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Nonlinear evolution equations with

nonmono tonic perturbations

Norimichi Hirano (Yokohama National University)
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1. Introduction. Let V. be a Banach space densely and
continously imbedded in a real Hilbert space H. Our purpose in
this paper . is to <consider the existence of_solutjons of the
initial value problem

d—‘;+Au+G(u)=f, 0 < t<T,

a. n : .
g(O) = ug >

where A is a monotdne bperator from V into V’,VG:V » H is a
continuous mapbing and f:(O,f) »> V' is a méasurablé function.
Problems of this kind haé béen sfudied:by many authors. The
case A s linear was studied by Browder (5) and Pazy (14). The
nonlinear case ‘' was studied by Attouch & Damlamian (1), Crandall &
Nohel (7, Hirano (10), and Vrabie (15, 16). In (15) and (16), Vrabie
studied the problem (1. 1) under the assumption "that A generates a

compact semigroup on H, and satisfies
a.2 (Ax - Ay, x - y) + clx - y|2 2 wllx = ylI® “for x, y £ V,

where Vc, w >0, p 22 and H&H,']-I denotes the norms of V and H,
respectively.

In this paper, we <consider the case G 1is a compactly
continuous mapping from V into V’. Our argument is based on the

existence results for pseudo—monotone mappings(cf. (4, 6)).
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2. Statement of main results. Let p, ¢ and T be constants such
that T > 0, p e 2 and 1/p + 1/q = 1. V will denote a reflexive
Banach space densely and continuously imbedded in a real Hilbert
space H. Identifying H with its dual, we have that VCH CV’,
where V' is the dual space of V. the norms of V, H and V' are
denoted by ll<ll, || and ll+ll,, respectively. Let (x,y) denote the
pairing of an element x € V and an element y £ V'. If x,y £ H,
then (x,y) is the ordinary inner product of H. Let A be a mapping
from V into V'. Then A is called monotone if (Ax — Ay, x — y) & 0
for x, y € V. the mapping A is said to be hemicontinuous if for
each x, vy £ V, A(u+tv) converges to Au weakly in V', as t » 0. A
is called pseudo—-monotone if A satisfies the following condition:
2.2 If {un} is a sequence such that u_ converges weakly to

u £V and lim sup (Aun, u = u) S 0, then

(Au, u = v) S lim inf (Au, u - v) for each v & V,
n =2 o n n

Let E, F be Banach spaces, and let g be a mapping from E into F.
We denote by Ew and Fw the spaces E and F endowed with their weak
topologies, respectively. Then g is said to be weakly continuous
if g is a continuous mapping from Ew into Fw. The mapping g is

called demicontinuous jf g is a continuous mapping from E into Fw'

For each r 2 1. We denote by Lr(O,T;E) the space of E-valued
T r
measurable functions wu:(0,T) = E such that J fluCtd)ll"dt < «, The
’ 0

pairing between LP(O{T;V) and Lq(O,T;V’) is denoted by <+, >, Then

for each u, v = L2(0,T;H). <u, v> is the ordinary innner product

<
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of u and v in LZ0,T;H).  The norms of LP <0, T;V>, L2¢0, T; 1>,

L9¢0,T;V’) are again denoted by ll+ll, |+] and H*H*. We denote by J
the duality mapping from Lq(O,T;V') onto Lp(O,T;V), i.e.,

- P 2 _ 2
S(2.1) J@) = {v £ LY, T;V:<v, u> = |Ivli© = Huu*}

for each u = Lq(O,T:V’)‘ By using the Asplund’s renorming theorem,
we may assume that J is a "single valued monotone anﬂ demi—
continuous mapping(cf. ~Proposition 2.14 of (3)). We will denote

by L the operator defined‘by

(L) () = I f(s) ds for each f = L2((0,T))
0
The adjoint operator L* of L is given by
* T 2
@ D = J.f(s) ds . for each f = L™ C(0,T)).
t

Then L and L* are positive operators on L2((0,Tj).‘

In thé following we will assume that the‘mapping A:V > V°

satisfies the following conditions:

(Al1>. . A is a monotone hemicontinuous mapping from V. into V';

(A2) there exist positive constants Cl’ 02 and C3 such that

@2. 3 Iaxl, S C, IxIP™1+ 1>,  for each x = V
and
(2. 4) Czﬂpr S Cg + (A%, %) for each x = V.

We impose the following conditions on G:
. B
(G1) G is a completely continuous mapping from V to V:

(G2) There exist positive constants a, b and C such that

3
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2.5 Gx), x) & -C for all x € V;

2.6 leoo I, < allxI®™l + b for all x & V.
We now state our result:

Theorem . Suppose that (A1), (A2), (G1) and (G2) hold. Then

for each ug € H and f ¢ Lq(O,T;V’), there exists a solution u of,

(1. 1) such that

2.7 u e C,T;M n LP@, T;W
2. 8 -9% e L9¢0, T:V").
3. Propositions. Throughout this section, we assume that

ug ¢ vV, f.= L9¢0, T;Vv’), and that (A1), (A2), (G1)> and (G2) hold

~

We denote by V¥, H, and V' the spaces LP(0,T;V), L2¢0,T;H) and

LY¢0,T;V'), respectively. A denote the operator defined by

(Aw (1) = ACuCt) + uo) = f(1, for each u = V and t = 0, .
Also we denote by G the mapping defined by

Guw (1) = Gt + uo) for each u £ V and t 0, D.

Then it is easy to see that A is a monotone hemicontinuous mapping

satisfying the following conditions:
(3. 1 Rull, S c <1+ Nult®™ 1y for u £ V;

3.2 czllullp Sc, + <Ku, u> for u € G,

3

5



61

1’ CQ‘

03, T, u, cand f. It is also easy to see that G is a continuous

where ¢y o and Cq are positive constants depending on C

~

mapping from V into 2] satisfying that-
3.3 <Gu, uw> 2 ¢ for all u = V;
@0 Gull s «llul®T! + g for all u s V,

where ¢, o, 8 are constants depending on C, a, b and T and ug-

We now consider the equation of the form
(3. 5) v+ A+ ®LY =0

Let V s V be a solution of (3.5). Then it is easy to see that

u = Lv + ug is a solution of (1.1). On the other hand, if u is a
solution of (1.1, we have that v = %% is a sblution of (3.4,

Since L* is injective, the equation (8.5) is equivalent to
(3. 6) L*v + L¥GE + DLV = 0.

Then we will show the existence of ihe solutions.of (3.6
instead of (1.1). In the rest of this section, we assume, for

simplicity, that ug = 0 and f = 0. The proofs remains valid for

each ug £V and f s V' with minor changes.

. . *x X~ ~ .
Proposition 1. the mapping L + L (A + G)L is a pseudo-—

monotone mapping from V into V’.
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b 3 b S ~
Proof. From (A1), it is easily verified that L + L AL:V =» V*
is a monotone hemicontinuous mapping. Let {vn} C V be a sequence
such that v converges to v weakly in V and
, * X o~ o~
3.7 lim sup <L v + L (A+G)Lvn, v o~ v> S 0.

Since v converges to v weakly in V, we have that for each
t = o, T, (Lvn)(t) converges to (Lv) (t) weakly in V. Since G is
completely continuous, we find that G((Lvn)(t)) converges to

G(Lv) (t)) strongly in V* for all t = (0,T). Then noting that
IG Ly > () I, S auchn>(t>np"1+ b 5 a(T %sup uvnn)"_1 + b
for each t = (0,T), we obtain by lLebesgue’s bounded convergence

theorem, that E(Lvn) converges to E(Lv) strongly in V’. Thus we

obtain that

(3.8 <GLv, Lv> = lim <6Lvn, Lv >

Therefore we have by (3.7) and (3.8) that
1im sup <L*v + L*XLV , V. — v> S 0.
n n n
Then by lemma 1.3 of Chap II of (2), it follows that L*vn+ L*KLVn
% K~ L~
converges to L v + L ALv weakly in V’ and

<*v + L*ALv, v> = lim <L*vn + L*KLvn, v, >.

Then from (3.7), (3.8 and the equality above, we find that
¥y + L*GA+OLv, Lv - 2> S lim inf <L¥v_ + L*(K+6>Lvn, v -z

for each z = V. This completes the proof.
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Proposition 2. Let {vn} be a sequence in V' such that v
converges to v weakly in v, {Lvn} c Vv, Lv converges to Lv weakly
in V and

lim sup <A+OLv , Lv - Lv> 5 0.
Then (A + E)Lvn converges to (A + G)Lv weakly in V’, and
3.9 lim <A+G®Lv , Lv > = <@+®OLv, Lv> .

Proof. Let {vn} be a sequence in V' satiSfyihg the hypothesis

of Proposition 2. Then by using (3.15 and (3.4), we can see that

that (HKLVHH*} and {uaLvan are bounded. We first show that

3.1 lim inf (A((Lvn)(t)) + G((Lvn)(t)), (Lvn— Lvw ) 2 0
for all t & (0,T). Suppose that for some t £ (0,T),

(3.1 lim inf (A((Lvn)(t)) + G((Lvn)(t)),»(Lvn— Lv) (t))> < 0.

From (A2) and (G2), we have that
3.12 (A((Lvn)(t)) + G((Lvn)(t)), (Lvn = Lv) (t))
P_ _ _ ' p—1
P-; Czu(Lvn)(t)H C3 C Cl(l + H(Lvn)(t)ﬂ YIH@v) ¢l
- Glay ) I+ piray i,

Then it follows from- (3.11> and (3'12)' that {"(Lvn)(tsﬂ} is
Bounded. Then since G is compltétly coﬁtinuous, .G(Lvnj(t)
converges to G(Lv) (t) strongly in Vf Therefore we have that

lim (G((Lvn) 1), (Lvn) (t) = @v> () = 0. On the other hand, we

have from the monotonicity of A that

lim inf (A((Lvn)(t)), (Lvn - Lw (1)) < 0.
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for all t = (0,T). Then we have that
lim inf (A((Lvn)(t)) + G((Lvn)(t)), (Lvn - Lv) (t)) 2 0.

This contradicts to (3.11). Thus we have shown that (3. 10) holds

for all t £ (0,T). We can see from (3.12) that
h (1) = (ACLv. ) ()Y + GALv Y)Y, (Lv. - Lv) (1))
n n n n
P
Z,KIHLv(t)N + K2

for all t & (0,T) and n &2 1, where Kl’ K2 are constants depending

on C, Cl’ C2, C3, a, and b. Then by Fatou’s lemma, we have that
T
(3. 13 0= J-lim inf h (> dt
0 n
‘ . o
S lim inf I h (t) dt £ 1im sup <A+G)Lv , Lv = Lv> £ 0.
. o _ n n
T
The inequality above implies that lim I"hnl dt = 0. Then we can
. 0
choose a subsequence {hn } of {hn] such that

i

3.14) 1lim (A((Lvn)(t)) + G((Lvn )(t)j, (Lvn - Lv) (> = 0,
' i ‘ i i

a.e. t = (0,T). By (3.12) and (3.14), we find that {(llLv_ (O} is
7 i

bounded for a.e. t & (0,T). Since (Lvn ) (t) converges to (Lv) (V)
. i

weakly in V’, we have that G(Lvn (1) converges to G(Lv) (1)

strongly in H, for a.e. t £ (0,T). Therefore it follows from (2.6
that

lim (G((Lvn > (1)), (Lvn)(t) = (Lv) (t)) = 0. Then we have
i i

lim (AC@Lv_ D)), @Lv - L) =0 a.e. t e (0, T).
i i
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Then since A is monotone, we have from lemma 1.3 of Chap. Il of (2

that A(Lun (1)) converges to ACILV) (1)) weakly in V'. Here we
i

observe by using (3.1)-(3.4) that for each z £ V and t £ (0,T),

there exist real numbers K3, K4 such that

(3.1% (A + G)((Lvn)(t)), (Lvn)(t) -z 2 K3Hz(t)lip + K4
for each n 2 1. Then from Fatou’s lemma, we find that

(3.16) <A + ®OLv, Lv - z>

T
= I lim ACLv, Y ()Y + GCv_ ) (1)), (Lvn)(t) - z(t)) dt
0 ; ny ny i
< lim inf <@ + E)Lvn , Lvn - z>
i i

S lim sup <A + 6>Lvn, Lv_ = Lv) + Lv - 2)>

S lim sup <A + E)Lvn, Lv — z>, .for all. z = V.

The inequality above implies that (K+E)Lvﬁ converges to (A+G)Lv

weakly in V’. We also obtain from (3.13) that (3.9) holds.

Proposition 8. For each k > 0, the equation
* X o~ ~
3.1 Lv+kJv +L (A+G®Lv=20

has a solution v & V*,

Proof. Let Br = {v £ V: |Ilvll £ r} for r > 0. Since the mapﬁing

~

L*+ L*(X+E)L Vs is pseudo-—monotone and J:V - v(C V) is
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X K o~ o~
monotone hemicontinuous, we can see that the sum kJ + L + L (A+GL
is also_pseudq—monotone (cf. Proposition 23 of (4)), for each
k > 0. Then we have ,by using theorem 7.8 of (6), that for each n

= 1, there éxists a solution v, € Bn of the inequality
3.18) <L +kiv + L¥GE+®OLv, z - v.>2 0 for all z £ B_.
n n n n n

The inequlity (3.18) implies that for each m & 1,
(3.19)  lim sup (<v_ + (A+GO)Lv_, Lv. — Lv.> + k<Jv_, v_ = v_>)
na® n n n m n n m

= lim sup <L¥v_ + kJv_ + L¥XG+®Lv , v - v > 5 0.
n-o n n n n m

By putting v = 0 in (3.18), we have

2 P k ‘
(3. 20 kanH* + 02”Lvn" +c¢c S Cq for all n & 1.
The inequality above implies. that (anh*} and {HLvnH} are

bounded. Then we may assume without any loss of generality that v
converges to v € V' weakly in V’ and Lvn_converges to Lv weakly in

V. Then from (3.19), it is easy to see that

(3.21>)  lim sup(<v_+ A+G)Lv_, Lv_ — Lv> + k<Jv_, v_- v>) S 0.
n n n n n
Here we choose a sequence {z } C V'’ such that z £ co{v }, z
: n n n n

converges to v strongly in v’ and LG converges to Lv strongly in

V. Then since <Lv_ — Lz , v. —z > 0, we find, by letting
n m n m :

m, n * o that

(3.22) lim inf <vn, Lvn— Lv> 2 0.

Also we have by the monotonicity of J that

70
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(3.23 lim inf <Jv_, v_ = v> 2 0.
n n

Combining (3.22) and (3.23)~with (3‘21), we have
(3.23) lim sup <(A + §)Lvn, Lv_ - Lv> S 0.
Then we obtain by Proposition 2{that (K+6)Lvn converges to (X+§)Lv

weakly in V' and

(3. 24) lim <(A + E)Lvn, Lv > = < + ®Lv, Lv>.

Then the inequality (3.18) implies that

3.25) <L¥v + kJv + L¥E+®Lv, z> 2 <G+E)Lv, Lv> for all z £ V.

~ W o~
Since z € V is arbitrary, we find that L*v)+ kJv + L (A+GOLv = 0.

4. Proof of Theorems. In the following, we assume that (Al),

(A2, (G1> and (G2 are satisfied‘> We first show that the
assertion of Theorem 1 holds for each u0 £ Vand f £ V.

Let u

0o © V, f £ V' and let A, G be as in section 3. Then by

Proposition 3, there exists a solution Vo s V' of the equation
a1 5N o+l + *E+HLY. =0
n n" 'n n
for each n & 1. Multiplying (4.1) by v, we find that
4.2 lIlv “2 + c,llLv "p +:c S c., for each n 2 1
’ n n X 2 n v 3 )
From (4.2), we have that.{HLvnH} is bounded. Then it follows from

3.1) and (3.4 that {WALv_ll,) and {ﬂaLvnug are bounded. It also

s/
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b 3
follows from (4.2) that lim H%Jvnﬂ = 0. Since L. is injective in

~

V', the equation (4.1) can be rewritten as

1. 3) v +ia® v o+ GE+OLv. = 0 for each n 2 1.
n n n n

1

Here we note that <A™ 'Jv, Jv> 2 0 for n 2 1. Then

multiplying (4. 3) by Jvn, we have

2

4. 4 anH* S haa + G)LvnH*HJvnH s (HALvnH*+ HGLvnﬁ;anH*.

*} is bounded. Then we may

for n 2 1. Thus we find that {anH
suppose without any loss of generality that vn’converges to v € v’

weakly in V* and Lvn converges to Lv weakly in V.
While, we have by multiplying (4.1) by VTV that
4.5 <v + G+ ®OLv, Lv. - Lv>+ <oy , v - v.> = 0.
n n n m n" 'n n m
Then since %Jvn converges to 0 in Vas n - o, we find that
4. 6) lim <v_+ (A+G)Lv , Lv.— Lv. > = 0 for each m 2 1.
n n n m

n-o

Then it is easy to see from (4.6) that

4.1 lim <v_+ A+®Lv_, Lv - Lv> = 0.

Since lim inf (vn, Lvn— Lv> Z'O, we have by (4.7 that

4. 8 1imvsup <(K+E)Lvn,‘Lvn—‘Lv> = 0.

Then by Propostion 2, we find that (K+E)Lvn converges to (A+G)Lv
weakly in V’. Therefore we obtain ffom (4. 1> that

L*v + L*(K + GLv = 0, i.e., (1.1) has a solution.

o)
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Now let u, € H and {ug} C V. be a sequece such that ug converges
to ug strongly in H. Then by the argument above, we have that for

each n & 1, there exists a solution u of the problem

aa
'TE ny Au + G(un) = f, 0< t <T,
4.9
uc = uf,
n

Here we assume for simplicity that f = 0. Then multiplying (4.9

by u and integrating, we have

1 2 T P 0,2
.10 Elun(t)l + sz Hun(s)ﬂ ds < (C + CS)T + sup Iunl .

0 T on
Then {u } is bounded in V. Also by (2.3) and (2.6), we see that
i , B , _ u, :
{ET . is bounded in V’. Here we put Vo= It for each:-n & 1. Then

from the observation above, we maywsupposewhatnvn converges to
v £ V° weakly - in v and un= Lvn+*ug converges to u = Lv + ho

weakly in V. We set (Az) (1) = ACz(t)) and Gz) () = G(z(t)) for

each z ® V and t = (0,T. Now we multiplyw(4.9) by un— u and
integrate. Then we have

(4.11>  lim sup <@ + ® Lv_+ ud, @Lv.+ud = @v + > -
; : S N n n n 0

du_ SEEIRRE SRR

= L - >
lim sup dt ,.u un

_ diz du
o~ "' S

Therefore the hypoth351s of Proposxtion 2 is,satlsfxedﬁwith Lvn

S lim sup (—Iu(T)~u (T)I lu u -~ u> S0

replaced .by Lvn+ ugt and Lv:replaced by Lv + ug.. It is easy to-

verify that. the proof of Propostition 2 remains valid for A; G, Lv

/73
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and Lvn replaced by K, E, Lv + uo and Lvn+ ug, respectively.

Therefore we find that (K+E)(Lvn + ug) converges to A+C) (Lv + uo)

weakly in V. Thus we obtain v + (A+G) (Lv + uo) = 0. This implies

that u = Lv + u0 is a solution of (1.1). We can see that

u £ C,T;H) by the usual argument(cf. theorem 4.5 of (3)),
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