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A note on nomal form of nonsingular plane quartic curve
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We alredy know the classification of complex projéctivevplane
cubic curves. However, so-called "normal form" défining equations
were not unique. And a variety of moduli of complex projective
nonsingular plane quartic curves has dimension 6. The need for a
unique normal form may be gquestioned.

So, in this paper, we try to impose a condition to constract a
unique normal form. With a definition of normal forms, we arrange the
classificatibn of plane cubic curves and find the normal form of

nonsingular plane quartic curve by using REDUCE.

€ 1. Introduction
1.1 Classificatioﬁ of complex projective plane cubic curves

Let Pz be a 2-dimensional complex projective space with a
coordinate [X,y,2]. Then we can list the types of complex projective
plane cubic curves: Nodal curve, Cuspdal curve, Conic and Chord,
Conic and tangent, Three general lines, Three concurrent lines,
Multiple and single lines, Triple line and Nonsingular elliptic
curve. The defining equations are as follows:

Nodal curve ! x3+y3+xyz=0

Cuspidal curve x3+y22=0
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Conic and chord x3¥xyz=0
Conic and téngent ; o x224y22=o'
Three general lines - Xyz=0
Three concurrent lines  x%+x2%=0
Multiple and single lines x2y=0
Triple line ’ ‘ X3£O
. L 3..3..3. o . .3
Nonsingular elliptic curve XT+yT+27+3Axy2=0, X7+1#0 ( see [1] )

The defining equation of nonsingular elliptic curve in’
Weierstrass normal form is as follows?

y22=X3+px22+q23, 4p3+27q2¢0.

And ap3/capde27aPr=8a-aH 3764123 j-invariant ).

This fact is well known. ( see [5] )

1.2 Variety of moduli of nonsingular elliptic curve

The most impoftant single invariant of a curve is its genus.
There are several ways of defining it; all equivalent; For a curve X
in projective space, we have the arithhetic gehhs’ba(X)J'defiﬁed as

I—PX(O); where P, is the Hilbert polynomial of X. On the other hand,

X
we have the geometric genus pg(X), defined as dimkF(X,mx),'where %
is the canonicalxsheaf.
If X is a curve, then pa(X)=pg(X)=dimk(X;0x), so we call this
simply the genus of X, and denote it by g.
| For fixed g one would like to endow the set ﬂg of all curves of
genus g up to isomorphism with an algebraic structure, in which case

we call mg the wvariety of modul i ofzcurvés of genus g.

Let g=3. Then the hyperelliptic curves form an irreducible
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subvariety of dimension 5 of ﬂa. The nonhyperelliptic curves of genus
3 are the nonsingular plane quartic curves. Since the embedding is
canonical, two of them are isomorphic as abstract curves if and only
if they differ by an automorphism of PZ. The family of all these
curves is parametrized by an open set UCPN with N=14, because a form
of degree 4 has 15 cofficients. So there is a morphism U = %3, whose
fibres are images of the group PGL(2) which has dimension 8. Since
any individual curve has only finitely many automorphisms, the fibres
have dimension =8, and so the image of U has dimension 14 -~ 8 = 6. So

we confirm that m3 has dimension 6. ( see [2] )

1.3 Elimination method
Let fl"""fN be elements of the polynomial ring

R=1[X <, X ,Y "',Yn] in m+tn variables over an integral domain I.

10 m’ 1’

For each maximal ideal m of I, let P be the canonical homomorphism
with modulus m, and let Qm be an algebraically closed field
‘containing I/m. Let wm be the set of points(a1,5~~,an) of the
n-dimensional affine space QQ over Qﬁ such that the system of
equations wm(fi)(Xl,-‘-,Xm.a1,~~',an)=0 (i=1,2,--+-,N) has a solution
10 1"."fN is to obtain
g(Yl,-~-,Yn)GI[Yl,'~-,Yn] such that every point of wm is a zero point

in QE. To eliminate X X from f

of ¢m(g) for every m; such a g (or an equation g=0) is called a

resultant of fl’..O'fN' The set a of resultants forms an ideal of

7Y °",Yn], and (gl,'°',gM) is called a system of resultants if the

1 b
radical of the ideal generated by it coincides with . If I is

finitely generated over a field, then, denoting by é the radical of

the ideal generated by fl,---,fN, we have a=cnI[Y1,~'-,Yn]. In
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particular, let I be a field. It is obtain that W is contained in

o ,
the set V of zero points of a. However, it is not necessarily true

that V=W I1f every fi is homogeneous in X ,;-',Xm and also in

(0)°
-,Yn, then we have V=W

1

Yyooo (0)"

1f we wish to write a system of resuliants explicity, we can>

proéeed as follows: Regard the fi as polynomials‘inKX with

1
cofficients in I[X2,°~',Xm,Y1,--

by eliminating X ’from the pairs fi’fj' Then eliminate X from‘these

1 2

resultants, and so forth. To obtain R(fi,fj), we may use Sylvester's

~,Yn3, and obtain resultants R(fi,fj)

elimination method.

in

Theorem 1.3.1

m m—l+

f=a0x +alx

Let f and g be polynomials’in X with cofficients

LI ¥ -1

_ n
] g—box +b1X

following detérminant of degree m+n:

1.4

Then D(f,g)=0 if and only if either f and g have a common root or

0=0-

( see [41 )

Singular point

bn-l

n-1,...

b
n

Let D(f,g) be the
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We review some theorems and definitions about quasihomogeneous
polynomials which are given in [3].
Definition 1.4.1 Let f(zo,'°°,zn) be a polynomial in ¢n+1 and

let V be an analytic set such that V={(z ~-,zn)|f(zo,"',zn)=0}.

o'’
Then'a point (20,°'~,zn) in Cn+1 is a singular pecint if f(zo,-~~,zn)
=0 and 8f(zg,***,2 )/8z, =0, i=0,---,n.

Definition 1.4.2 Suppose that (ro,~",rn) are fixed positive
rational number. A polynomial f(zO,°-',zn) is said to be

quasihomogeneous of type(ro,'-',rn) if it can be expreSsed as a

: i i i .
. . . o 0 "1 n .
linear combination of monomials 20 21 "'zn for which

1Or0+11r1+~-°+ r 1.

Let d denote the smallest positive integer so that

i =
nn

L S N e
0 d ’ 1 d ’
qO q

. n _.d L.
are integers. Then f(t 20, , t zn)~t f(zo, ,zn).

Theorem 1.4.3 Let f(z 1,22) be a polynomial in C3 and let V be

0%
an anlytic set such that Vz((ZO’ZI”ZZ)!f(20’21’22)=0} which has an

isolated singular point at the origin . Then, for any i(i=0,1,2),

a.
(i) There exists an integer ai so that aizz, and f has a monomial zif

or

(ii) There exists an integer aizl and j(i#j) and f has a monomial

Corollary 1.4.4 Let g(z 1,22) be a quasihomogeneous polynomial

0'%



in CB and let V. be an analytic set such . that

121

V={(zO,21,22)l g(zo,zl,22)=0} which has an isolated singular point at

the origin. Then g has at least one of the fo

[~VIII > of monomials:

llowins sets (family

family set of monomials Ty rl r2
[ zao zal za2 _%— *é— _%_
0 0 1 2
I zao zal z za2 _%— _§~ :lal
) 172 0 1 172
a, a; a, 1 812-1 al_l
IT1 z, 2,72, 272, a,22,a,22 a, aja,-1 aja,-1
a, a, a, 1 R S T
v z, 242, z 2, a, aja; aja;a,
a, a; a, 1 ag-1 a1
V 2y 242y 232, a, a,a, aga,
a, a, a, al—l aO—l (éofl)al
VI 2o 2y 202 242,  a,22,a,22 aja -1 aga,;-1 (aja;-Da,
a, a a, a1a§a2+1 a2a6a0+1 aoaial+1
VII 2o 2y 2y 2y 242, ajaja,*l ajaa,+l aja a,+1
a0 L r r
VIII z, z,2, a, 1 2

€ 2. Normal form
In this section, we try to impose a condi
unique normal form of homogeneous polynomial
projective cubic curves by using REDUCE.
2.1 Normal form to be unique
K.

1

Let f=2aix be a homogeneous polynomial.

order to the monomials of f.

tion to construct a

and classify complex

We give a following
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Definition 2.1.1 For the exponents Ki=ki ,***,k. and
1 n
Ki K.
Kj=kj ,---,kj C i#j ), X is grater than X 4 if there exists an
1 n '

integer s(1<s<n) such that k, =k. for u=1,:--+,8-1 and k. >k.
i j i ]
14} i S S
( Lexicographic linear order )

K.
Manipulation 2.1.2 We try to a monomial X ! vanish by suitable

linear transformations from the maximal i. Then if we can make the

K. ‘ K.
monomial X ! vanish without generating new monomial X ¢ Ki<Kj ) of

f, we do so. Otherwise, we don't use the linear transformation and go

to next manipulation.

Manipulation 2.1.3 If we can make the coefficient of the

K.
monomial X l'equal to 1 without generating new dimension of

K.
coefficient of monomial X ] ( Ki<Kj ), we do so. Otherwise, there is

nothing to be done.

Definition 2.1.4 We repeat these manipulations in turn for i.
Then f is said to be the normal form if the result of these

manipulations is equal to f.

We consider it natural that the normal form should be easy to
write and remember; that is, the normal form should have the fewest
monomials, and each monomial should be simple. The normal forms

defined in Definition 2.1.4 meet the above conditions.
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2.2 Arragement of classification
We arrange the classification of complex projective plane cubic

curves (cubic forms) in € 1, 1.1.

Let f(x,y,z) be a cubic form in Pz. The éubic form~f(x,y,2) takés

the following form

23=O.

2
xXyz+a x22+a y3+a8y“z+a y22+a10

a X3+3. x2y+a x2z+a xy2+a 6 7

1 2 3 4
Step 1

5 9

We may choose coordinates so that

x22+a xy2+a Xyz+a
4 5

a x3+a
1 2 3 6

Replacing 2z by z'+Ax where X is a solution of A3+a612+a31+a1=0,

x2y¥a x22+a7y3+a8y2z+a9y22+23=0.

we reduce the formnto
g2x2y+g3x2?+g4xy2+g5xyz+gsxzz+a7y3+a8yzz+agy22+23=o.

g2¢0 and g3¢0 -» Step 2
gz#o and g3=0 -+ Step 3

. g2=0 and g3=0 - Step 4 ( see Program list 1 )

Step 2

2 2 2 2 3 2 2
a X y+x"zra, Xy tagRyzta Xz vagy tagy zra,yz +a8

magnification of the x- y- and z- coordinates we can reduce the form

2 2 2 2 3 2 2 3_
to alx y+X z+a2xy +33xyz+a4xz +a5y +a6y z+a7yz +asz =017.

Replacing z by z‘—aly, we reduce the form to

23=0 [By a

x22+g xy2+g Xyz+a x22+g y3+g y22+g yzz+a 23=O
4 " "5 47" 7 8 9 8 )

g4¢0 -» Step 5
g4=0 and g7¢Q -+ Step 6

.g4=0 and g7=0 - Step 7

Step 3
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x2y+a1xy2+a2xyz+a3x22+a4y3+a5y2z+a6y22+a723=0.

B : X 1 0 0)(x'
Changing the coordinates so that {y}=[0 0 1][y'}. We reduce the
z 01 0j\z"
2

2 2 2 3 2 3_
form to x z+a3xy +a2xyz+a1xz +a7y +a6y z+a5yz +a4z =0.

#Z0 - Step 6, a

a =0 and a7=0 - Step 7

#0 -» Step b, aS=O and a 3

3 7

Step 4

In this case, the form is as follows: fz(y,z)x+f3(y,z)=0 where
fi(y,;) denotes a hqmogeneous polynomial of degree 1i. fz(y,z)=0 gives
two points on a projective line. By the definition 2.1.4 for normal
forms we obtain the following classification.

fz(y,z)~ yz » Step 10, f,(y,2)~ 22 -+ Step 11, fb(y,z)zo - Step 12

Step 5

x2y+xy2+a1xyz+a2x22+a

y3+a y22+asy22+a =

3 4

0.

{a

Y

1
3 2 2 2

form to glx +g2x y+g3x z+g4xy +g5xy2+xz +g7y +

2 2 Y3+a Y2+a y+a

62
X 1Y (x!
Changing the coordinates so that |y|= Ojly'l. We reduce the
z 0)\z'
2
yz

Now, g1=a‘+alya+a2a+ay *ag 4 5 6
g2=a1a+a1By+a2B+3a3?2+2a4y+a5+2a6+2ay+BY2
g4=82+a18428y+3a37+a4+a.

We solve the equation gl for a variable « and solve the equation
g4 for a variable B. And we substitute the solutions to the equation
gz, arrange the equation gz. Then the equation has the ninth degree
for a variable Yy, we denote the equation by gz’.

Here let ci:=[coefficient of a term yi of g2‘] (0£i<9). Then

2

- - 2_ - 3
cg—a1 a3 3a1a3 ala4 a2a3+2a3 +2a3a4+a5.

e 2 2 _ 3_ _
We put as.- al a3+3a1a3 +a1a4+a2a3 2a3 2a3a4. Then cg-O and
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) 3 . 2 4. 2 9
8 | Jag taja,ag-2a,a3"-2a a8, ~aa5" "8, ag *2ag7a ta A,
2 2 3 o 4
a1 a3 alaza3+2a1a3 +2ala3~.a4+a2a3r+a2a4 a3 2a3a4 4

_ : . _ . 6
Then ci—O (0<i<8). Hence, for any parameters (al,a2,a3,a4,a5,a6)ec ,

c,=3(a 2a 2+a a.a,—-2

We put a a

67"

there exists the solution of g2'.

We set g1=0,g2=0 and g4=0. Then we reduce the form to

h3x2z+h5xyz+x22+h7y3+yzz:

0.

h3¢0 and h7¢0 - Step 6, h3¢0 and h7=0 - Step 7, h3=0 - Step 4

( see Program list 2 )

Step 6

x2y+a1xyz+a2x22+y3+a3y22+a4y22+a523=0.

VA 00 z
form to x22+g1xyz+g2x22+y3+g3y2z+g4y22+g523=0.

X 1 o BYy(x'
Changing the coordinates so that |y|=]0 1 ¥ yv'|. We reduce the
1 1

We set g1=g2=g3=0. g4¢0‘or g5¢0 - Step 8,'g4=0 and g5=04 Step 9

Step 7
x2z+a1xyz+a2x22+a3y2z+a4y22+a523=0. ,
. X o 0 1) (x’
Changing the coordinates so that (y|=}|1 0 O0jly'|. We reduce the
z 01 0/\z'
form to glx2y+g2xy2+g3xyz+a5y3+a2y2z+y22:=O.

We solve a equation g1 and set g1=0. Then we reduce the form to

hzxyz+h3xyz+a5y3+a2y22+y22:=0. Go to Step 4
Step 8
2_..3 2, .3, . \ ' ’
x“z+y +pyz“+qgz“:=0. Replacing y by y'+xz, we reduce the form to
x22+y'3+31y'22+(312+p)y‘22+(px+q+13)z3=0.

3 2

p:=—312 and q;ZAB, that is 4p“+279q°=0 - Step 9
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4p3+27q2¢0.ﬁ This equation is a defining equation of nonsingular

elliptic curve in Weierstrass normal form. An analytic set defined by

. . . . : . . 2
this equation is a nonsingular plane cubic curve in P~ .

.Step 9
x22+y3+a1y22:=0.

: X 01 0)(x'
Changing the coordinates so that {y]=[0 0 1][y']. We reduce the

2

form to xy2+a xz%+23:20. Go to Step 4.

1
Step 10

3 2 2 3.~ : . ; .
y +a2y z+a3yz +a4z :=0. Replacing X by x —azy—aaz, we reduce

1
3 3_
the form to xyz+a1y +a42 =0,

Xyz+a

a1¢0 and a4¢0 - Step 13, a1¢0-and a4=0 - Step 14,

a1=0 and_a4#0 - Step 15, a1=0xand a4=0 - Three general lines

Step 11

x22+a1y3+a2y22+a3y22+a423:=0.

a.#0 - Step 16, a,=0 and a =0 and a,=0 » Step 18

2 1

1 #0 - Step 17, a

Step 12

In‘this case, the fofm is a homogeneous polynomial of degree 3
for two variables y,z. We denote thé’form by fs(y,z). Then f3(y,2)=0
gives three points on a projective line. By the definition 2.1.4 for
the normal forms we obtain the following classification.

2 3

fa(y,2)~y z+z° - Three concurrent lines

f3(y,z)~yz2 -+ Multiple and sihgle lines

~-11-
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t,(y,2)~2° > Triple line

Step 13

xyz+y3+z3:=0. Nodal curve

Step 14
3 b-4 1 00
xyz+y~:=0. Changing the coordinates so that {y|=]0 0 1
Z

reduce the form to xyz+23=0. Conic and chord

Step 15

xyz+23:;o. Conic and chord

Step 16
X22+y3+a1y22+a2y22+a323:=O.

Changing the coordinates so that |y|= 01 vily'|. We reduce the

o , Z 0 0 1)\z!
2..3 2 2 3_ .

form to Xz +y +g1y z+g2yz +g32 =0. Here, we set as folloes:

2 3
e a1 —3a2 . —2a1 +9a1a2—27a3 )e -ay

-3 i 27 ’ 3

2,..3

Then we reduce the form to xz“+y“=0. Cuspidal curve

Step 17

x22+y22+a§yz +§22 +=0. Replacing x by x'—aly—azz, we reduce the form

IR

to x22+y22=0. Conic ‘and tangent

Step 18

x22+a1y22+a223:=0. Replacing x by x'*aly-azz, we reduce the form to
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NN

]. We reduce
z

9 . ' ' ) x) {010
xz“=0. Changing the coordinates so that |y{=]1 0 O
the form fo yzz=0. Multiple and single lines
2

We arrange the'classification of cubic curves in P”. The defining

equations are as folloes:

Nodal curve _ xyz+y3+z3=0

CuspidaljcurQe BT x22+y3=0

Conic and chord | : : .xyz+23=0

Conic and tangent x22+y22=0

Three general lines xyz=0

Three concurrent\lines y22+23=0

Multiple and single lines y22=0

Triple line 23=0

Nonsingular elliptic curve x22+y3+py22+q23=0;“4p3f27q2¢0

We call thesé defining equations the nprmal forms of cubic curves

in Pz.

€ 3. Nonsingular plane quartic curve
We consider the normal form of nonsingular plane quartic curve by

using REDUCE. Let f(x,y,2z) be a homogeneous polynomial of degree 4

. 3 _3f(0,0,0) 8£(0,0,0) 8f(0,0,0)_

in C°. Then £(0,0,0)= B% = 3y = oz =

analytic set defined by f(x,y,z) has a singular point at the origin

0. Hence, .an

in C3. The analytic set is a nonsingular guartic curve iﬂ P2~if it

has only isolated singular point at origin in C°.

-13~
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A variety of moduli of nonsingular.plane quartic.eurve in P2 has
dimension 6 (€1,1.2). Therefore, we can take the defining equation
which has 6 parameters.

3.1 Computation

The quartic form f(x, y z) in P takes the following form

3 2 2,2 3 2 2 3

1 142) X +(a4y +a5yz+a62 )X H (a7y rtagy Zﬁagyzy+alozv)x
4 3 2.2 .3 4_

a1y *taj,yzra ayz +a14y; +a152 =0.

a x4+(a y+a

Step 1

We may choose coordinate so that

4 3 2 2.2 3 2 i 2 3
alg +(a2y+a3z)x +(a4y +a5yz+a62 )X +(a7y +a8y z+a9yz +aloz ) x
4 3 2.2 3, 4_ '
+a11y +a12y z+a13y z +al4yz +z2°=0.

Replacing z by z'+XX where X is a solutibn of

4 3 2 _

X +a101 +a6A +aal+a1—0, we reduce the form to
3 3 2 2 2 2. 2 3 2 2 3

g2X Y*ggx 2*84 +85X YZ*gSX z»+g7xy +g8XY z+ggxy2 +g10

4 3 2.2 3 4_
+a11y +a12y z+a13y 2 +a14yz +2 ' =0.

g3¢0 -+ Step 2, g2¢0 and g3=0 -+ Step 3, g2=0 and g3=0 - Step 4

Step 2

a x3y+x32+a2x2y2+a3x2yz+a x222+a xy3+a xy22+a xy22+a8xz3+a9y4+a10y32

4 5 6
2_2 3 4,_ . e < th _
11y z +a12yz +a13 :=0 [By a magnification of e X- y- and z-

1x3y+x32+a2x2y2+agxzyz+a

2 2 3 4 3 2.2 3 4, _
gXY 2+a xyz +a8xz tagy ta, yizta vz ta 2yz *a,,2 :=01.

Replacing z by z° —aly, we reduce the form to
3 2.2 2 2.2 R R 2 3 4 3
X.zfg4x y +g5X yz+a4x z +g7xy +g8xy z+g9xyz_+a10xz +g11y +~g12y z

2 2 3 4

1 7

2.2
coordinates we can reduce the form to a 4x AN

+a5xy3+a

g4¢0 -+ Step 5, g4=0 and g7¢0 - Step 6,

g4=0 and g7=0 a“d1g11#0 - S}ep:Y,-vyi

~1h-
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g4=0 and g7=0 and g11=0 -+ Step 8

Step 3

2
ta,

3 2 2 2 2
X"y+ta X'y +a,Xx yz+agx z
3

ta;¥z *tay,2

xyafa xy22+a

5 6

4.20.

X 1 00
Changing the coordinates so that [y|=]10 0 1
010

3 2
Xy +agXxy z+a

z
form to x32+a3x2y2+a2x2yz+a1x222+a
3 2 2 3 4_
+a11y z+a10y A +a9yz +382 =0.

7

3=0 and a7

=0 and #0 » Step 7,

aa¢0 -+ Step 5, a #0 -» Step 6,

a3=0 and a7

a3=0 and a7=0 and

412
a12=0 - Step 8

Step 4

In this case, the form is as follows:

2
Xyz +a

7

x23+a 4+a 32*8 22
gy *agY 107

(%"
][y']. We reduce the
z'

X 22+a X 3*
5XY 4%X2% Tayoy

fz(y,2)x2+f3(y,z)x+f4(y,z)=0 where f.l denotes a homogeneous

polynomial of degree i

. . . 2
give a singular 'curve in P~.

Step b

X32+X2Y2+81X2y2*a

3 4, _
+a10yz +allz :=0.

x222+a X 3*&
2 gX¥y *tay

A

X x 81
Changing the coordinates so that jyj=|y 1 0
1 00

2 2 3 4 3 2
Xy Zta Xyz +agXz +a,y +agy z+agy 2

Here, we try to vanish the monomial x"y

X'
][y']. We reduce the
ZI

2

2.2

2

(2<i<4). By the Corollary 1.4.4 the above form

4 3 3 2 2 2 2 2 3 2 2 3
form to B1X HEB, XK YHEX ZHE XY YE X YZYEX 2 *E XY *E XY Z+EGXYZ *XZ

3 2

+g11y4+812y z+y 22=0-

Now, =82+a38+a

g1 7

- 2;
g7—a18 +a3a+3a387+a46+4a7

-15-

y+a8+2a8+83+282Y
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g4-2a1a6+a18 Y+a23 f3a3a?+3a367 +a4q£2a4ﬂv+a56+6a7y +3a8}f+a9

+a2+3a82+4a87+82y2.

We solve the equation g11 for a variable $ and solve the equation
g4 for a variable o. And we substitute the solutions to thé equation

g7, arrange the equation g7. Then the degree of the equation is zero.

We can not vanish the monomialrxzyz.

{ see Program list 3 )

Now, g1=a a2y4a10?+a +a2a2+a3ay3+a4ayz+a5a?+a6a+a7Y4+a8Y3+agyz

1
+0(3_‘_(%2),2,

11

g2=a1a2+2a1a67+a +2a2a3+3a a72+a3873+2a ay+a48y2+a5a

2

10
+a58v+a66+4a773+3asy

2 47
+2a9y+3a26+2a2y+2a6y2.

gl is a polynomial with two variabies (¢ and v), g2 and g4 are
polynomials with three variables (x, 8 and Y)JvWe,reduce the forms to

- 2 -
g4—326 +518+so, gz—t18+to

_ 2 B 2

2_3a+y *a,r+a,, sl—4a?+2a1a+3a37 +2a47+a5,
s0=a2+3a3ay+ay+6a7y2+3a8y+ag,

t =3c’+20v2+2a ay+2a‘a+a3ya+a4y2+a

1 1 2
t =2a2Y+a a2+3a3aY2+23 xr+a

0 1 4 5

We use Sylvester's elimination method(€1,1.3), eliminate v, obtain

where s

5Vfa6, |
o+4a 73+3a Y2+2a Y+a

7 8" - 9 10°
the resultant. Let Rl(gz,g4),be the resultant. Then Rl(gz,g4) is a
polynomial with two variables (x,8). We eliminate o for S, and tl.
Then we obtain the resul tant. Let Rz(sz,tl) be the resultant. And
we eliminate o for gland Rl(gz,g4), Then we obtain the resultant. Let
Rg(gl,RL(gz,gs)) be the resultant. Rz(sz,tl) and RB(gI,Rl(gz,ga)) are

polynomials with a variable «. Let o, be a solution of

0
RB(gl,Rl(gz,g3))=0. I£ Rz(sz,tlz(a0)¢0, The simultaneous system of
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algebraic equations ( g1=g2=g4=0 ) has a common root.

’ If Rs(gl.Rl(gz,g3))¢O, there exists no common root.

( see Program list 4 )

Hence, for some parameter (al,a ) we

2°%3°84° 857 86°%7°88°89°310° %1

can vanish the monomial x2y2. We consider it in Step 6,7,8.

We assume that there exists no common root for g1=g2=g4=0.

x) (1 a 8)(x*
Changing the coordinates so that [y]=[0 1 y][y']. We reduce the

z 0 0 1)\z"
3 2.2 2 2 2 3 2 2 3 4 3

form to X"2+X"Y 4 X YZHE X Z *B XY VB XY Z*E XYZ *Z X2 H+E,Y +EY 7

2_2 3 4_,. . .
+g9y z +g10y2 +gllz =0. Here, we set as folloes:

2 2
- aqg 6—481 lsa2 9a3 ye 2a1+3a3
T2 T 48 e 4
Then we reduce the form to X5 2,2 2 3 3 4 3

ZHXY HE XY ZHERZ HELXZ T +E,Y +g8.v‘ z
2.2 3 4
+g.y 2z vg, vz +g. .z =0,
9 10 11
If g7¢0, we reduce the form to
2 3. .4 3 2.2 3 4_
1 2XYZ +33XZ +y +a4y z+a5y 2 +a6yz +a72 =0,

A dimension of parameters space of this form is equal to 7. And we can

)
x32+x2y“+a xy22+a

not take it less than or equal to 6. This is a contradiction (81,1.2).

1£ g7=0 and g8¢0, we reduce the form to

x32+X2y2+a1xy2z+a2xy22+a3

(a3,a5,a6)¢(0,0,0).

X23+Y32+a y222+a y23+a z4=0,

4 5 6

( From Corollary 1.4.4, }
l (coefficient of the monomial y3z = 0) or ((a3,a5,a6)=(0,0,0)) '
L - the analytic set defined this form is singular curve in PQ J

A dimension of parameters space of this form is equal to 6.
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Step 6

x32+a1x2yz+a2x222+xy3+a3xy22+a4xy22+asx23+a6y4+a7y32+a8y222+agyz3
, 4, _

+a102 :=0.

X 1 o B)Y(x') .
Changing the coordinates so that |yj{=]0 1 v{|ly'|. We reduce the
Z

0 01 z'
form to x32+g1x2y2+g2x222+xy3+g3xy2z+g4xy22+g5x23+g6y4+g7y3z+a8y222
+a9y23+aloz4:0. Here, we set as follows:

- -, 3 - -
a ) al +3a1a3 9a2 _al 3a3
8'— 97 9 Y—

Then we reduce the form to

x32+xy3+a1xy22+a2xz°+a3y4+a4y3z+a5y222+a6y23+a724=0,

(a a7)¢(0,0,0).

91 8g°

A dimension of parameters space of this form is equal to 6.

Step 7

x324a1x2yz+a2x222+a3xy2z+a4xy22+a5xz3+y4+a6y32+a7y222+a8y23+agz4:=O.

Lty v
Changing the coordinates so that |y|=|0 1 7||y']. We reduce the
: z 0 0 1/)\z"

2 3

Xyz +g5x23+y4+g6y z+a7y222+g8y23

9
form to x32+g1x“y2+g2X222+g3XY2Z*g

+a z4=0. Here, we set as follows:

4

9
-a 2a 4—9a 2a +27a,a,.-108a -2a 3+9a a,-27a
o= 1 g = 1 1 73 176 2 _ 1 173 6
=3 = 324 » ¥ 108
Then we reduce the form to
3 2 2 3. .4 2.2 3 4_
X 2+alxy z+azxyz +a3xz +y +a4y z +a5yz +a62 =0, (a3,a5,a6)¢(0,0,0).

A dimension of parameters space of this form is equal to 5.

Step 8

X32+a 2 2+ta x222+a X 2z+a X 22"‘3. x23+a 32+a 222*8 23+a Z4°'O
1 X yera, 3XY 4%y 5 67 7Y gY g% =Y
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Replacing X by x'+xy where X is a solution of 13+a112+aax+a6=0,

we reduce the form to

3 2 2. 2 2 2 3

X Z*‘ng yz+g2x 2 +g3xy 2+g4xy,2 +g5xz +g7y222+g8y23

+g924=0.

X 01 0)(x'
Changing the coordinates so that [y{=]1 0 0]l|ly'}. We reduce the
z 0 0 1/)\z' ’

2 2.2 2 2 3,.3 2_2 3 4_
form to g3x yz+g7x z +g1xy z+g4xyz +g8xz +y z+a2y.z +g5yz +ggz =0.

From Corollary 1.4.4, the analytic set defined this form is singular

. 2
curve in P°.

3.2 Normal form of nonsingular plane quartic curve
From the results in 3.1, we obtain a following lemma.
Lemma 3.2.1 There exists the following three types forms as

the normal form of nonsingular quartic curve in Pz.

Type I :x32+xy3+a1xy22+a2x23+a3y4+a4y82+a5y222+a6y23+a7z4=0
_ (az,as,a7)¢(0,0,0).
Type 1] :x32+a1xy2z+a2xyzz+a3x23+y4+a4y222+a5y23+a624=0
(aB,as,a6)¢(O,O,O).
Type III:x32+x2y2+alxy2z+a2xy22+a3x23+y32+a4y222+a5y23+a624=0

(a 5,aﬁ):é(O,O,O).

3@

There exists the relations of parameters for the above type I~111.
The relations determine a structure of moduli space. The structure of

moduli space is important to mathematics.
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