i\in N\}$

is strongly independent in $D$ and so any two of its elements are incomparable. This

together with (1) and (2) shows that $\mathcal{G}\oplus U$ is definable as the set of minimal elements of

$\{Y\oplus U|(\forall Z)[Z\in(A)\wedge(B\oplus Y)^{\wedge}Y\in(I\iota_{0}’)\Rightarrow(K_{1})_{Z}\ _{\in(C\oplus U\oplus Y)]}\}$ .

Now consider the partial ordering of $\mathcal{G}\oplus U$ given by $G_{i}\oplus U\leq G_{j}\oplus U$ if and only if
$G_{i}\oplus U\leq G\oplus L\oplus U$ . This is a definable partial ordering in $D$ of a definable subset of
$\mathcal{D}$ ; by (4), $\langle \mathcal{G}\oplus U, \leq\rangle$ is isomorphic to $\langle N, \preceq\rangle$ . $\theta$

Representing models of arithmetic. We begin by fixing a partial ordering $P_{N}$ that

represents the natural numbers with the successor function. We will present $P_{N}$ in terms

of generators and relations. Let $\leq N$ denote the ordering in $P_{N}$ .

(1) The minimal elements of $P_{N}$ form a set $\{m_{i}|i\in N\}$ .

18



108

(2) For each $i$ and $j$ , there is a unique pair $c_{+}(i, j)$ and $d_{+}(i,j)$ such that $c_{+}(i,j)\geq N$

$m;,m_{j}$ and $d_{+}(i,j)\geq c(i,j),$ $m_{i+j}$ .
(3) For each $i$ and $j$ , there is a unique triple $c_{X}(i,j),$ $d_{x}(i,j)$ and $e_{X}(i,j)$ such that

$c_{x}(i,j)\geq m,m_{j},$ $d_{x}(i,j)\geq c(i,j),$ $m_{ixj}$ and $e_{x}(i,j)\geq d_{x}(i,j)$ .

The only elements of $P_{N}$ are the ones mentioned above. The only instances of $\leq N$

comparability are those needed to obtain a transitive relation satisfying the above clauses.

The integers of $P_{N}$ are endowed the with the structure of arithmetic in a way that is
$P_{N}$ -definable. For example, in $P_{N}$ define $m_{i}+p_{N}m_{j}=m_{k}$ if and only if there exist $x$

and $y$ in $P_{N}$ such that $x\geq m,$ $m_{j}$ ; $y\geq x,$ $m_{k}$ ; and $y$ is maximal in $P_{N}$ . The following

proposition is built into our definition of $P_{N}$ .

4.4. PROPOSITION. (1) There is a recursive partial $ordering\preceq ofN$ that is isomorphic to
$P_{N}$ . In addition, in the coding $by\preceq$ , the set of integers, addition and multiplication

are also recursive.

(2) There is an interpretation of the first ordered theory of $N$ in the first order theory

of $P_{N}$ .

To avoid making a constant translation between the language of arithmetic and the

language of partially ordered sets we will speak of $P_{N}$ as if it were $N$ . We will also

identify $P_{N}$ with the recursive partial ordering of $N$ referred to in Proposition 4.4. We
let $+N$ and $X_{N}$ denote the operations of addition and multiplication on the integers of
$P_{N}$ . Similarly, when a partial order $P$ has enough of the properties of $P_{N}$ to define a set

of integers with addition and multiplication as above, we will call $P$ an interpretation of

the language of arithmetic.

One of the first theorems about the axiomatics of $N$ is that $N$ has a second order

characterization. There is a finite set of first order sentences $P^{-}$ such that if $M$ is a
model of $P^{-}$ and every subset of $M$ has a least element, then $M$ is isomorphic to $N$ . The

second condition is usually expressed by saying that $M$ satisfies full induction. Suppose

that $M$ is a model of $P^{-}$ Let $1_{M}$ be the successor of the minimal element of $M$ . Full

induction for $M$ is equivalent to the following condition: for all $m$ in $M$ , either $m$ is equal

to $0_{M}$ or there is a $k$ in $N$ such that

(4.5.)
$m= \frac{1_{M}+M+1}{k\cdot times}$

.
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Say that $m$ is a standard element of $M$ if either $m$ is $0_{M}$ or there is a $k$ in $N$ such that

Equation 4.5 holds. The standard part of $M$ is the set of its standard elements. $M$ is

isomorphic to $N$ if and only if $M$ is equal to its standard part.

4.6. DEFINITION. Suppose that $M$ is a partially ordered set that interprets the language

of arithmetic. Say that $M$ is a model of arithmetic if $M$ satisfies $P^{-}$ . $M$ is a nonstandard

model if $M$ is not isomorphic to $P_{N}$ , or equivalently, $M$ has a nonstandard element.

4.7. PROPOSITION. Suppose that 1!) is an upper semi-lattice such that there is a D-

definable predicate $S$ such that

(1) $\vec{p}\in S$ implies that $\vec{p}$ is a sequence of parameters coding a model of arithmetic (as

in Definition 4.2) wherein the set of integers is independent.

(2) If $M(\vec{p})$ is the model coded by some $\vec{p}\in S$, then there is pair $K_{0}$ and $K_{1}$ such that

for every integer $m$ in $M(p)$ ,

$m$ represents a standard element of $M(\vec{p})\Leftrightarrow m\in(K_{0})\wedge(K_{1})$.

(3) There is at least one element $\vec{p}$ of $S$ that codes a partial ordering isomorphic to $P_{N}$ .
Then, there is an interpretation of the first order theory of arithmetic in the first order

theory of $D$ .

PROOF: By (1) and (2), we can use $S$ to define a collection of codes for standard models

of arithmetic. By (3), this collection is not empty. Given a sentence $\varphi$ in the language

of arithmetic, let $\varphi^{*}(\vec{p})$ be the sentence in the parameters $\vec{p}$ that is equivalent to saying

that $\vec{p}$ codes a standard model of arithmetic and $\varphi$ is satisfied in the partial order coded

by $\vec{p}$. Then,
$N\models\varphi\Leftrightarrow D\models(\exists\vec{p})\varphi^{*}(\vec{p})$ .

This gives an interpretation of the theory of $N$ in the theory of $\mathcal{D}$ . $\theta$

4.8. PROPOSITION. Work with the same notation and assumptions as in Proposition 4.7.
Suppose further, for any model coded in $D$ and any subset $S$ of the integers of that model

there is a pair $H_{0}$ and $H_{1}$ such that $(H_{0})$ A $(H_{1})$ is equal to $(S)$ . Then, there is an

interpretation of the second order theory of arithmetic in the first order theory of $\mathcal{D}$ .

PROOF: As in Proposition 4.7, we obtain a definable collection of coded standard models

of arithmetic. By clause (1), the integers of a coded model form an independent set. Thus,
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every subset $S$ of the integers in a coded model is determined by the ideal it generates.

Using the additional assumption, these are determined by exact pairs. Thus we can

interpret second order variables over a coded model in a way that is first order in Z) by

using exact pairs. $\theta$

We will now state the technical results that apply to \langle PTIME, $\leq_{p}$ } and $\{\mathcal{R}, \leq_{p}\}$ .

4.9. THEOREM. There are recursive sets $A,$ $B,$ $C,$ $I\iota_{0}’,$ $K_{1},$ $L,$ $P_{0},$ $Q_{0},$ $P_{1},$ $Q_{1},$ $U$ and a

sequence $\mathcal{G}=\{G_{i}|i\in N\}$ of recursive sets with the following properties.

(1) $A,$ $B,$ $C,$ $IK_{0},$ $K_{1},$ $L$ , and $U$ code a partial ordering $of\mathcal{G}\oplus U$ that is isomorphic to

$P_{N}$ .
(2) For all $m$ , an even integer in the sense of $P_{N}$ ,

$(G_{m}\oplus P_{0}\oplus U)\wedge(Q_{0}\oplus U)=(G_{m’}\oplus U)$,

where $m^{/}$ is the successor of $m$ in $P_{N}$ . Similarly, if $m$ is an odd integer in $P_{N}$ ,

$(G_{m}\oplus P_{1}\oplus U)\wedge(Q_{1}\oplus U)=(G_{m’}\oplus U)$.

Clause (2) and its use in the following proof were directly adapted from [9, Shore]. We
will present the proof of Theorem 4.9 in sections \S 5 to \S 7.

4.10. THEOREM. (1) There is an interpretation of the first order theory of arithmetic

in the first order theory of \langle $REC,$ $\leq_{p}$ }.
(2) There is an interpretation of the theory of second order arithmetic in the first order

theory of $\langle \mathcal{R}, \leq_{p}\rangle$ .

PROOF: (Assuming Theorem 4.9.) In the following, when we will say that a predicate $R$

is definable in either of $\langle REC, \leq_{p}\rangle$ or $\langle \mathcal{R}, \leq_{p}\rangle$ , we will mean that there are finitely many

parameters $\vec{p}$ and a first order formula $\varphi$ so that $R$ is equal to the set of solutions to
$\varphi(\vec{p}, -)$ in the structure. If the same definition works in both structures, we will merely

say that $R$ is definable.

We begin with the first claim. Working in $\langle REC, \leq_{p}\rangle$ , we wish to show that there is a

definable nonempty collection of codes of standard models of arithmetic. We simultane-

ously present the definition and prove that it is correct.
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In stating $\varphi$ , we begin with $\vec{p}$ , a sequence $A,$ $B,$ $C,$ $K_{0},$ $K_{1},$ $L,$ $P_{0},$ $Q_{0},$ $P_{1},$ $Q_{1}$ and $U$

of recursive sets. Let $\mathcal{G}\oplus U$ be the set of minimal elements of

$\{Y\oplus U|(\forall Z)[Z\in(A)\wedge(B\oplus Y)^{\wedge}Y\in(K_{0})\Rightarrow’(A_{1})_{Z}\ _{\in(C\oplus U\oplus Y)]}\}$

We require that $\mathcal{G}\oplus U$ be strongly independent (see Definition 4.1). Next, we require

that $\vec{p}$ code a partial ordering of $\mathcal{G}+U$ , in the sense of Definition 4.2, that satisfies $P^{-}$

Further, the addition operation of the coded model must satisfy condition (2) in Theorem

4.9 with respect to $P_{0},$ $Q_{0},$ $P_{1}$ and $Q_{1}$ .
Lastly, we require for all $H_{0}$ and $H_{1}$ , if $(H_{0})\wedge(H_{1})$ is closed under the successor

operation of the coded model then every integer in the coded model is an element of
$(H_{0})\wedge(H_{1})$ . These requirements form a first order property of $\vec{p}$.

By Theorem 4.9, there is a $\vec{p}$ that satisfies the requirements.

Let $\vec{p}$ be fixed to satisfy the above requirements. Let $M$ be the model of $P^{-}$ coded by
$\vec{p}$ . Recall that $M$ is represented as a definable partial ordering of $\mathcal{G}\oplus U$ . Consider the

set $\mathcal{I}$ defined by $X\in I$ if and only if there is a finite sequence $Z_{0}\ldots,$ $Z_{n}$ such that $Z_{0}$

is the 0th element of $M$ , for each even (odd) $m$ less than $n,$ $Z_{m+1}$ is PTIME in both

$P_{0}\oplus Z_{m}$ and $Q_{0}$ ( $P_{1}\oplus Z_{m}$ and $Q_{1}$ , respectively). As in the proof of Theorem 3.6, $\mathcal{I}$

has a recursive presentation: effectively list all ways of producing such finite sequences

and sets computed from their last element;ifasequence of pairs of PTIME reductions is
seen not to compute a sequence of $Z_{i}’ s$ , the set we were computing from the final $Z_{n}$ is

converted into a finite set. By Theorem 3.6, there are $H_{0}$ and $H_{1}$ such that $(H_{0})\wedge(H_{1})$

is equal to $\mathcal{I}$ .
By condition (2) in Theorem 4.9, $\mathcal{I}$ is the ideal generated by the elements of $\mathcal{G}\oplus U$

that are standard elements in $M$ . By the final condition on $\vec{p},$
$\mathcal{I}$ must include all of the

integers of $M$ . Since $\mathcal{G}\oplus U$ is strongly independent, $\mathcal{I}$ does not include any elements of
$\mathcal{G}\oplus U$ other than the standard integers. Thus, every integer in $M$ is standard and so $M$

is isomorphic to $P_{N}$ .
Now we can invoke Proposition 4.7 to conclude the first claim from the ability to define

a nonempty collection of standard models.

The second claim is much easier to see. Work in { $\mathcal{R},$ $\leq_{p}\rangle$ . Consider the set of sequences
$\vec{p}$ that code models of $P^{-}$ in which the set $\mathcal{G}\oplus U$ is strongly independent. By theorem

4.9, this set is not empty. We can recognize the sequences that code standard models
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as above using Theorem 3.3 to provide an exact pair above the ideal generated by. the

standard integers. Using Theorem 3.3 again to provide an exact pair for every subset of

the integers. We can invoke Proposition 4.8 to conclude (2). $\theta$

\S 5. REQUIREMENTS

In this section, we introduce the requirements associated with the proof of Theorem

4.9 and describe the qualitative features of the sets to be constructed.

We are required to produce recursive sets $A,$ $B,$ $C,$ $K_{0},$ $K_{1},$ $L,$ $P_{0},$ $Q_{0},$ $P_{1},$ $Q_{1},$ $U$ and

a recursive sequence of sets $\mathcal{G}=\{G_{i}|i\in N\}$ . We will simultaneously and uniformly

construct all of these sets, except for $K_{0}$ and $K_{1}$ , as subsets of $\{0,1\}^{*}$ . We will apply

Theorem 3.6 to conclude the existence of $K_{0}$ and $K_{1}$ .
The requirements are naturally divided into the following parameterized families.

$I(\Phi, arrow G)$ . The first type of requirement is syntactically the most complicated. We

write it as a collection of related requirements. Given $\Phi$ and a finite $sequencearrow G$ from $\mathcal{G}$ ,

let $Y$ denote $\Phi(G)arrow$ .
$I$ ( $\Phi,$

$arrow G$ , global). We build $\Gamma$ and $\Delta$ to satisfy the global requirement

$\Gamma(A)=\Delta(B\oplus Y)$ .

$I(\Phi, arrow G, \Psi)$ . Further, for each $\Psi$ , we satisfy one of the following. Either,

$\Psi(C\oplus U\oplus Y)\neq\Gamma(A)$

or for some $G$; in $arrow G$ , we build $\Pi$ and satisfy

$\Pi(U\oplus Y)=G_{i}$ .

$II(\Theta, \Omega, i)$ . Given $\Theta$ and $\Omega$ , we build a functional $\Sigma$ so that

$\Theta(A)=\Omega(B\oplus G_{i})=Z\Rightarrow Z=\Sigma(C\oplus U\oplus G_{i})$ .

$III(\Theta, j)$ . Given $0,$ $i$ and $j$ , we satisfy

$\Theta(\oplus_{i\neq j}G_{i}\oplus U)\neq G_{j}$ .
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$IV$ ( $i,$ $j$ , coding). For each $i$ and $j$ such that $j\leq p_{N}i$ , we build $\Lambda$ so that

$\Lambda(G_{i}\oplus L\oplus U)=G_{j}$ .

$IV(\Theta, i, j)$ . For each $\Theta,$ $i$ and $j$ so that $j\not\leq p_{N}i$ , we satisfy

$\Theta(G_{i}\oplus L\oplus U)\neq G_{j}$ .

Let $m$ be an even integer in the sense of $P_{N}$ with successor $m’$ .

$V$ ( $m$ , coding). We build $\Gamma$ and $\triangle$ to satisfy

$\Gamma(P_{0}\oplus G_{m})=\Delta(Q_{0})=G_{m’}$

$V(m, \Phi, \Psi)$ . Given $\Phi$ and $\Psi$ , we build $\triangle$ so that

$\Phi(G_{m}\oplus P_{0}\oplus U)=\Psi(Q_{0}\oplus U)=Z\Rightarrow\triangle(G_{m’}\oplus U)=Z$.

Define $V$( $m$ , coding) and $V(m, \Phi, \Psi)$ for $m$ an odd integer in $P_{N}$ similarly, replacing
$0$ by 1.

We leave it to the reader to show that any sets satisfying the above requirements satisfy

Theorem 4.9. Requirements I-IV and VI correspond to the conditions appearing in the

definition of coding a partial ordering (see Definition 4.2). Requirement V corresponds

to the second clause in Theorem 4.9.

The roles of the parameters. The sets play well defined roles in the construction.
$U$ is a very thinly distributed set, all of whose elements are strings of $O’ s$ . Almost

every action will take place relative to a string in $U$ . For example, the elements of $\mathcal{G}$ will

be subsets of $U$ . When we establish an inequality between a set and the value of some

functional, it will invariably occur at an argument in $U$ .
$A$ is an infinite join of sets. The columns of $A$ are the sets coded into the meet of $(A)$

with $(B\oplus Y)$ for the sake of requirements of type I.
$B$ is also an infinite join of sets. Each column of $B$ is a set of strings coding quadruples

\langle $x,$ $i,pos,neg$ } $:x$ is a string; $i$ is either $0$ or 1; $pos$ and $neg$ are codes for disjoint subsets

of the set of strings of length less than or equal to $\log(\log(|x|))/2$ . Working on the eth
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requirement, we think of \langle $x,$ $i,pos,$ $neg$ } $\in B^{(e)}$ as providing a computation relative to

$B\oplus Y$ . Namely, if \langle $x,$ $i,pos,$ $neg$ \rangle $\in B^{(e)},$ $pos$ codes a subset of $Y$ and $neg$ codes a subset

of the complement of $Y$ then the answer at $x$ is $i$ . We define a (linear time) Turing

computation relative to $B\oplus Y$ as follows. If there is a computation $\langle x, i,pos, neg\rangle\in B^{(e)}$

relevant to $Y$ then output answer $i$ ; otherwise, output answer $0$ .
The columns of $C$ contain information about the actions of strategies associated with

requirements of type II. For each element $x$ of $U$ and each strategy, we have the option

of putting one of three flags on $x$ into the pertinent column of $C$ . The flags will be used

to simulate a computation relative to $A$ using $C\oplus U\oplus G_{i}$ .
The remaining sets are as independent as is possible given the coding requirements.

\S 6. STRATEGIES

In this section, we specify the families of strategies used to satisfy the requirements. As
usual, in the specification of a strategy, we are allowed to use inputs $C\uparrow s$ and $in\uparrow s+1$ .
We will describe the stage $s+1$ behavior of the strategies in terms of these using an
auxiliary function gap$(s)$ , which in the final construction, will have a PTIME graph. The

function gap is used to introduce a long blank interval between the locations of strings

used during stage $s$ and those used during stage $s+1$ .

The initial environment. The first strategy is not associated with any particular

requirement. It forces the sets produced to have the qualitative properties described in

section \S 5. During stage $s+1$ , it imposes the environment $E_{0}(s+1)$ . $E_{0}(s+1)$ is defined

by specifying the properties of the conditions $q$ that belong to it. Note, that the definition

of $E_{0}(s+1)$ depends only on $s+1,$ $p(s)$ and gap$(s)$ .
(1) Basics. The predicates $A,$ $B,$ $C,$ $L,$ $P_{0},$ $Q_{0},$ $P_{1},$ $Q_{1}$ and $U$ are named in $q$ . The

remaining predicates named in $q$ are contained in $\{G_{i}|i\leq s+1\}$ .
(2) Restrictions on $A$ . All of the elements of $q(A)$ are of the form $\langle e, z\rangle$ where $e$ is less

than or equal to $s+1$ and $z$ is an element of $q(U)$ . There is $aC$ most one element

in $q(A)-p(s)(A)$ . The columns of $A$ will be subsets of $U$ .
(3) Restrictions on $B$ . All of the elements of $q(B)$ are of the form $\langle e, \langle x, i\cdot,pos, neg\rangle\rangle:e$

is less than or equal to $s+1;x$ is a string; $i$ is either $0$ or 1; $pos$ and $neg$ are codes

for disjoint subsets of the set of strings of length less than log(log(|x|))/2.
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(4) Restrictions on $C$ . All of the elements of $q(C)$ are of the form { $e,$ $z,$ $1\rangle$ or { $e,$ $z,$ $2,$ $i\rangle$

where $e$ is less than or equal to $s+1,$ $z$ is an element of $U$ and $i$ is either $0$ or 1.

These are called flags for $z$ . There is at most one element in $q(C)-p(s)(C)$ .
(5) Restrictions on $U$ . The only elements of $q(U)$ are strings of $O’ s$ . If $q(U)$ is defined

on $0^{m}$ , then for all $n$ less than $m,$ $q(U)$ is defined on $0^{n}$ . The shortest element of

$q(U)-p(s)(U)$ has length greater than gap$(s)$ .
(6) Restrictions on $G_{k}$ . For all strings $x$ , if $q(G_{k})(x)=1$ then $q(U)(x)=1$ . If $G_{k}$ is

named in $q$ but not in $p(s)$ , then $q(G_{k})(z)$ is equal to $0$ , for every string $z$ of length

less than or equal to $l_{p(s)}(U)$ . Thus, the elements of $\mathcal{G}$ will be subsets of $U$ .
(7) Restrictions on $\ell_{q}$ . There is an $x$ in $q(U)$ such that for each $X$ named in $q$ other

than $U,$ $\ell_{q}(X)$ is less than $|x|$ . For all $G_{i}$ and $G_{j}$ named in $q,$ $\ell_{q}(G_{i})=\ell_{q}(G_{j})$ . For

all $G_{k}$ named in $q$ , for all $x$ and $e$ , if any of $q(A)(\langle e, x\}),$ $q(B)(\{e, \langle x, i,pos, neg\}\})$ ,
$q(C)(\langle e, x, 1\rangle)$ , or $q(C)(\langle e, x,2,i))$ is defined, then $q(G_{k})(x)$ is defined.

6.1. DEFINITION. (1) An environment $E$ , depending on $s+1,$ $p(s)$ and in$(s+1)$ is

U-free over $f$ : $Narrow N$ if for any $q$ in $E$ and $U^{/}$ extending $q(U)$ such that

$(\forall n, m\in N)[^{(0^{m}}\Rightarrow(m>gap(s)^{n}\ m>f(n))\in U^{/}-q(U)\ 0\in U’\ m>n)]$

there is an $r$ extending $q*U’$ such that $r$ is in $E$ .
(2) $E$ imposes the condition that $U$ dominate $f$ when, for all $q$ in $E$ , if $y$ is an element

of $q(U)-p(s)(U),$ $z$ is in $q(U)$ and $|z|<|y|$ , then $|y|>f(|z|)$ .
(3) $E$ is $\mathcal{G}$ -free if, for any $q$ in $E$ and any $arrow G’$ extending $q(G)arrow$ such that, for all $G_{i}’$ in

$arrow G’$ , if $G_{i}’(x)=1$ then $q(U)(x)=1$ , there exists an $r$ extending $q$ in $E$ such that
$r(\not\supset)$ extends $arrow G’$ .

(4) $E$ is determined by $f$ on $\mathcal{G}$ and $U$ if $E$ imposes the constraint that $U$ dominate $f$ ,
$E$ is U-free over $f$ and $E$ is $\mathcal{G}$-free.

If $E$ imposes the constraint that $U$ dominate $f$ and $E$ is U-free over $f$ , then the

only constraint on $U$ is that it respect the gap condition of $E_{0}(s+1)$ , clause (5), and

that its enumerating function grow faster than the $f$ . All of our strategies will produce

environments of this sort.

$I(\Phi, arrow G)$-strategies. The strategies associated with $I(\Phi, arrow G)$ fall into two types as did
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the clauses in the statement of the requirement. For the discussion of these strategies,

let $Y$ denote $\Phi(G)arrow$ .

$I$ ( $\Phi,$
$arrow G$ , global). Suppose that this strategy is given index $e$ . In the global strategy,

we define a functional $\Delta$ in PTIME and set the environment so that $A^{(e)}$ will equal

$\Delta(B\oplus Y)$ . The strategy has only one state. Given input $C\beta s$ and in $(s+1)$ , its imposed

environment consists of the conditions $q$ with the following properties.

(1) Environment: We extend the constraint imposed in $E_{0}(s+1)$ so that, if

\langle $x,$ $i,pos,neg$} is an element of $q(B^{(e)})$ , then $q$ strongly decides whether $pos$

is a subset of $Y$ and $neg$ is contained in the complement of Y. If $q$ forces

posY&neg\cap Y $=\emptyset$ , then $q(A^{(e)})(x)=i$ . Further, if $A^{(e)}(x)=1$ , then there is
such a quadruple in $q(B^{(e)})$ . Lastly, { $e,$ $x\rangle$ is in the domain of $q(A)$ if and only if

for all $pos$ and $neg$ as above, $\langle x, 0,pos, neg\rangle$ and $\langle x, 1,pos, neg\rangle$ are in the domain

of $q(B^{(e)})$ if and only if there is one such quadruple in the domain of $q(B^{(e)})$ .
By the first clauses, if our functional $\triangle(B\oplus Y)$ is defined at $z$ by an quadruple in

$B$ , then its value is equal to $A^{(e)}(z)$ . If no element of $B$ sets the value, then $A^{(e)}$ has

the default value $\theta$ . The next clause ensures that when it applies, the default value

is correct. Lastly, $A^{(e)}$ is decided at $x$ if and only if the evaluation of $\Delta(B\oplus Y)$ at
$x$ is decided.

6.2. LEMMA. If $C$ is a coherent construction that eventually respects $I$($\Phi,$
$arrow G$ , global) then

requirement $I$($\Phi,$
$arrow G$ , global) is satisfied by the sets produced.

PROOF: The functional $\Delta(B\oplus Y)$ is defined as follows. For argument $x$ , if there are $pos$

and $neg$ subsets of the set of strings of length less than or equal to log(log(|x|))/2 and
$i$ either $0$ or 1 such that \langle$x,i,pos,$ $neg,$ } $\in B^{(e)},$ $pos\subset Y$ and $neg\cap Y=\emptyset$ then output

answer $i$ . Otherwise, output answer $0$ .
$\Delta$ is a Turing functional. During every stage, $I$ ( $\Phi,$

$arrow G$ , global) imposes the condition

that $A^{(e)}=\Delta(B\oplus Y)$ , hence they are equal in the limit. We need only check that $\Delta$

belongs to PTIME. This follows from the elementary calculation showing that there are

on the order of $|x|$ many quadruples to be checked in the evaluation of $\Delta(B\oplus Y, x)$ . The

exact coding mechanism is not important. We will only assume that the coding is fixed

so that the set of codes for quadruples with first coordinate $x$ is uniformly polynomial in
$x$ . $O$
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$I(\Phi, arrow G, \Psi)$ . Using $I$ ( $\Phi,$
$arrow G$ , global), we force $A^{(e)}$ belong to $(A)\wedge(B\oplus Y)$ . The current

strategy will ensure that either $A^{(e)}$ is not equal to $\Psi(C\oplus U\oplus Y)$ or there is an element
$G;ofarrow G$ such that $G_{i}\leq_{p}Y$ .

Given $u_{\Phi}$ and $u_{\Psi}$ , increasing polynomials giving time bounds on the computations of
$\Phi$ and $\Psi$ , let $u_{\Phi}\circ u_{\Psi}$ be their composition.

The strategy for $I(\Phi, arrow G, \Psi)$ rides on the difference between forcing and strong forcing.

We begin with some preliminary definitions and lemmas.

6.3. DEFINITION. Let $\Psi$ be fixed in this definition. Let $E$ be an environment extending
$E_{0}(s+1)$ that is determined by $f$ on $\mathcal{G}$ and $U$ . Let $p$ be an element of $E$ and $x$ be in
$p(U)$ such that all $X$ named in $p$ other than $U,$ $\ell_{p}(X)<|x|$ . Further, suppose that for

all $y$ in $p(U)$ either $|y|\leq|x|$ or $u_{\Phi}\circ u_{\Psi}(|x|)<|y|$ . Say that $C_{0}$ is compatible with $p$ if

there is a $q<Ep$ such that $C_{0}$ is contained in $q(C)$ .

(1) $Y$ is nonsplitting at $x$ over $p$ if there is a $q$ extending $p$ in $E$ such that

(i) For all $G_{i}$ named in $q,$ $\ell_{q}(G_{i})<|x|$ .
(ii) If $C_{0}$ is compatible with $p$ in $E$ , then $Y\uparrow\psi(C_{0}\oplus U\oplus Y, x)(Y$ restricted to

the $C_{0}\oplus U\oplus Y$ computation of $\Psi$ at x) is decided by $q$ in $E$ .
(iii) For all $X$ not in $arrow G,$ $q(X)=p(X)$ .

(2) $Y$ is $G$;-splitting at $x$ over $p$ if

(i) If $C_{0}$ is compatible with $p$ then for any $q<Ep$ , the values forced by $q$ in $E$

for $Y\beta\psi(C_{0}\oplus U\oplus Y, x)$ are forced by $p$ and $q(G_{i})\uparrow|x|$ .
(ii) If $q$ and $r$ are extensions of $p$ in $E$ that are incompatible with regard to $G_{i}$ at

$x$ , then there is a $C_{0}$ , compatible with $p$ , such that $q$ and $r$ force incompatible

values for $Y\int\psi(C_{0}\oplus U\oplus Y,x)$ .
(3) $Y$ is amorphous at $\ell$ over $p$ if there is a $q$ extending $p$ in $E$ and strongly forcing a

value for $Y(z)$ at every string $z$ with $|z|\leq\ell$ , such that for all $G$; mentioned in $p$ ,

there is an extension $r$ of $p*q(G;)*q(U)$ and a $z$ of length less than $\ell$ such that $r$

forces a valu$e$ for $Y(z)$ that is incompatible with the one forced by $q$ .

6.4. LEMMA. Suppose that $f$ dominates $u_{\Phi}ou_{\Psi}$ point wise. Work in an environment $E$

extending $E_{0}(s+1)$ that is determined by $f$ on $\mathcal{G}$ and U. Suppose that $p<Ep(s),$ $x$ is

in $p(U)-p(s)(U)$ and for all $G_{k}$ named in $p,$ $x$ is the shortest element of $p(U)$ not in
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the domain of $G_{k}$ . One of the following three conditions must hold.

(1) $Y$ is nonsplitting at $x$ over $p$ .
(2) There is a $G_{k}\inarrow G$ such that $Y$ is $G_{k}$ -splitting at $x$ over $p$ .
(3) $Y$ is amorphous at $u_{\Psi}(|x|)$ over $p$ .

PROOF: First, since $E$ imposes the constraint that $U$ dominate $u_{\Phi}\circ u_{\Psi}$ and $E$ extends

$E_{0}(s+1),$ $Y\uparrow\{0,1\}^{\leq u_{\Psi}(|x|)}$ is decided by $arrow G\uparrow\{0,1\}^{\leq|x|}$ in $E$ . By the choice of $x,$ $Y$ will

be decided over $p$ by the values of the elements $ofarrow G$ at $x$ . Since $E$ is $\mathcal{G}$-free, any Boolean

combination of values at $x$ is compatible with $p$ in $E$ . We work in $E$ below.

If $Y$ is nonsplitting at $x$ over $p$ , the lemma is true. Assume otherwise.

For each $k$ , let $p(G_{k})*(G_{k}(x)=i)$ be the extension of $p(G_{k})$ that has value $i$ at $x$ .
Let $p*(a_{(x)}=0)$ be the extension of $p$ that excludes $x$ from entering any element of
$-\partial$ . Let $\psi^{*}(Y, x)$ denote the set of strings that are queried to $Y$ in a computation of
$\Psi(C_{0}\oplus U\oplus Y, x)$ for some $C_{0}$ that is compatible with $p$ . Note that $\psi^{*}(Y, x)$ is contained

in $\{0,1\}\leq u_{I}(|x|)$ . If there is no $k$ such that $p*(G_{k}(x)=0)$ decides $Y\uparrow\psi^{*}(Y,x)$ in $E$ then
$Y$ is amorphous at $u_{\Psi}(|x|)$ over $p$ . Assume otherwise; fix $k$ and $Y_{0}$ such that

$p*(G_{k}(x)=0)|\vdash Y\uparrow\psi(Y, x)=Y_{0}$ .

If $p*(G_{k}(x)=1)$ also decides $Y\beta\psi^{*}(Y, x)$ , then the value forced by $p*(G_{k}(x)=1)$

must be different from $Y_{0}$ . Otherwise, $p$ would force $Y\uparrow\psi^{*}(Y, x)$ equal to $Y_{0}$ and we
would be in the nonsplitting cas$e$ . Thus, if $p*(G_{k}(x)=1)$ decides $Yp\psi^{*}(Y, x),$ $Y$ is
$G_{k}$-splitting at $x$ over $p$ .

Lastly, suppose that $p*(G_{k}(x)=1)$ does not decide $Y\uparrow\psi^{*}(Y, x)$ . Let $q$ and $r$ be

extensions of $p*(G_{k}(x)=1)$ forcing incompatible values for $Y\uparrow\psi^{*}(Y, x)$ . As $E$ is
determined by a function that dominates $u_{\Phi}\circ u_{\Psi}$ on $\mathcal{G}$ and $U$ , deciding $G_{k}$ through $|x|$

decides $G_{k}$ through $u_{\Phi}ou_{\Psi}$ . This decides $G_{k}$ on every string that could be queried in

the evaluation of $Y\beta\psi^{*}(Y, x)$ . We may assume that $q(G_{k})$ is equal to $r(G_{k})$ . One of $q$

or $r$ (say q) must force $Y\uparrow\psi^{*}(Y, x)\neq Y_{0}$ . We can change $q$ by setting $G_{k}$ equal to $0$ at

$x$ to force $Y\uparrow\psi^{*}(Y, x)=Y_{0}$ . Thus, if $j$ is not equal to $k$ , then $p*q(G_{j})$ does not decide
$Y\uparrow\psi^{*}(Y, x)$ . Also, we can keep the condition on $G_{k}$ fixed and change $q$ to $r$ , thereby

changing the value forced for $Y\uparrow\psi^{*}(Y, x)$ . Thus, $p*q(G_{k})$ does not decide $Y\uparrow\psi^{*}(Y, x)$ .
Hence, $q$ is a witness to $Y’ s$ being amorphous at $x$ over $p$ . $\phi$
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6.5. LEMMA. Suppose that $E,$ $p$ and $x$ are given as in the previous lemma, such that $Y$

is $G_{k}$ -splitting at $x$ over $p$ . Let $x_{1}$ be an element of $p(U)$ with $|x|<|x_{1}|$ . At least one of
the following conditions holds.

(1) $Y$ is nonsplitting at $x_{1}$ over $p$ .
(2) $Y$ is $G_{k}$ -splitting over $p$ at $x_{1}$ .
(3) $Y$ is amorphous at $u_{\Psi}(|x_{1}|)$ over $p$ .

PROOF: Fix the notation $\psi^{*}(Y,x)$ as in the previous lemma. If there is a $q\leq Ep$ , with
$\ell_{q}(G_{i})<|x_{1}|$ for all $G_{i}\inarrow G$ , that decides $Y\beta\psi^{*}(Y, x_{1})$ in $E$ , then $Y$ is nonsplitting over
$p$ at $x_{1}$ . This is case (1). Assume otherwise.

Similarly, if for $m$ in $\{0,1\},$ $Y$ is $G_{k}$-splitting over $p*(G_{k}(x)=m)$ at $x_{1}$ , then case (2)

holds. Assume further, that this is not the case. If $Y$ fails to be $G_{k}$ splitting because of

a $G_{k}^{/}$ extending $p(G_{k})$ and deciding $G_{k}$ no further than $\{0,1\}^{\leq|x_{1}|-1}$ such that $p*(G_{k}^{/})*$

$(G_{k}(x_{1})=0)$ and $p*(G_{k}^{/})*(G_{k}(x_{1})=1)$ decide $Y\uparrow\psi^{*}(Y, x_{1})$ in the same way in $E$ ,

then $Y$ would be nonsplitting at $x_{1}$ . Since we have assumed this does not occur, $Y$ must

fail to be $G_{k}$ splitting because of the existence of some $G_{k}^{/}$ extending $p(G_{k})$ and deciding
$G_{k}$ through $\{0,1\}^{\leq|x_{1}|}$ , such that $p*G_{k}’$ does not decide $Y\beta\psi^{*}(Y, x_{1})$ in $E$ . Let such a
$G_{k}^{/}$ be fixed.

Let $q$ and $r$ be extensions of $p*G_{k}’$ in $E$ that strongly force incompatible values for
$Y\uparrow\psi^{*}(Y, x_{1})$ . We claim that $q$ is a witness to $Y’ s$ being amorphous at $u_{\Psi}(|x_{1}|)$ over
$p$ . Let $Y_{0}$ be the predicate on the $\dot{s}et$ of strings of length less than or equal $u_{\Psi}(|x_{1}|)$

such that $q$ forces $Y$ to extend $Y_{0}$ . First, the condition obtained from $q$ by changing only

$G_{k}(x)$ from $0$ to 1 or vice versa forces $Y$ to be incompatible with $Y_{0}$ by the assumption

of $G_{k^{-}}$.splitting at $x$ . Thus, the collection of $Y’ s$ values on the set of strings of length less

than or equal to $u_{\Psi}(|x_{1}|)$ is not decided by any $p*q(G_{i})$ with $i$ unequal to $k$ . It is not

decided by $p*q(G_{k})$ , by the choice of $G_{k}’$ . The above conditions are all compatible with
$E$ since $E$ is $\mathcal{G}$-free. This verifies the claim, showing that case (3) hold, if both cases (1)

and (2) fail. $\theta$

We define the family of strategies $I(\Phi, arrow G, \Psi)$ as follows. We will assume that $I(\Phi,$
$arrow G$ ,

$\Psi)$ is associated with a strategy $I$ ( $\Phi,$
$arrow G$ , global) of index $e$ . Let $f$ be a given recursive

function; let $E$ be the extension of $E_{0}(s+1)$ obtained by imposing the constraint that $U$

dominate $u_{\Phi}\circ u_{\Psi}$ and $f$ . Given inputs $C\beta s$ and in$(s+1),$ $I(\Phi, arrow G, \Psi)$ works as follows.

(1) Transition: Let $p$ be any extension of $p(s)$ of the form $p(s)*U’*arrow G^{/}$ in $E$ such
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that $p(U)-p(s)(U)$ is not empty $andarrow G’$ is compatible with $p(s)(G)arrow*0$ . Let $x$ be

the string of $O’ s$ of maximal length such that $x$ is in $p(U)$ . Note, by clause (7) in

$E_{0}(s+1)$ , we may assume if $G_{i}$ is named in $p(s)$ then $P_{p(s)}(G;)<|x|$ . By clause

(5), any elements of $U^{/}$ not already in $p(s)(U)$ have length greater than gap$(s)$ .

(i) If there is a $G_{i}inarrow G$ such that $Y$ is $G$;-splitting in $E$ over $p$ , then let $k$ be

this $i$ and go to (2).

(ii) If $Y$ is nonsplitting at $x$ over $p$ in $E$ , then go to (3).

(iii) If $Y$ is amorphous at $u_{\Psi}(|x|)$ over $p$ , then go to (4).

By Lemma 6.4, one of these conditions must hold.

(2) Transition: If this state is reached for the first time, let $p$ be given from state (1).

Otherwise, let $p$ equal $p(s)$ .
(i) $IfthereisaqinEextendingpwith\ell_{q}(U)1essthanorequaltou_{\Phi}\circ u_{\Psi}(in(s+$

$1))$ and $x$ in $q(U)$ such that $Y$ is nonsplitting at $x$ over $q$ , go to (3).

(ii) If $Y$ is amorphous at $u_{\Phi}\circ u_{\Psi}(in(s+1))$ over $p$ , go to (4).

Environment: Impose the following constraints on $q$ . First, $U$ dominates $u_{\Phi}\circ u_{\Psi}$ .
Second, if $t\leq s$ and $q(C)$ is incompatible with $p(t)(C)*O$ then there is at most

one element of $q(C)-p(t)(C)$ with second coordinate of length less than or equal

to $u_{\Psi}(in(t+1))$ .
As long as the strategy stays in this state, $Y$ is $G_{k}$ -splitting at the elements of

U. That means that the value of $G_{k}$ at $x$ can be read off from $Y\uparrow\psi^{*}(Y, z)$ on

the elements $z$ of $U$ of length less than or equal to $|x|$ . The second clause limits

the number of times that the condition on $C$ can be extended to be nonzero without

deciding $C\uparrow\psi^{*}(x)$ ; it can only happen once.

(3) Environment: Define $p$ as in (2). Let $q0$ and $x$ be the least condition in $E$

extending $p$ and least element of $q0(U)$ such that $Y$ is nonsplitting at $x$ over $q0$ in
$E$ . Let $q1$ be the least extension of $q0$ in $E$ such that for all $G_{i},$ $\ell_{q_{1}}(G_{i})$ is less than
$|x|$ and $q_{1}$ decides $Y\uparrow\psi(Y, x)$ .

Since $x$ is not in the domain of any element of (;, by clause (7) of $E_{0}(s+1)$ ,

$q1$ does not strongly decide a value for any of $A(\langle e, x\rangle)$ , any $B(\langle e, \langle x, i,pos, neg\rangle\rangle)$ ,
$C(\langle e, x, 1\rangle),$ $C(\langle e, x, 2,0\rangle)$ or $C(\langle e, x, 2,1\rangle)$ . We will arrange that gap$(s)$ is larger

than any other restraint on these sets coming from earlier stages, as in (2). Hence,

we will be able to freely decide these values.
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Construct an extension $r$ of $q1$ with the following features.

(i) $\langle e, x, 1\rangle\in r(C)$ . If $y$ is a string other than \langle $e,$ $x,$ $1$ }, $y$ is not in the domain

of $p(s)(C)$ and $|y|$ is less than $u_{\Phi}\circ u_{\Psi}(|x|)$ then $r(C)(y)=0$ . Let $m$ be the

value forced for $\Psi(C\oplus U\oplus Y, x)$ by $q_{1}*(r(C))$ in E. We have managed to

build $r$ forcing the value $m$ for $\Psi(C\oplus U\oplus Y, x)$ without deciding any of the

values of $G_{i}(x)$ .
(ii) $r(A^{(e)})(x)=1-m$ . Further, $\langle x, 1-m,\emptyset,\emptyset\rangle$ is an element of $r(B^{(e)})$ .
(iii) For each $G$; mentioned in $p,$ $r(G_{i})(x)=1-m$ .
(iv) If $x$ is the longest element of $q_{1}(U)$ , let $x_{1}$ be the shortest string of $O’ s$ with

$|x_{1}|> \max\{f(|x|),u_{\Phi}\circ u_{\Psi}(|x|)\}$. Let $r(U)$ extend $q_{1}(U)$ by setting $r(U)(y)$

equal to $0$ for all strings of length less than or equal to $|x_{1}|$ and not in the

domain of $q1(U)$ . For the sake of $E_{0}(s+1)$ , we include a large element of $U$ .
If $s+1$ is the first stage when this state is reached, then impose the constraint

on the allowed conditions $q$ , that all $q$ must extend $r$ and for all $G_{i}$ named in $q$ ,
$\{0,1\}^{\leq u_{\Phi}ou_{\Psi}(|x|)}$ is in the domain of $q$ . Otherwise, no constraints are imposed.

The first time this state is reached, we impose a constraint to ensure that $A^{(e)}$

is strongly forced to be unequal to $\Psi(C\oplus U\oplus Y)$ . After that, no further action is

needed to satisfy the requirement.

(4) Environment: Let $p$ be defined as in (2). Let $q$ and $\ell$ be the least extension of $p$

in $E$ and least length such that $q$ is a witness to the fact that $Y$ is amorphous at $\ell$

over $p$ . Compute a condition $r$ extending $q$ with the following properties.

(i) Let $x_{1}$ and $x_{2}$ be the least pair of strings of $0’ s$ of length greater than $2^{(2^{2l_{q}(U)})}$

and greater than any of $f(\ell_{q}(U)),$ $u_{\Phi}\circ u_{\Psi}(\ell_{q}(U))$ and gap$(s)$ so that the

extension $q_{1}$ of $q$ obtained by making $x_{1}$ and $x_{2}$ the next two elements of $U$

after those in $q(U)$ is in $E$ . Set $r(U)$ equal to $q_{1}(U)$ . This is possible since $E$

is U-free over the maximum of $f$ and $u_{\Phi}\circ u_{\Psi}$ .
(ii) Set each $r(G_{i})$ to be the extension of $q(G_{i})$ defined on all strings of length less

$thanorequaltou_{\Phi}\circ u_{\Psi}(|x_{1}|),$ $compatiblewithq(G;)*0$. This is compatible

with clause (7) of $E_{0}(s+1)$ , because it leaves $\ell_{r}(G_{i})<|x_{2}|$ .
(iii) Set $r(C)$ to be the extension of $p(s)(C)$ of length $u_{\Psi}(|x_{1}|)$ compatible with

$p(C)*O$. This action strongly decides $C\oplus U\oplus Y\uparrow\psi(C\oplus U\oplus Y, x_{1})$ . Let $m$

be the value forced for $\Psi(C\oplus U\oplus Y,x_{1})$ .
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(iv) Set $r(A^{(e)})(x_{1})=1-m$ . Further, $\langle x_{1},1-m, \emptyset, \emptyset\rangle$ is an element of $r(B^{(e)})$ .

This is the most dangerous move made in the definition of $r$ . If 1 $-m$

is equal to 1, then $A$ is changed from its default value without recording that

$changeinC\oplus U\oplus G_{i}$ . We will have to show that either this move is compatible

with the strategies of higher priority or one of those stmtegies changes state.

See section \S 7.

If $s+1$ is the first stage when this state is reached then impose the constraint on

the allowed conditions $q$ , that all $q$ must extend $r$ . Otherwise, no constraints are
imposed.

As in (3), we strongly force $A^{(e)}$ to be different from $\Psi(C\oplus U\oplus Y)$ .

6.6. LEMMA. If $C$ is a coherent construction that eventually respects $E_{0},$ $I$($\Phi,$
$arrow G$ , global)

and $I(\Phi, arrow G, \Psi)$ , then the requirement $I(\Phi, arrow G, \Psi)$ is satisfied.
PROOF: The proof breaks into cases depending upon the limiting state of $I(\Phi, arrow G, \Psi)$ .
By Lemma 6.2, $A^{(e)}$ is equal to $\Delta(B\oplus Y)$ . We must show that either there is a $G_{i}$ in
$arrow G$ such that $U\oplus Y\geq_{p}G_{i}$ or $\Psi(C\oplus U\oplus Y)\neq A^{(e)}$ .

Let $s_{0}+1$ be the stage during which $I(\Phi, arrow G, \Psi)$ is invoked in its initial state (1)

and after which $C$ respects $I(\Phi, arrow G, \Psi)$ and is coherent with respect to it. $I(\Phi, arrow G, \Psi)$

begins with a condition $p$ extending $p(s_{0})$ in the environment $E$ extending $E(s_{0}+1)$ .
Since $p$ is an element of $E_{0}(s_{0}+1)$ , the maximal element of $p(U)$ has greater length than
$\ell_{p}(X)$ for any set $X$ named in $p$ other than $U$ . Thus, there is a string $x$ to which we

can apply Lemma 6.4. We extend the environment to $E^{*}$ by imposing the constraint the
$U$ dominate $u_{\Phi}ou_{\Psi}$ . By Lemma 6.4, one of the three conditions $(i)-(iii)$ suitable for

transition from (1) must apply.

The first case is when $I(\Phi, arrow G, \Psi)$ reaches state (2) and stays there during every

subsequent stage. To reach this state, there must be $G_{k}inarrow G$ such that $Y$ is $G_{k}$-splitting

over $p$ at $x$ . We claim by induction that during every stage $s+1$ after $s_{0}+1,$ $p(s)$

is $G_{k}$-splitting at $e$very $y$ in $p(s)(U)$ of length greater than $\ell_{p(s)}(G_{k})$ and greater than
$\ell_{p}(s_{0})(U)$ .

Fix $s$ and let $\ell$ be the common value of $l_{p(s)}(G_{i})$ such that $G_{i}\inarrow G$ . By clause (6) in
$E_{0}(s+1)$ , the domain of $p(s)(G_{k})$ is equal to $\{0,1\}^{\leq\ell}$ . By Lemma 6.5, if there is a $U^{/}$

contained in $\{0,1\}^{\leq in(s+1)}$ and extending $p(s)(U)$ such that $p(s)*U’$ is in $E^{*},$ $x^{/}\in U^{/}$

and 1 $x^{/}|>\ell$ such that $Y$ is not $G_{k}$-splitting at $x^{/}$ over $p(s)$ , then one of the two transition
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conditions for leaving state (2) must hold. We are assuming this does not happen. By

the coherence of $C,$ $p(s+1)$ is chosen by a computation of length less than or equal to

in$(s+1)$ and so $\ell_{p(s+1)}(U)$ is less than in $(s+1)$ . Thus, the environment in (2) inductively

maintains $G_{k}$-splitting. In this case, we claim that $U\oplus Y\geq_{p}G_{k}$ .
Given $x$ , compute $G_{k}(x)$ from $U\oplus Y$ : First, if $x$ is not a string of $O’ s$ , then compute

that $G_{k}(x)$ is equal to $0$ . Otherwise, compute $G_{k}(x)$ as follows.

Compute the least $s$ such that in$(s+1)>|x|$ ;

Compute $p(s)$ ;

Compute $G_{k}\uparrow\{0^{n}|n\leq|x|\}$ by a recursion of length no greater than $|x|$ .

Step $0$ . $G_{k}\uparrow\{0^{n}|n\leq\ell_{p(s)}(G_{k})\}=p(s)(G_{k})$ ;

Step $i+1$ . Given $G_{k}\uparrow i$ .
If $0^{i+1}$ is not an element of $U$ ,

Then return $G_{k}(0^{i+1})=0$ ;

Else let $C(i+1)$ be the set of conditions obtained by adding at

most one point to $p(s)(C)$ having one of the forms $\langle e^{/}, x^{/}, 1\rangle$ or
$\langle e’, x^{/}, 2, i’\rangle$ , where $e’$ is less than or equal to $s+1,$ $x^{/}$ is an element

of $U$ of length less than or equal to $i+1$ , and $i^{/}$ is one of $0$ or 1.

For each $C_{0}$ in $C(i+1)$ , compute $Y\uparrow\psi(C_{0}\oplus U\oplus Y, 0^{i+1})$. Let
$Y_{0}$ be the collection of strings queried to $Y$ in these computations.

Let $q=p(s)*\langle G_{k}\uparrow i*(G_{k}(0^{i+1})=0))*\{G_{j}*0|j\neq k\}$ .
If $Y\uparrow Y_{0}=\Phi(q(G))\betaarrow Y_{0}$ ,

Then return $G_{k}(0^{i+1})=0$ ;

Else return $G_{k}(0^{i+1})=1$ ;

End if;

End if;

End step $i+1$ ;

End recursion;

Output the value returned for $G_{k}(x)$ by the recursion;

End.

By the coherence of $C$ , the first two steps are PTIME. For each $i+1$ less than or equal to

$|x|$ , the elements of $C(i+1)$ are determined by at most one of three flags for a pair $\langle e,j\rangle$

where $e$ is less than or equal to $s+1$ and $j$ is less than or equal to $i$ . By the coherence
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of $C,$ $in(|x|)$ is greater than $|x|$ so $s+1$ is greater than or equal to $|x\downarrow$ . At worst, the

computation of $G_{k}(i)$ involves evaluating $\Psi(C_{0}\oplus U\oplus Y, 0^{i})$ for $3|x|^{2}+1$ many conditions
$C_{0}$ on $C$ to determine $Y_{0}$ . Thus, $Y_{0}$ has at most $(3|x|^{2}+1)u_{\Psi}(|x|)$ many elements and

is a subset of $\{0,1\}^{\leq u_{\Psi}(|x|)}$ . The next step is to compute $\Phi(q(G), z)arrow$ for each $z$ in $Y_{0}$ .
This takes no longer than $u_{\Phi}\circ u_{\Psi}(|x|)$ many steps for each $z$ . This gives a running time

on the order of $(3|x|^{2}+1)u_{\Psi}(|x|)u_{\Phi}\circ u_{\Psi}(|x|)$ for the ith step. Multiplying by $|x|$ gives

the total running time. Thus, the method described above is a PTIME Turing $re$duction.

Let $\Pi$ denote this reducibility.

To see that $\Pi(U\oplus Y)=G_{k}$ , let $x$ be given. If $x$ is not a string of $O’ s$ or if $x$ is

not in $U$ then $x\not\in G_{k}$ by the constraint imposed in $E_{0}$ . The same answer is given by
$\Pi(U\oplus Y,x)$ . Suppose that $x\in U$ . We are given that the construction respects $I(\Phi,$

$arrow G$ ,
$\Psi)$ during all stages greater than $s_{0}$ and $re$mains in state (2). Thus, if $|x|<in(s+1)$

and $|x|>l_{p(s)}(G_{k})$ , then $Y$ is $G_{k}$ -splitting at $x$ over $p(s)*(U\uparrow|x|)$ .
Consider the ith step of the recursion. $U’ s$ dominating $u_{\Phi}ou_{\Phi}$ and $i$ in $U$ implies that

any element of $C$ with second coordinate of length greater than $i$ could not be queried in
$\psi(C\oplus U\oplus Y, 0^{i})$ . During each extension of the condition on $C$ , at most one new point

can be added by clause (4) of $E_{0}(s+1)$ . By the constraint imposed in state (2), at most

one such extension could be made to $C$ adding an element of $C\uparrow\psi(C\oplus U\oplus Y, 0^{i})$ . These
one point extensions of $p(s)(C)$ were the conditions on $C$ we checked trying to find the

dependence of $Y$ on $G_{k}$ . Thus, in the course of the recursion, the set $Y_{0}$ we computed

was equal to $\psi^{*}(Y, x)$ , the set of strings that could possibly be queried as to belonging

to $Y$ in the evaluation of $\Psi(C\oplus U\oplus Y, x)$ . Then, $Y\beta\psi^{*}(Y, x)$ and the value forced
by $p(s)*(G_{k}\uparrow(|x|-1)*(G_{k}(x)=0))$ for $\Phi(G)\betaarrow\psi^{*}(Y, x)$ are identical if and only if
$G_{k}(x)$ is equal to $0$ . Thus, $G_{k}(x)=0$ if and only if $\Pi(U\oplus Y, x)=0$ . On the other hand,

if $G_{k}(x)$ is not equal to $0$ , then it must equal 1. The same holds for $\Pi(U\oplus Y, x)$ , so
$\Pi(U\oplus Y, x)=G_{k}(x)$ .

The other cases are much easier to analyze from the point of view of the satisfaction

of the requirement $I(\Phi, arrow G, \Psi)$ . In either case, we manage to find a condition $q$ that

strongly forces $\Psi(C\oplus U\oplus Y)\neq A^{(e)}$ . Forcing this inequality is sufficient to satisfy the

requirement. $\theta$

$II(\Theta, \Omega, i)$ -strategies. We design this family of strategies to work in the context of

finitely many strategies of type $I$ ( $\Phi,$
$arrow G$ , global) of higher priority. Assume that we know
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the set of indices for these strategies. We also assume that a recursive function $f$ and

value for gap$(s)$ are given so that the environment imposed by the strategies of higher

priority is determined by $f$ on $\mathcal{G}$ and $U$

Given $\Theta$ and $\Omega$ , we build a functional $\Sigma$ to satisfy

(6.7) $\Theta(A)=\Omega(B\oplus G_{i})=Z\Rightarrow Z=\Sigma(C\oplus U\oplus G_{i})$ .

There are two possible ways to satisfy Equation 6.7. The easier of these is to find a

string $z$ and a condition $q$ that is acceptable to the higher priority strategies such that

(6.8) $q|\vdash*\Theta(A, z)\neq\Omega(B\oplus G_{i}, z)$ .

Once such an inequality is established the requirement is satisfied.

The second possibility is to arrange that $\Theta(A)$ is polynomially computable from $C\oplus$

$U\oplus G_{i}$ . Our strategy is a more elaborate version of the exact pair strategy $I(n)$ of section

\S 3. We will describe a PTIME procedure so that given $s+1,$ $p(s)$ and a string $z$ with
$|z|$ less than in$(s+1)$ , the procedure produces a PTIME description of a $pre$dicate $A’(z)$

relative to $C\oplus U\oplus G;$ . During each stage, for each such $z$ , we impose an environment
to force

$\Theta(A, z)=\Theta(A^{/}(z,s+1,p(s)), z)$ .
$C\oplus U\oplus G$ ; computes $\Theta(A, z)$ by first computing the relevant $s+1$ and $p(s)$ and then

computing $\Theta(A’(z, s+1,p(s)), z)$ .
Let $E$ be the environment obtained by extending $E_{0}(s+1)$ with the constraint that $U$

dominate $f$ . Our strategy has three states, described as follows.

(1) Transition: If there are $z,$ $q,$ $x$ and $e$ such that $|z|<in(s+1),$ $q<Ep(s)$ with

$\ell_{q}(U)<in(s+1),$ $x\in q(U)$ with $|x|\geq gap(s)$ , either $e$ is less than $s+1$ and not

the index of a strategy $I$ ( $\Phi,$
$arrow G$ , global) of higher priority or $e$ is such an index and

$\Phi(G)arrow$ is amorphous at $\log(\log(|x|))/2$ and

$\Theta(p(s)*(A*O), z)\neq\Theta(p(s)*[(A(\langle e,x\rangle)=1)*0], z)$

then,

(i) if $e$ is the index of a higher priority strategy, go to (2);
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(ii) if $e$ is not the index of a higher priority strategy, go to (3).

Environment: Recall our notation, $u_{\Theta}$ is a polynomial dominating the running

time of $\Theta$ . We impose the following constraints on the extensions $q$ of $p(s)$ . First,

for all $t$ less than $s$ , if there are $e$ and $x$ such that $p(t+1)(A)-p(t)(A)$ is $\{\langle e, x\rangle\}$

and there is no flag in $p(t+1)(C)$ with first coordinate equal to $\langle e, x\rangle$ , then impose

these conditions: $q(A)$ is equal to $p(t+1)(A)*O$ and $q(C)$ is equal to $p(t)(C)*O$

on all strings of length less than or equal to $u_{\Theta}(in(t+1))$ .
Second, one of the following conditions holds.

(1.i) There isazinq$(U)andanelessthanorequaltos+lsuchthat\{e, z, 1\}isan$

element of $q(C)-p(s)(C)$ . Then, there can be no element of $q(A)-p(s)(A)$

other than $\langle e, z\rangle$ . For all $i$ less than or equal to $s+1$ , whether \langle $e,$ $z$ } belongs

to $q(\mathcal{A})$ is recorded in $q(G_{i})$ by

$\langle e, z\rangle\in q(A)\Leftrightarrow z\in q(G_{i})$ .

Lastly, $q$ must decide $A$ for all strings with length less than or equal to

$u_{\Theta}(in(s+1))$ and decide $U$ and $G_{i}$ on all strings of length less than or equal

to $|z|$ . Given a string $z$ of length less than or equal to in$(s+1),$ $C\oplus U\oplus G_{i}$

computes $\Theta(A’(z, s+1,p(s)), z)$ to simulate $\Theta(A, z)$ . Given a query to $A$

about $\langle e, z\rangle,$ $C\oplus U\oplus G_{i}$ can test to see if case (1. i) was invoked at $\langle e, z\rangle$ by

examination of C. If so, then $C\oplus U\oplus G_{i}$ can directly compute whether { $e,$ $z\rangle$

belongs to $A$ and return this answer.
(l.ii) There is a $z$ in $q(U)$ , an $e$ less than or equal to $s+1$ and $j$ either $0$ or 1 such

that \langle $e,$ $z,$ $2,j$ } $\in q(C)-p(s)(C)$ . There can be no element of $q(A)-p(s)(A)$

other than $\langle e, z\rangle$ . Further,

$\langle e, z\rangle\in q(A)\Leftrightarrow j=1$ .

Lastly, $q$ must decide $A$ on $e$very string of length less than or equal to

$u\ominus(in(s+1))$ and decide $U$ and $G_{i}$ on every string of length less than or
equal to $|z|$ . Case (1. ii) is similar to (1. i) except that the value of $A$ at $\langle e, z\rangle$

is directly coded into $C$ .
(l.iii) Either $q(A)$ is compatible with $p(s)(A)*O$ or for all $z$ with $|z|$ less than or
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equal to in$(s+1)$ ,

$\Theta(q(A)*0, z)=\Theta(p(s)(A)*0, z)$ .

$E_{0}$ imposes the constraint that if (1. i) and (1. ii) do not hold then $q(C)$ is

compatible with $p(s)(C)*O,$ $i.e$ . no flags are set in C. For all $z$ with $|z|\leq$

$in(s+1)$ , the value of $\Theta(A, z)$ can be found by computing $\Theta(p(s)(A)*O, z)$ .
$p(s)(A)*O$ is the value for $A^{/}(z, s+1,p(s))$ in the absence of C-flags.

(2) Environment: If this is not the first stage when this stage was reached, then no

constraints are imposed.

Otherwise, let $z_{0,q0},$ $x_{0}$ and $e_{0}$ be fixed to be the least quadruple satisfying the

transition condition. Suppose that $e_{0}$ is the index for $I$ ( $\Phi_{0},$
$arrow G_{0}$ , global). Construct

an extension $r$ of $q_{0}$ as follows.

Let $\ell$ equal $\log(\log(|x_{0}|))/2$ . Let $q_{1}$ extend $q0$ and amorphously decide $Y\beta$

$\{0,1\}^{\leq t}$ . Let $Y_{0}$ be the subset of $\{0,1\}^{\leq\ell}$ such that $q1$ forces $Y\#\{0,1\}\leq l=Y_{0}$ .
Let $\overline{Y_{0}}$ be $\{0,1\}^{\leq\ell}-Y_{0}$ . We can assume that $q_{1}$ and $p(s)$ agree on $A,$ $B$ and $C$ ,

since the definition of being amorphous does not depend on these arguments.

(i) Let $r(G_{i})$ equal $q_{1}(G_{i})$ .
(ii) $Extendq_{1}(B)tor(B)bysettingr(B^{(e)})(\langle x_{0},1, Y_{0},\overline{Y_{0}}\})equaltolandmaking$

$r(B^{(e)})$ equal $0$ , for every. other string of length small enough to be queried in

the computation of $\Omega(B\oplus G_{i}, z_{0})$ . This forces a value $m$ for $\Omega(B\oplus G_{i}, z_{0})$ .
(iii) Let $A_{0}$ be whichever of $p(s)(A)*0\uparrow\{0,1\}^{\leq u\ominus(in(s+1))}$ or $p(A)*(A(\langle e_{0}, x_{0}\})=$

$1)*0\uparrow\{0,1\}\leq u_{\Theta}(in(s+1))$ that forces $\Theta(A, z_{0})\neq m$ . Since the two conditions

force incompatible values for $\Theta(A, z_{0})$ , they cannot both force the value to be
$m$ . Let $r(A)$ equal $A_{0}$ .

We have ensured that $r$ forces $\Theta(A, z_{0})\neq\Omega(B\oplus G_{i}, z_{0})$ .
(iv) Since $\Phi(G)arrow$ is amorphous at $\ell$ over $q0$ , we can find a condition $arrow G_{0}$ on the set

of $G_{i}$ named in $p(s)$ , compatible with $q0*q_{1}(U)$ , such $thatarrow G_{0}(G_{i})=r(G_{i})=$

$q1(G_{i})andarrow G_{0}$ forces that $\Phi(G)arrow$ is incompatible with $Y_{0}$ . For $j$ not equal to
$i$ , let $r(G_{j})$ be defined by

$r(G_{j})=\{\begin{array}{l}q(G_{j})*0a_{o(G_{j})}\end{array}$ $otherwise^{0}ifr(A)(x.)=1$

;
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Thus, we force $A(x_{0})$ is equal to 1 if and only if $Y$ is compatible with $Y_{0}$ .
By putting $\langle x_{0},1, Y_{0},\overline{Y_{0}}\rangle$ into $B^{(e)}$ , we force that $Y$ is compatible with $Y_{0}$ if
and only if $\triangle(B\oplus Y, x_{0})$ is equal to 1. Thus, we satisfy the constmints of
the type I global strategy of index $e_{0}$ . At other indices, $A$ and $\Delta(B\oplus Y)$ were

given their default value $\theta$ . This satisfies the constraints imposed by the $I(\Phi$ ,
$arrow G$ , global) strategies.

Impose the constraint that the constraint on the allowed conditions $q$ , that all $q$

must extend $r$ .
(3) Environment: If this is not the first stage when this stage was reached then no

constraints are imposed.

Otherwise, let $z_{0},$ $q0,$ $x_{0}$ and $e_{0}$ be the least quadruple satisfying the transition

condition. Construct an extension $r$ of $q0$ as in (2), without the steps concerned

with respecting a type I global strategy of index $e_{0}$ .
(i) For all $G_{i}$ named in $q0$ , let $r(G_{i})$ equal $q0(G_{i})*0$ on all strings of length less

than or equal to $u_{\Theta}(in(s+1))$ .
(ii) Let $r(B)$ equal $q0(B)*0$ . This forces a value $m$ for $\Omega(B\oplus G_{i}, z_{0})$ .
(iii) Let $A_{0}$ be whichever of $p(s)(A)*0\uparrow\{0,1\}^{\leq u_{\Theta}(in(s+1))}$ and $p(A)*(A(\langle e_{0}, x_{0}\rangle)=$

$1)*0\uparrow\{0,1\}\leq u_{\Theta}(in(s+1))$ gives the inequality $\Theta(A, z_{0})\neq m$ . Let $r(A)$ equal
$A_{0}$ .

(iv) Let $r(C)$ extend $qo(C)$ by being equal to 1 at $\{e, x_{0},2, A_{0}(\langle e, x\})\rangle$ and being $0$

for every other string corresponding to a flag for $\langle e^{/}, x’\rangle$ where $e’$ and $x^{/}$ have

length less than $u_{\Theta}(in(s+1))$ .
Impose the constraint that the constraint on the allowed conditions $q$ , that all $q$

must extend $r$ . Again, we force $\Theta(A, z_{0})\neq\Omega(B\oplus G_{i}, z_{0})$ .

6.9. LEMMA. If $C$ is a coherent construction that eventually respects $II(\Theta, \Omega, i)$ then

requirement $\Pi(\Theta_{J}\Omega, i)$ is satisfied by the sets produced.

PROOF: If $\Theta(A)$ is not equal to $\Omega(B\oplus G_{i})$ , then the requirement is satisfied. Assume

that these two are equal. We will show that their common value is in PTIME$(C\oplus U\oplus G_{i})$ .
Let $s_{0}$ be the stage after which $C$ is coherent for and respects $II(\Theta, \Omega, i)$ . Work above

$s_{0}$ . Since $\Theta(A)$ is equal to $\Omega(B\oplus G_{j})$ , the strategy stays in state (1) during every stage

after $s_{0}$ .

Consider the function defined relative to $C\oplus U\oplus G_{i}$ from a table of values for $\Theta(A)$
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on arguments of length less than or equal to in $(s_{0})$ as follows.

If $|x|\leq in(s_{0})$ ;

Then look up $\Theta(A, x)=answer$ in table;

Else:

Compute the least $s$ such that in $(s+1)\geq|x|$ ;

Compute $p(s)$ ;

Simulate the computation of $\Theta(A, x)$ to obtain answer responding to

a query $x$ as follows:

Cases:

If $x$ is in the domain of $p(s)(A)$ , then answer $p(s)(A)(x)$ ;

If $x\neq\{e,$ $z\rangle$ with $e$ coding an integer less than or equal to

$s+1$ and $z$ in $U$ , answer $0$ ;

Else, for query $\langle e, z\rangle$ :

Cases:

If \langle $e,$ $z,$
$1$ } $\in C$ , answer $G_{i}(z)$ ;

If $\langle e, z, 2, i\rangle\in C$, answer $i$ ;

Else, answer $0$ ;

End cases;

End cases;

Output answer;

End.

By the coherence of $C$ , the first two steps are uniformly PTIME. The simulation of

$\Theta(A, x)$ is PTIME$(C\oplus U\oplus G_{i})$ since there is a bound on the number of steps required

to respond to a query. The only queries are to $C,$ $\theta$ and $G_{i}$ .
Let $s+1$ be least such that in $(s+1)$ is greater than $|x|$ . Suppose that the simulation

does not reproduce the computation of $\Theta(A, x)$ . This must occur because of a query

that does not receive the correct response. If the query is in the domain of $p(s)(A)$ , not

of the correct form $\langle e, z\rangle$ , or is flagged in $C$ then the response will be correct (proof by

induction on $t$ , using $p(t)\in E_{0}(t)$ and the $e$nvironment produced in state (1)). The only

remaining case is when $\langle e, z\rangle$ is not flagged in $C$ yet ( $e,$ $z\rangle$ $\in A$ . Now, let $s_{1}$ be the least

stage such that $p(s_{1})(A)$ is not compatible with $p(s)(A)*O$ . If eitber of cases (1.i) or
(l.ii) held during stage $s_{1},$ { $e,$ $\approx\rangle$ $s$ being in $A$ requires a fiag’s being in $C$ .
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Thus, case (l.iii) must have been in effect during $e$very stag$e$ between $s+1$ and $s_{1}$ . By

the constraints enforced in (l.iii), every $p(t)(C)$ is compatible with $p(s)(C)*O$; so the only

points appearing in $\theta(A, x)$ that are flagged by $C$ are those that are flagged by $p(s)(C)$

giving correct values about $A(s)$ . Thus, the simulation responds to every query either by

reference to $p(s)(A)$ or with answer $0$ . Since case (l.iii) held between stage $s+1$ and $s_{1}$ ,

$p(s_{1}-1)(A)$ and $p(s_{1}-1)(C)$ are compatible with $p(s)(A)*O$ and $p(s)(C)*O$ . Since,
$p(s_{1})(A)$ is not compatible with $p(s)(A)*O$, it is also not compatible with $p(s_{1}-1)(A)*O$ .
By the conditions of l.iii, $p(s_{1})$ was required to satisfy

$\Theta(p(s_{1})(A)*O,x)=\Theta(p(s_{1}-1)(A)*O, x)$

$=\Theta(p(s)(A)*0, x)$ .

By the constraint imposed in (1) during later stages $t,$ $p(t)(A)$ is compatible with
$p(s_{1})(A)*0$ on all elements of $\{0,1\}^{\leq u_{\Theta}(in(s_{1}))}$ . This includes $A\uparrow\theta(A, x)$ . So, the

true value is equal to the one obtained by the simulation. $\phi$

The environment created by a strategy of type II is very restrictive. It limits our ability

to put $\langle e, x\rangle$ into $A^{(e)}$ to one of two cases: either, we flag $\langle e, x\rangle$ in $C$ and record whether
$x$ is in $A^{(e)}$ in $C\oplus U\oplus G$ ; or, for all $z$ such that $|z|$ is too small to compute $A(\langle e, x\rangle)$

directly, $\Theta(A, z)$ does not depend on whether $x$ is in $A^{(e)}$

$III(\Theta, j)$-strategies. We must satisfy

$\Theta(\oplus_{i\neq j}G_{i}\oplus U)\neq G_{j}$ .

The strategy to satisfy this requirement is routine. Assume, as earlier, that this strategy

is working in an environment $E$ extending $E_{0}(s+1)$ that is determined by $f$ on $\mathcal{G}$ and
$U$ . Its only effect on the environment is to chose an extension $q$ of $p(s)$ compatible with
$E$ such that $q$ strongly forces $\Theta(\oplus_{i\neq j}G_{i}\oplus U)\neq G_{j}$ based on the assumption that any
$G_{k}$ not named in $q$ is empty. $III(\Theta, j)$ requires that $p(s+1)$ be an extension of $q$ .

In $E$ , put such a $q$ together as follows. First, extend $U$ to add two new consecutive

elements $x$ and $x_{1}$ where $x_{1}$ is too large to be queried in the evaluation of $\Theta(\oplus_{i\neq j}G;\oplus U, x)$

and $|x|$ is larger than gap$(s)$ ; then, decide all the $G_{i}$ except for $G_{j}$ on $\{0,1\}^{\leq|x|}$ thereby

forcing a value for $\Theta$ ; finally, choose $G_{j}(x)$ different from the value forced.
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6.10. LEMMA. If $C$ is a coherent construction that eventually respects $III(\Theta, j)$ , then

requirement $III(\Theta, j)$ is satisfied by $C$ .

PROOF: First, we are assuming that the construction goes through every stage. In par-

ticular, when the strategy acts, the diagonalizing condition $q$ exists or the construction

would terminate. In our construction, this is ensured by the compatibility of our strate-

gies; see Section \S 7.

The only point to worry about is that some of the $G_{i}$ referred to in $\theta(\oplus_{i\neq J^{G_{i}}}\oplus U)$ may

not be explicitly named in the environment. But by the condition imposed in $E_{0}(s+1)$

clause (6), if $G_{i}$ is not named in $p(s)$ then any string in $G_{i}$ must have length greater than

or equal to $\ell_{p(s)}(U)$ . Thus, the computation applies to $\oplus_{i\neq i^{G_{i}}}\oplus U$ . $\theta$

$IV(i, j, coding)- strategies$ . For each $j$ and $i$ with $j\leq p_{N}i$ , we build a $\Lambda$ so that

(6.11) $\Lambda(L\oplus G_{i})=G_{j}$ .

The strategy is similar to the global type II strategies. Namely, we will define the reduc-

tion $\Lambda$ and restrict the environment to those conditions that do not strongly force the

negation of Equation 6.11. Let $e$ be the index of this requirement.

Environment: The only allowed conditions at stage $s+1$ are those $q$ such that,

for all $x$ not in the domain of $p(s)(G_{j})$ and $x$ in the domain of $q(G_{j})$

(6.12) $q|\vdash*G_{j}(x)=\{\begin{array}{l}L(\{e,x\rangle),ifL(\langle e,x,1\})=0G_{i}(x),otherwise\end{array}$

We further require that $x$ is in the domain of $q(G_{j})$ if and only if $\langle e, x\rangle$ and $\langle e, x, 1\rangle$

are in the domain of $q(L)$ and $x$ is in the domain of $q(G_{i})$ .
We define $\Lambda(L\oplus G_{i}, x)$ to equal the right hand quantity in Formula 6.12. The fact that

this strategy is sufficient to satisfy its associated requirement is $e$asily verified.

$IV(\Theta, i, j)$ -strategies. This is another case where the strategies use direct diagonal-

ization. Here, we work in an environment extending $E_{0}(s+1)$ , with finitely many type

IV coding constraints that is determined by $f$ on $\mathcal{G}$ and $U$ . For $J\not\leq p_{N}i$ , the requirement

is

(6.13) $\Theta(G_{i}\oplus L\oplus U)\neq G_{j}$ .
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As in $III(\Theta, j)$ , we impose the one time only constraint that $p(s+1)$ be chosen to

extend a condition $q$ that strongly forces an instance of Equation 6.13.
We build $q$ as follows. First, chose $x$ and $x_{1}$ as in $I\Pi(\Theta, j)$ ; decide all the elements $G_{k}$

of $\mathcal{G}$ named in $p(s)$ such that $k\leq P_{N}i$ all strings of length less than or equal to $u_{\Theta}(|x|)$ ; for

each $k\leq p_{N}i$ subject to a coding constraint of type IV with index $e^{/}$ and each $x’$ added

to the domain of $G_{k}$ , extend $L$ so that $L(\langle e^{l}, x’, 1\})$ is equal $0$ and $L(\langle e’, x’\rangle$ is equal

to $G_{k}(x’)$ ; next, for all other indices $e’$ for type IV coding strategies, set $L((e^{/}, x^{/}, 1\rangle)$

equal to 1 for all strings $x^{/}$ of length less than or equal to $u_{\Theta}(|x|)$ . These steps decide
$\Theta(G_{i}\oplus L\oplus U, x)$ .

Decide $G_{j}(x)$ to be different from the value forced for $\Theta(x)$ and to be defined on all

strings of length less than or equal to $|x|$ . For all $G_{k}$ named in $p(s)$ but not decided
above, extend $p(s)(G_{k})$ to be equal to $G_{j}$ on all points added to the domain. Thus, we
ensure that $p(s+1)$ satisfies Equation 6.13 while respecting the higher priority coding
strategies.

The proof that these strategies are sufficient to ensure that their associated requirements

are satisfied is straight forward.

V-strategies. Suppose that $m$ is an integer in the sense of $P_{N}$ . Let $m’$ be the integer
that codes $m’ s$ successor in $P_{N}$ . We will describe the type V strategies with the assump-
tion that $m$ is even. The definitions for the case when $m$ is an odd integer are exactly

analogous, replacing $0$ by 1 below.

$V(m, coding)- strategies$ . We must build $\Gamma$ and $\Delta$ so that

$\Gamma(P_{0}\oplus G_{m})=\Delta(Q_{0})=G_{m’}$ .

Environment: The functional $\Gamma$ is defined relative to $P_{0}\oplus G_{m}$ exactly like $\Lambda$ was
defined relative to $L\oplus G_{i}$ in $IV$ ( $i,$ $j$ , coding). Namely, we extend the environment
to only allow conditions $q$ such that

(6.14) $q|\vdash*G_{m},(x)=\{\begin{array}{l}P_{0}(\langle e,x\rangle),ifP_{0}(\langle e,x,1\rangle)=0\prime G_{m}(x),otherwise\end{array}$

We further require that $x$ is in the domain of $q(G_{m’})$ if and only if $\langle e, x\rangle$ and $\langle e, x, 1\rangle$

are in the domain of $q(P_{0})$ and $x$ is in the domain of $q(G_{m})$ .
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$\Delta$ is defined by eventually requiring that $Q_{0}^{(m’)}$ be equal to $G_{m’}$ at all remaining
strings. That is, restrict the environment to the conditions that do not strongly

force an inequality between these two.

Again, we omit the proof that these strategies ensure the satisfaction of their require-

ments.

$V(m, \Phi, \Psi)$-strategies. This strategy must arrange

$\Phi(G_{m}\oplus P_{0}\oplus U)=\Psi(Q_{0}\oplus U)=Z\Rightarrow\Delta(G_{m’}\oplus U)=Z$.

This strategy is another elaboration on the type I strategies of section \S 3. Either, we
strongly force an inequality between $\Phi(G_{m}\oplus P_{0}\oplus U)$ and $\Psi(Q_{0}\oplus U)$ , or for each $s$ , their

common value at any $x$ with $|x|\leq in(s+1)$ depends only on $p(s)$ and $G_{m’}\oplus U$ . Let $f$ be

a recursive function and let $E^{*}$ be the extension of $E_{0}(s+1)$ requiring that $U$ dominate
$f$ and imposing the constraint associated with $V$ ( $m$ , coding) with index $e$ .
(1) Transition: If there is an $x$ with $|x|<in(s+1)$ and a condition $q$ in $E^{*}$ extending

$p(s)$ such that, $q(P_{0})$ is compatible with $p(s)(P_{0})*1$ for every string of the form
$\langle e^{/}, x, 1\rangle$ where $e^{l}$ is not equal to $e$ ; and

(6.15) $q|\vdash*\Phi(G_{m}\oplus P_{0}\oplus U, x)\neq\Psi(Q_{0}\oplus U,x)$

then, go to (2).

Environment: No constraints.
(2) Environment: If this is the first stage when this state is reached, require that

$p(s+1)$ extend the least $q$ as in Formula 6.15. Otherwise, no constraints.

6.16. LEMMA. Suppose that $C$ is a coherent construction that eventually respects $V(m$ ,
$\Phi,$ $\Psi$). Then, requirement $V(m, \Phi, \Psi)$ is satisfied by the sets produced.

PROOF: Suppose that $\Phi(G_{m}\oplus P_{0}\oplus U)$ is equal to $\Psi(Q_{0}\oplus U)$ . Consider the following

Turing reduction. Let $p(s)(Q_{0})*G_{m^{t}}*0$ denote the predicate extending $p(s)(Q_{0})$ obtained

by letting the $m’th$ column be equal to $G_{m’}$ and the rest of the predicate be empty. Let
$s_{0}$ be the stage such that $V(m, \Phi, \Psi)$ is respected by the construction after stage $s_{0}$ .
Given input $x$ , and a table of values for $\Psi(Q_{0}\oplus U)$ at arguments of length less than

in$(s_{0}+1)$ compute $\Delta(G_{m’}\oplus U, x)$ as follows.

If $|x|\leq in(s_{0})$ ,
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Then let answer equal the value of $\Psi(Q_{0}\oplus U, x)$ indicated in the table;

Else compute as follows:

Compute the least $s$ such that in $(s+1)\geq|x|$ ;

Compute $p(s)$ ;

Compute $\Psi(p(s)(Q_{0})*G_{m}^{/}*0\oplus U, x)=answer$

End else;

End if;

Output answer;

End.

Since $\Psi$ is in PTIME and $C$ is coherent, $\triangle$ is also PTIME. If there is an $x$ such that

$\Delta(G_{m’}\oplus U, x)\neq\Psi(Q_{0}\oplus U, x)$ then there is a stage after $s_{0}$ such that there are two

conditions on $Q_{0}$ forcing incompatible values for $\Psi(Q_{0}\oplus U, x)$ . These are $q0$ , the one

found during the execution of $\Delta$ and $q_{1}$ , the one that applies to $Q_{0}$ . These two conditions

are only different on the coordinates of $Q_{0}$ other than the $m’th$ coordinate. They decide

values for sets $G_{k}$ , only when $k$ represents an odd integer in $P_{N}$ .
We consider the predicate $p(s)(P_{0})*1$ . This predicate gives the responsibility of satis-

fying Formula 6.14 to the $G_{k}$ where $k$ is an even integer in $P_{N}$ . Let $G_{m}^{*}$ be the predicate

extending $p(s)(G_{m})$ that is equal to $G_{m’}$ at every string $y$ such that $P(\langle m, y, 1\rangle)=1$ .
Let $r$ be the minimal extension of $p(s)$ consistent with setting $r(P_{0})$ equal to $p(s)(P_{0})*1$

and $r(G_{m})$ equal to $G_{m}^{*}$ that strongly forces a value for $\Phi(G_{m}\oplus P_{0}\oplus U)$ . Let $k$ be equal

to the value forced by $r$ . One of the two conditions $q_{i}$ forces $\Psi(Q_{0}\oplus U, x)$ to be unequal

to $k$ . Thus, the transition condition is met and an inequality must have been established

between $\Phi(G_{m}\oplus P_{0}\oplus U)$ and $\Psi(Q_{0})$ . $\theta$

\S 7. COMPATIBILITY OF THE STRATEGIES
PROOF OF THEOREM 4.9

Compatibility between strategies. In the previous section, we analyzed the strate-

gies in isolation. The next step is to show that the strategies can be combined in a priority

construction. We begin by showing that $e$ach family of strategies is dense in any envi-

ronment imposed by a sequence of outcomes of strategies of higher priority,

The simplest type of environment requires only that the construction extend a condition

chosen to strongly force some existential statement. For example, such an environment is
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created by the one time only diagonalization strategies: $I\Pi(\Theta, i, j)$ , making $\Theta(\oplus;\neq i^{G_{i}}\oplus$

$U)\neq G_{j}$ , and $IV(\Theta, i, j)$ , making $\Theta(G_{i}\oplus L\oplus U)\neq G_{j}$ . Similarly, a strategy that

is waiting for an appropriate situation, produces a single condition environment, if its

transition condition is ever satisfied. This is the case for $I(\Phi, arrow G, \Psi)$ , if it reaches either

state (3) or (4); $II(\Theta, \Omega, i)$ , if it reaches state (2) or (3); and for $V(m, \Phi, \Psi)$ , if it reaches

state (2). We will refer to these collectively as the finite outcomes.

Each strategy $S$ is designed to work under the hypothesis that every strategy of higher

priority that has a finite outcome reaches its limit state during a stage before $S$ is initially

activated. The remaining strategies of higher priority than $S$ shape the environment

within which $S$ is constrained to work. They have a common feature: by one means or
another, they ensure that one set computes another one. Of course, no single condition

can force such an equality, so a global change in the environment is necessary. The global

outcomes are divided into two cases.
The first type of global outcome is called a definite global outcome. Here, some coding

constraint is imposed with absolute control. The definite global outcomes are given by

the coding strategies in their unique state: $I$ ( $\Phi,$
$arrow G$ , global), $IV$ ( $i,$ $j$ , coding), and $V(m$ ,

coding). These strategies build PTIME functionals and ensure that certain equalities

hold for every string, by controlling both sides of the equations.

The second type of global outcome is called a conditional global outcome. In this type

of outcome, the strategy ensures that some equation will hold for all strings, provided

that the strategy’s transition condition is never realized. These outcomes are $I(\Phi,$
$arrow G$ ,

$\Psi)$ , staying in state (2); $II(\Theta, \Omega, i)$ , staying in state (1); and $V(m, \Phi, \Psi)$ , staying in state

(1).

The next lemma gives a summary of the environment produced when no strategy

changes state.

7.1. LEMMA. Suppose that $C\beta s$ is given. Let 7 and $\vec{\sigma}$ be length $n$ sequences of stmtegies

beginning with $E_{0}$ and continuing with types I to $V$, and associated states corresponding

to global outcomes, respectively, appropriate to extend $C\beta s$ . $Letarrow m$ be the input sequence

determined from these parameters and an input OUT$(s)$ . Assume none of the elements of
$arrow S$ change state with this input and let $E$ be the defined environment. Whether $q$ belongs

to $E$ is uniformly chamcterized in terms of $C\uparrow s,$
$arrow S,\vec{\sigma}$, and OUT as follows.

(1) $E$ is a subset of $E_{0}(s+1)$ .
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(2) $E$ is contained in the intersection of the environments imposed by strategies with

definite global outcomes in $\vec{\sigma}$ .
(3) For each $I(\Phi, arrow G,\Psi)inarrow S$ in state (1) with index $e$ , if $t\leq s$ and $q(C)$ is incompatible

with $p(t)(C)*O$ then there is at most one element of $q(C)-p(t)(C)$ with second

coordinate of length less than or equal to $u_{\Psi}(in_{e}(t))$ .
(4) For each $\Pi(\Theta, \Omega, i)$ in Er in state (1) with index $e,$ $q(A)$ and $q(C)$ respect clauses

$($1. $i)-(l.iii)$ of that state with regard to the compatibility between the values of $q(A)$

and the existence offlags in $q(C)$ .
(5) Further, if $t\leq s$ , if there are $e$ and $x$ such that $p(t+1)(A)-p(t)(A)$ is $\{\langle e, x\}\}$ and

there is no flag in $p(t+1)(C)$ with first coordinate equal to $\{e, x\}$ , then: $q(A)$

and $q(C)$ are compatible with $p(t+1)(A)*0$ and $p(t)(C)*0$ , respectively, $on$

$\{0,1\}^{\leq u_{\Theta}(in_{e}(t+1))}$ .
(6) There is a recursive function $f$ , depending only on $\vec{\sigma}$ , such that $E$ imposes the

constraint that $U$ dominate $f$ .

PROOF: The proof is by examination of all of the cases. The initial environment is

covered by (1). The definite global outcomes are covered in (2). It remains to show that

(3), (4), (5) and (6) summarize the possible effect of finitely many conditional global

outcomes.

(4) and (5) cover the effects of conditional global outcomes from type II strategies.

The remaining outcomes come from type I and V strategies. The additional effect of a
type I conditional outcome is to impose the condition given in (3) and to require that
$U$ dominate some additional recursive function, uniformly obtained from an index for

the strategy. The latter effect is included in (6). The environment creat$ed$ by a type V
strategy in its conditional global outcome (state (1)) is the same as its input environment.
By induction, the intersection of the imposed environments is characterized as above. $\phi$

7.2. COROLLARY. Use the same notation as in Lemma 7.1. First, $E$ is determined by

$f$ on $\mathcal{G}$ and U. Further, for all $m$ greater than gap$(s)$ , any $u_{\Psi}(in_{e}(t))$ referred to in (2)

and any $u_{\Theta}(in_{e}(t))$ referred to in (3), $p(s)*(U(0^{m})=1)$ does not decide any values of
$A(\langle e, 0^{m}\rangle),$ $B(\langle e, \langle 0^{m}, i,pos, neg\rangle\rangle),$ $C(\langle e, 0^{m}, 1\rangle)$ or $C(\langle e, 0^{m}, 2, i\rangle)$ , not already decided

by $p(s)*(U(0^{m})=1)$ in the environment determined by $E_{0}(s+1)$ , the definite global

strategies and the clauses (1.i) to (1. iii) in the type $\Pi(\Theta, \Omega, i)$ strategies $inarrow S$ .
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PROOF: By Lemma 7.1, the only constraints on the $U$ coordinate of a condition in $E$

come from clause (1), saying that $q(U)\subset\{O\}^{*}$ and clause (4), saying that $U$ dominate
$f$ . For the second claim, the only constraints in $E$ on $A,$ $B$ or $C$ , other than the ones

mentioned above, are summarized in clauses (3) and (5) of Lemma 7.1. These are limited

to strings of length less than $m$ . $\phi$

7.3. LEMMA. Retain the notation as in Lemma 7.1. Assume gap$(s)$ is the supremum of
$u_{\Psi}(in_{e}(t))$ and $u_{\Theta}(in_{e}(t))$ for $t\leq s$ where $\Psi$ and $\Theta$ come from type I and $\Pi$ elements
$ofarrow S$ , respectively. There is a recursive method, which when applied to the inputs which

produces a $\omega nditionr$ in out many steps. Further, $ifarrow S$ is executed using the input

sequence defined from $C\uparrow s,$
$arrow S,\vec{\sigma}$ and OUT $=OUT(s)+out$ , then one of

(1) an element $S_{i}$ of 7 changes state;

(2) $r$ is an element of the defined environment and for all $X$ named in $r,$ $\{0,1\}^{\leq l}$ is

contained in the domain of $r(X)$ .

PROOF: We specify the values of $r(X)$ over $p(s)(X)$ ; we leave it to the reader to complete

the definition of $r$ by setting values for $\ell_{r}$ .
By Lemma 7.1 and Corollary 7.2, there is a recursive $f$ , depending only on $\not\supset$ and $\tilde{\sigma}$ ,

such that $E$ is determined by $f$ on $\mathcal{G}$ and $U$ . First, extend $p(s)(U)$ by, first, adding an
element $0^{m}$ with $m$ greater than $f(\ell_{p(s)}(U)),$ $gap(s)$ and $l$ ; second, setting $r(U)(x)$ equal

to $0$ at every string not in the domain of $p(s)(U)$ and of length less than or equal to $m$ .
We will only define other predicates on strings of length less than $m$ . This action satisfies

$E_{0}(s+1)$ .
Let $r(G_{i})$ extend $p(s)(G_{i})$ by setting $r(G_{i})(z)$ equal $0$ , for all $G_{i}$ named in $p$ and all

strings $z$ of length less than or equal to $\ell$ not in the domain of $p(s)(G_{i})$ .
Let $r(Q_{0})$ and $r(Q_{1})$ be defined so as to maintain the two equalities:

$Q_{0}=\oplus$ { $G_{i}|i$ is an odd integer in $P_{N}.$ }
$Q_{1}=\oplus$ { $G_{i}|i$ is an even integer in $P_{N}.$ }.

If $m$ represents an odd integer in $P_{N},$ $|\langle m, x\rangle|$ is less than or equal to $\ell$ and $G_{m}$ is not

named in $p$ , set $r(Q_{0})((m, x\rangle)$ equal to $0$ . Similarly, if $m$ represents an even integer in
$P_{N},$ $|(m,$ $x\rangle$ $|$ is less than or equal to $\ell$ and $G_{m}$ is not named in $p$ , set $r(Q_{1})(\langle m, x\rangle)$ equal

to $0$ .

48



138

Define $r(L),$ $r(P_{0})$ and $r(P_{1})$ so that all values to be coded are correctly recorded in $L$ ,
$P_{0}$ and $P_{1}$ . That is, suppose that $e$ is an index for a coding strategy $IV$ ( $i,$ $j$ , coding) or
$V$ ( $m$ , coding) in $arrow S$ . Define the appropriate predicate ( $L,$ $P_{0}$ or $P_{1}$ ) to equal $0$ at each
$\langle e, x, 1\rangle$ where $r$ has added $x$ to the domain of the set $X$ to be coded ( $G_{j}$ or $G_{(2m)}$ ,

respectively) and to have value $X(x)$ at $\langle e, x\rangle$ . For strings $z$ , not of the form $\langle e, x\rangle$ and of

length less than or equal to some element of the domain of $r$ at a coding predicate $(L,$ $P_{0}$

or $P_{1}$ ), set the coding predicate equal to $0$ at $z$ . Thus, $r$ fulfills all of the definite global

constraints.
For a conditional global constraint coming from a strategy $II(\Theta, \Omega, i)$ in state (1), the

imposed constraint can be respected by clause (l.iii): $A,$ $B$ and $C$ are given their default

value $0$ for all strings of length less than $\ell$ where they were not already defined by $p(s)$ .
By construction, $r$ is an extension of $p(s)$ such that if $X$ is named in $r$ then $\ell_{r}(X)$ is

greater than or equal to $\ell$ . We ensured that $r$ lie in $E$ by explicitly respecting all of the

constraints imposed by 7 in states $\tilde{\sigma}$ given $inputarrow m$ . $\theta$

7.4. DEFINITION. Let 7 a recursive list beginning with $E_{0}$ followed by the families

of strategies of type I to V such that each family $I(\Phi, arrow G, \Psi)$ is preceded by $I(\Phi,$
$arrow G$ ,

global). Further, for all $n,$ $S_{n}$ names only sets from the set of basic parameters or from
$\{G_{i}|i\leq n\}$ .

To check a fine point, since the set of integers and the arithmetic operations coded

in $P_{N}$ are recursive, there is a recursive method to see which of the type IV strategies

should be used for the pair $i$ and $j$ , and whether the type V strategy with indices $m$ and
$m’$ should be used.

Having fixed the priority ordering, we will now define gap$(s)$ in terms of the stage $s+1$

inputs.

7.5. DEFINITION. Given the first $s$ stages of a construction using strategies from 7, let

gap$(s)$ be the supremum of $u_{\Psi}(in(t))$ and $u_{\Theta}(in(t))$ for $t\leq s$ , where $\Psi$ and $\Theta$ come from

type I and II strategies $in\vec S\beta s+1$ .

7.6. PROPOSITION. $\vec S$ is compatible.

PROOF: Let 7 and $\vec{\sigma}$ be length $n$ sequences of strategies and associated states $\vec{\sigma}$ with
$S_{i}\in S_{i}$ . By Lemma 7.1, unless some element of $\vec S$ changes state, the environment
imposed by $\vec S$ in states $\vec{\sigma}$ is characterized in terms of the indices of the strategies and
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$U’ s$ dominating a recursive function that is uniformly obtained from 7 and a and a

bounded constraint on $A$ and $C$ .

By examining the descriptions of the families of strategies of type I to V in section

\S 6, every strategy was recursively described from these terms, without mention of the

bounded constraint. Thus, there is a recursive and canonical method to $extendarrow S$ and

a by an element in $S_{n+1}$ in state (1). It remains to show that the resulting sequence is

compatible.

To show compatibility, we must give a uniformly recursive method to produce a condi-

tion $r$ , given the state of a construction $C\uparrow s$ that has respected $arrow S$ . Letting out be the

number of steps needed to compute $r$ , we must further show that either $r$ is an element of

the environment recursively defined from $C\uparrow s$ and OUT$(s)+out$ or one of the elements
$arrow S*S$ changes state from $\vec{\sigma}*(1)$ with this input.

Since $F$ was respected $by\backslash C\uparrow s$ during stage $s$ , we may assume that any finite outcome

due to an element $ofarrow S$ during stage $s+1$ is associated with a change in state. Lemma 7.3
gives exactly the method we need for the case when every state visited during stage $s+1$ is

associated with a global outcome. By induction, we need only show that no finite outcome

of $S$ requires that $p(s+1)$ extend a condition that is not in the environment subsequently

computed during stage $s+1$ , without some element $ofarrow S$ changing state. That is, no

finite outcome of $S$ is incompatible with the environment subsequently imposed $byarrow S$ in

state $\vec{\sigma}$ . We examine the cases in increasing order.

To fix some notation, let $E$ be the environment extending $E_{0}(s+1)$ calculated in Lemma

7.1 under the assumption that no element $ofarrow S$ changes state or has a finite outcome.

Let $f$ be the function associated with 7 and a such that $E$ is determined by $f$ on $\mathcal{G}$ and
$U$ .

The first case is when $S$ is strategy of type $I(\Phi, arrow G, \Psi)$ . As usual let $Y$ denote $\Phi(G)arrow$ .
There are two possible finite outcomes for a strategy of this type, it could reach either

state (3) or (4). Let $p$ be the condition used upon entering the finite outcome state.

Recall, $p$ is either $p(s)$ or an extension of $p(s)$ obtained by adding a new element to $U$

that is longer than gap$(s)$ respecting the domination of $f$ by $U$ . Let $Y$ denote $\Phi(G)arrow$ for

the discussion of this case.
In the nonsplitting state (3), $I(\Phi, arrow G, \Psi)$ uses a condition $q$ in $E$ and a string $x$ such

that $q$ decides $U$ and $Y$ on all strings that could be queried during the computation of
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$\Psi(C\oplus U\oplus Y, x)$ but has $\ell_{q}(G_{i})<|x|$ for all $G;\inarrow G$ . If this state was reached during

the initialization of $I(\Phi, arrow G, \Psi)$ , it is explicitly ensured that $|x|>gap(s)$ . If this state
is reached after initialization, we cannot have $x$ in $p(s)(U)$ . If $x$ were in $p(s)(U)$ , the

transition condition for $I(\Phi, arrow G, \Psi)$ would have been satisfied during the previous stage;

by the assumption that $C\beta s$ respects $S,$ $S$ would have changed state during stage $s$ .
Thus, $x$ must be a new element of $U$ . In the transition condition, we explicitly ensured

that $|x|$ would be greater than gap$(s)$ .
An extension of $q$ is found in three steps. The first step is to set the flag in $C$ to record

the value of $A(\langle e, x\rangle)$ in all $G_{j}(x)$ . Let $m$ be the value decided for $\Psi(C\oplus U\oplus Y, x)$ . We set
$A(\langle e, x\rangle)$ and all $G_{i}(x)$ equal to $1-m$ . Next, a computation to make $\Delta(B\oplus Y, x)=1-m$

is put into $B^{(e)}$ . Let $q0$ be the resulting extension of $q$ .
Since $|x|$ is greater than gap$(s)$ , clauses (3) and (4) in the description of $E$ are satisfied.

The remaining constraints imposed by $I$ ( $\Phi,$
$arrow G$ , global) are explicitly respected. Those

imposed by other type I strategies are respected using the default option of having no new
strings in the relevant columns of $A$ or $B$ ; those imposed any type $\Pi(\Theta, \Omega, i)$ strategy are
respected (by clause (l.ii) of that strategy). The remaining properties needed to have an
element of $E$ are covered by having to have an element of $U$ that is longer than $\ell(X)$ for

each named set $X$ and the extension of the coding for strategies of type IV and V. These

we can satisfy as in Lemma 7.3, by extending $q(U)$ and defining the coding parameters

to satisfy Formulas 6.12 and 6.14.

In the other case, $I(\Phi, arrow G, \Psi)$ reaches state (4) because $Y$ is amorphous over $p$ at some
$\ell$ less than or equal to $in_{n+1}(s+1)$ . Let $\ell$ and $q$ be the least integer and extension of
$p$ in $E$ such that $q$ decides $Y\uparrow\{0,1\}^{\leq\ell}$ but, for all $G_{i}$ in $arrow G,$ $p*q(G_{i})$ does not decide
$Y\uparrow\{0,1\}^{\leq t}$ . We may assume that $q(X)$ is equal to $p(X))$ for all $X$ not equal to $U$ and

not in $-\partial$ . In $I(\Phi, arrow G, \Psi)$ , we build an extension of $q$ as follows.

First, we extend $q(U)$ to include two new points $x_{1}$ and $x_{2}$ so that $2^{2^{2p_{q(U)}}}$ is less than
$|x_{1}|$ respecting $U’ s$ dominating the function associated with $E$ , respecting $U’ s$ dominating
$u_{\Phi}\circ u_{\Psi}$ and satisfying $|x_{2}|>|x_{1}|>gap(s)$ . By Lemma 7.1, this will be consistent with the

resulting environment $E$ . Then, we extend each $q(G_{i})$ to be $0$ on all strings of length less

that $u_{\Phi}\circ u_{\Psi}(|x_{1}|)$ . This is compatible with $E_{0}(s+1)$ , because we still have $\ell(G_{i})<|x_{2}|$ .
Next, we extend $q(C)$ to be compatible with $p(C)*O$ . To obtain the inequality, we

extend $A$ and $B$ to make $A(e)(x_{1})$ equal to $\Delta(B\oplus Y, x_{1})$ but unequal to the value forced
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for $\Psi(C\oplus U\oplus Y, x_{1})$ . We set $A$ and $B$ equal to $0$ on the remaining strings relevant to the

conditional global constraints associated with type II strategies in 7 and of length less

than or equal to $u_{\Phi}ou_{\Psi}(|x_{1}|)$ . As above, we can then extend this condition to increase

the domains of $r(X)$ for all $X$ to respect the definite global constraints. Let $r_{1}$ be the

resulting condition.

It remains to see that this action respects the conditional global constraints. By Corol-
lary 7.2 and the choice of $x_{1}$ to have length greater than gap$(s)$ , we are free to decide
$A(\langle e, x\rangle)$ and then to extend the conditions on $B$ and $C$ , compatibly, and remain in $E$ .
For strategies of type II that do not change state or of type V, their only further con-

straint is included in $U’ s$ dominating by $f$ . We covered this point explicitly in the choice

of $x_{1}$ and $x_{2}$ .
The possibility of conflict occurs in the analysis of a type II conditional outcome.

Suppose that $II(\Theta_{0}, \Omega_{0}, i_{0})$ is an element of 7 producing the state (1) environment.
Since we did not set any flag in $C$ , we have to check the conditions of (l.iii): for all $z$

with $|z|$ less than or equal to OUT$(s)+out,$ $\Theta_{0}(r(A)*0, z)=\Theta_{0}(p(s)(A)*0, z)$ . Suppose

that condition (l.iii) ddes not hold. Then, $r_{1}(A)$ must be incompatible with $p(s)(A)*O$ ;

this can only happen when $r_{1}(A)$ has value 1 at $\langle e, x_{1}\rangle$ and compatible with $p(s)(A)*O$

elsewhere. This exactly meets the condition for $II(\Theta_{0}, \Omega_{0}, i_{0})$ to change state: to state

(2), if $I$ ( $\Phi,$
$arrow G$ , global) is of higher priority, and to state (3), otherwise.

Now consider the case of a finite outcome from in a type II strategy, $II(\Theta, \Omega, i)$ . In the

case that $II(\Theta, \Omega, i)$ enters state (2), it is because of an amorphous condition $q$ relative to

a higher priority strategy $I(\Phi_{0}, G_{0}, \Psi_{0})arrow$ . Let $e_{0}$ be the index of $I$ ( $\Phi_{0},$
$G_{0}arrow$ , global). There is

a string $x$ in $q(U)$ such that $|x|>gap(s),$ $\Phi_{0}(G_{0})arrow$ is amorphous over $q$ at log(log(|x|))/2,

and the value of $\Theta(A, z)$ depends on the value of $A$ at $\langle e_{0}, x\rangle$ .
In $II(\Theta, \Omega, i)$ , we construct a condition $r$ as follows. Let $Y_{0}$ be the subset of $\{0,1\}^{\leq\ell}$

such that $q$ forces $\Phi_{0}(G_{0})arrow\uparrow\{0,1\}\leq\ell=Y_{0}$ . Let $\overline{Y_{0}}$ be $\{0,1\}^{\leq\ell}-Y_{0}$ . Extend $q(B)$ to $r(B)$

by setting $r(B^{(e)})(\langle x_{1},1, Y_{0},\overline{Y_{0}}\})$ equal to 1 and making $r(B^{(e)})$ equal $0$ , for every other

string of length small enough to be queried in the computation of $\Omega(B\oplus G_{i}, z)$ . Define
$r(G_{i})$ to be compatible with $q(G_{i})*0$ deciding all strings of length small $e$nough to be

queried in the computation of $\Omega(B\oplus G;, z)$ . Thus, we decide $\Omega(B\oplus G_{i}, z)$ ; let $m$ be the

value forced. We then let $r(A)$ be whichever of $p(s)(A)*O$ and $p(s)(A)*(A(\langle e_{0}, x\rangle)*0$

gives the inequality $\Theta_{0}(A, z)\neq m$ .
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Since $\Phi_{0}(G_{0})arrow$ is amorphous at $\ell$ over $q$ , we find a condition $G_{0}arrow$ on the set of $G_{i}$ named

in $p$ such that $G_{0}(G_{i})arrow=r(G_{i})$ and $G_{0}arrow$ forces that $\Phi_{0}(G_{0})arrow$ is incompatible with $Y_{0}$ . For
$j$ not equal to $i$ , we let $r(G_{j})$ be defined on $\{0,1\}^{\leq\ell_{r}(G_{j})}$ by

$r(G_{j})=\{\begin{array}{l}q(G_{j})*0G_{0}(G_{j})arrow\end{array}$
$otherwiseifr(A)(z\mathfrak{j}.=1$

;

Thus, we force $A(\langle e_{0}, x\rangle)$ is equal to 1 if and only if $Y$ is compatible with $Y_{0}$ . By putting
$\langle x_{1},1, Y_{0}, \overline{Y_{0}}\rangle$ into $B^{(e)}$ , we force that $Y$ is compatible with $Y_{0}$ if and only if $\Delta(B\oplus Y, x_{1})$

is equal to 1. At other arguments, $A$ and $\Delta(B\oplus Y)$ were given their default value $0$ .
This was the action taken by the type II strategy in state (2). First notice that the

only possible element of $r(A)-p(s)(A)$ is $\{e_{0}, x\}$ and $|x|$ is greater than gap$(s)$ . Thus, the

choice of $r$ is compatible with clauses (3) and (5) in the description of $E$ given in Lemma

7.1. For the type I strategies, we explicitly ensure that $I$ ( $\Phi_{0},$
$G_{0}arrow$ , global) is respected.

The other type I strategies are respected by setting $A$ and $B$ to have their default values

of $0$ . We can fill out $r$ on the other parameters to satisfy the global constraints not of

type II, as in Lemma 7.3.
If the condition $r$ is not an element of the environment imposed by a higher priority

type II strategy, we can repeat the argument given at the end of the analysis of the type

I strategies to show a change of state in a type II strategy of higher priority.

If the type II strategy reaches state (3), the analysis is similar but much simpler. In

particular, we do not have to worry about the type I strategy of index $e_{0}$ because it has

lower priority.

The remaining finite outcome strategies, types III to V, are all similar. They require a
diagonal st$ep$ that is consistent with an appropriate redirection of the coding strategies.

Further, they put no constraints on $A,$ $B$ or $C$ and thereby avoid conflict with the strict

controls put on by the type I and II strategies. We will give the analysis for a strategy

of type IV as a canonical example.

For a $IV(\Theta, i, j)$-strategy, a condition is constructed to strongly force

(7.7) $\Theta(G_{i}\oplus L\oplus U)\neq G_{j}$ .

We chose an $x$ with $|x|$ greater than $f(\ell_{p(s)}(U))$ and greater than gap$(s)$ , extend the

conditions on all of the $G_{k}$ with $k\leq P_{N}i$ , extend $L$ to code the values in the extension
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and to shunt the coding for all other $G_{i^{t}}$ to the values of other $G_{j’}$ , and set all other
$\mathcal{G}$ conditions to be extended equally and satisfy Equation 6.12. Since $|x|$ is chosen so

large and no values are specified for the remaining parameters, the only possible conflict

is with a coding strategy of type IV. This is ruled out by the transitivity of $P_{N}$ : there

cannot be a sequence of coding constraints leading from $G_{j}$ to $G_{i}$ of type IV.

These are all of the cases for the finite outcomes. In each case, we gave a uniformly

recursive method to find a condition so that either we would later discover a change of

state or the condition would belong to the subsequently imposed environments. This is

what is meant by the compatibility of $arrow S$ . $\theta$

Proof of Theorem 4.9: We can now complete the proof of Theorem 4.9. By Theorem

2.10, let $C$ be a coherent recursive construction defining gap$(s)$ as in Definition 7.5, that

eventually respects the initial strategy and all of the strategies of type I to V. Let $A,$ $B$ ,
$C,$ $D,$ $L,$ $P_{0},$ $Q_{0},$ $P_{1},$ $Q_{1}$ and $\mathcal{G}=\{G;|i\in N\}$ be the sets produced by $C$. Since the
$str^{-}ategies$ are uniform, $\mathcal{G}$ is a uniformly recursive set. By Theorem 3.6, let $K_{0}$ and $K_{1}$

be recursive sets such that

(7.8) $(K_{0})\wedge(K_{1})=(\mathcal{G})$ .

By the results of Section \S 6, all of the requirements of Section \S 5 are satisfied. This,

together with Equation 7.8, is enough to conclude Theorem 4.9. $\theta$

\S 8. FURTHER RESULTS

OPEN PROBLEMS

Most of the global properties of the PTIME degrees are unknown. In this section, we

list a few questions.

8.1. QUESTION. (1) Is there a nontrivial automorphism of \langle $REC,$ $\leq_{p}$ } or of $\langle \mathcal{R}, \leq_{p}\rangle$?

(2) It would be very interesting to find a natural degree theoretic property that distin-

guishes one of the standard complexity classes in $\langle REC, \leq_{p}\rangle$ . Is the ideal of the de-

grees of the DTIME$(O(2^{n}))$ predicates definable without parameters in {$REC,$ $\leq_{p}\rangle$ ?

Is there a nontrivial ideal in that can be defined without parameters in {$REC,$ $\leq_{p}\rangle$ ?

All of these questions would be answered by showing that the relation between $\vec{p}$ and
$x$ given by $\vec{p}$ codes a standard model of arithmetic and a subset of the integers of that
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model of PTIME degree $x$
’ is definable (in the appropriate model). We conjecture that

this is the case.
We can give some weak evidence for a negative answer to (1) for $\langle \mathcal{R}, \leq_{p}\rangle$ . Say that two

predicates $X$ and $Y$ are arithmetically equivalent, if $X$ can be defined in the structure $N$

with an additional predicate for $Y$ , and conversely. This is equivalent to saying that $Y$

is recursive in a finite iteration of the Turing jump applied to $X$ , and conversely.

8.2. THEOREM. Suppose that $\psi$ is an automorphism from $\langle \mathcal{R}, \leq_{p}\rangle$ to $\langle \mathcal{R}, \leq_{p}\rangle$ . There

is an $a$ , such that for all $x$ , if $a\leq_{p}x$ then the elements of $\psi(x)$ and those of $x$ are
arithmetically equivalent.

PROOF: We adapt an argument from the context of the Turing degrees, see [8, Nerode-

Shore]. As in Section \S 4, let $M$ be a recursive set such that, for any predicate $Z$ , if
$M\leq_{p}Z$ then there is a sequence of parameters $arrow P$ coding $P_{N}$ in $\langle \mathcal{R}, \leq_{p}\rangle$ and an exact

pair $H_{0}$ and $H_{1}$ defining the set of integers in the coded model that represent elements

of $Z$ such that $arrow P,$
$H_{0}$ and $H_{1}$ are PTIME in $Z$ . Let $m$ be the PTIME degree of $M$ .

Suppose that $M\leq_{p}Z$ and $z$ is the PTIME degree of $Z$ . By the above, $Z$ is coded in the

structure of the PTIME degree below $z$ . Since $\psi$ is an automorphism, $Z$ is also coded in
the degrees below $\psi(z)$ . The partial ordering of the degrees below $\psi(z)$ is arithmetically

defined in terms of any element of $\psi(z)$ . Thus, $Z$ is arithmetically defined in terms of

any element of $\psi(z)$ . Applying the same argument to $\psi’ s$ inverse $\psi^{-1}$ , we see that if
$\psi(z)$ is greater than $m$ then any element of $\psi(z)$ is arithmetically defined in terms of any

element of $z$ . Thus, if $z$ is greater than or equal to $m\vee\psi^{-1}(m)$ then the elements of $z$

are arithmetically equivalent with thos$e$ in $\psi(z)$ . $\theta$

The interpretation of arithmetic given in Theorem 4.9 shows that the theory of
$\langle REC, \leq_{p}\rangle$ is undecidable. However, the formulas used to show undecidability have a
fairly complicated syntactic form. Perhaps a decision procedure can be given for a $re$a-
sonable fragment of the theory.

8.3. QUESTION. Is the existential-universal theory of $\langle REC, \leq_{p}\rangle$ decidable?

We have not given any information about the metatheory of the PTIME many-one

Turing degrees.

8.4. QUESTION. What is the Turing degree of the theory of the PTIME many-one degrees

of the recursive sets?
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