Nonlinear evolution equations with nonmonotonic perturbations

Norimichi Hirano (Yokohama National University) (平 野 載 台)

1. Introduction. Let V be a Banach space densely and continously imbedded in a real Hilbert space H. Our purpose in this paper is to consider the existence of solutions of the initial value problem

$$\frac{du}{dt} + Au + G(u) = f, 0 < t < T,$$
(1.1)
$$u(0) = u_0,$$

where A is a monotone operator from V into V', $G:V \to H$ is a continuous mapping and $f:(0,T) \to V'$ is a measurable function.

Problems of this kind has been studied by many authors. The case A is linear was studied by Browder(5) and Pazy(14). The nonlinear case was studied by Attouch & Damlamian(1), Crandall & Nohel(7), Hirano(10), and Vrabie(15, 16). In (15) and (16), Vrabie studied the problem (1.1) under the assumption that A generates a compact semigroup on H, and satisfies

(1.2) $(Ax - Ay, x - y) + c|x - y|^2 \ge \omega ||x - y||^p$ for x, y ε V, where c, $\omega > 0$, $p \ge 2$ and $||\cdot||$, $|\cdot|$ denotes the norms of V and H, respectively.

In this paper, we consider the case G is a compactly continuous mapping from V into V'. Our argument is based on the existence results for pseudo-monotone mappings (cf. (4, 6)).

2. Statement of main results. Let p, q and T be constants such that T > 0, $p \ge 2$ and 1/p + 1/q = 1. V will denote a reflexive Banach space densely and continuously imbedded in a real Hilbert space H. Identifying H with its dual, we have that $V \subset H \subset V'$, where V' is the dual space of V. the norms of V, H and V' are denoted by $\|\cdot\|$, $\|\cdot\|$ and $\|\cdot\|_*$, respectively. Let (x,y) denote the pairing of an element $x \in V$ and an element $y \in V'$. If $x, y \in H$, then (x,y) is the ordinary inner product of H. Let A be a mapping from V into V'. Then A is called monotone if $(Ax - Ay, x - y) \ge 0$ for x, $y \in V$, the mapping A is said to be hemicontinuous if for each x, $y \in V$, A(u+tv) converges to Au weakly in V', as $t \to 0$. A is called pseudo-monotone if A satisfies the following condition: (2.2) If $\{u_n\}$ is a sequence such that u_n converges weakly to $u \in V$ and $v \in V$ and

(Au, u - v) $\leq \lim_{n \to \infty} \inf (Au_n, u_n - v)$ for each $v \in V$.

Let E , F be Banach spaces, and let g be a mapping from E into F. We denote by E_w and F_w the spaces E and F endowed with their weak topologies, respectively. Then g is said to be weakly continuous if g is a continuous mapping from E_w into F_w . The mapping g is called demicontinuous if g is a continuous mapping from E into F_w . For each $r \ge 1$. We denote by $L^r(0,T;E)$ the space of E-valued measurable functions $u:(0,T) \to E$ such that $\int_0^T \|u(t)\|^r dt < \infty$. The pairing between $L^p(0,T;V)$ and $L^q(0,T;V')$ is denoted by $<\cdot,\cdot>$. Then for each $u, v \in L^2(0,T;H)$, < u, v> is the ordinary innner product

of u and v in $L^2(0,T;H)$. The norms of $L^p(0,T;V)$, $L^2(0,T;H)$, $L^q(0,T;V')$ are again denoted by $\|\cdot\|$, $\|\cdot\|$ and $\|\cdot\|_*$. We denote by J the duality mapping from $L^q(0,T;V')$ onto $L^p(0,T;V)$, i.e.,

(2.1)
$$J(u) = \{v \in L^p(0,T;V) : \langle v, u \rangle = ||v||^2 = ||u||_{*}^2 \}$$

for each $u \in L^q(0,T;V')$. By using the Asplund's renorming theorem, we may assume that J is a single valued monotone and demicontinuous mapping (cf. Proposition 2.14 of (3)). We will denote by L the operator defined by

(Lf)(t) =
$$\int_0^t f(s) ds$$
 for each $f \in L^2((0,T))$

The adjoint operator L^* of L is given by

$$(L^*f)(t) = \int_t^T f(s) ds$$
 for each $f \in L^2((0,T))$.

Then L and L* are positive operators on $L^2((0,T))$.

In the following we will assume that the mapping $A:V \to V'$ satisfies the following conditions:

- (A1) A is a monotone hemicontinuous mapping from V into V;
- (A2) there exist positive constants C_1 , C_2 and C_3 such that
- (2.3) $\|Ax\|_{*} \le C_{1}(\|x\|^{p-1}+1)$, for each $x \in V$ and
- (2.4) $C_2 \|x\|^p \le C_3 + (Ax, x)$ for each $x \in V$.

We impose the following conditions on G:

- (G1) G is a completely continuous mapping from V to V:
- (G2) There exist positive constants a, b and C such that

(2.5)
$$(G(x), x) \ge -C$$
 for all $x \in V$;

(2.6)
$$\|G(x)\|_{Y} \le a\|x\|^{p-1} + b$$
 for all $x \in V$.

We now state our result:

Theorem. Suppose that (A1), (A2), (G1) and (G2) hold. Then for each $u_0 \in H$ and $f \in L^q(0,T;V')$, there exists a solution u of (1.1) such that

- (2.7) $u \in C(0,T;H) \cap L^{p}(0,T;V)$
- (2.8) $\frac{du}{dt} \in L^{q}(0,T;V').$
- 3. Propositions. Throughout this section, we assume that $u_0 \in V$, $f \in L^q(0,T;V')$, and that (A1), (A2), (G1) and (G2) hold We denote by \widetilde{V} , \widetilde{H} , and \widetilde{V}' the spaces $L^p(0,T;V)$, $L^2(0,T;H)$ and $L^q(0,T;V')$, respectively. \widetilde{A} denote the operator defined by

 $(\widetilde{A}u)(t) = A(u(t) + u_0) - f(t)$, for each $u \in \widetilde{V}$ and $t \in (0,T)$. Also we denote by \widetilde{G} the mapping defined by

 $(\widetilde{G}u)(t)=G(u(t)+u_0)$ for each $u\in\widetilde{V}$ and $t\in(0,T)$. Then it is easy to see that \widetilde{A} is a monotone hemicontinuous mapping satisfying the following conditions:

(3.1)
$$\|\widetilde{A}u\|_{*} \le c_{1}(1 + \|u\|^{p-1})$$
 for $u \in \widetilde{V}$;

(3.2)
$$c_2 \|u\|^p \le c_3 + \langle \widetilde{A}u, u \rangle$$
 for $u \in \widetilde{V}$,

where c_1 , c_2 and c_3 are positive constants depending on C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_6 , C_7 , C_8 ,

(3.3)
$$\langle \widetilde{G}u, u \rangle \geq c$$
 for all $u \in \widetilde{V}$;

(3.4)
$$\|\widetilde{\mathbf{G}}\mathbf{u}\|_{2} \leq \alpha \|\mathbf{u}\|^{p-1} + \mathbf{g}$$
 for all $\mathbf{u} \in \widetilde{\mathbf{V}}$,

where c, α , & are constants depending on C, a, b and T and \mathbf{u}_0 . We now consider the equation of the form

$$(3. 5) v + (\widetilde{A} + \widetilde{G})Lv = 0$$

Let $v \in \widetilde{V}$ be a solution of (3.5). Then it is easy to see that $u = Lv + u_0$ is a solution of (1.1). On the other hand, if u is a solution of (1.1), we have that $v = \frac{du}{dt}$ is a solution of (3.4). Since L^* is injective, the equation (3.5) is equivalent to

(3.6)
$$L^*v + L^*(\tilde{A} + \tilde{G})Lv = 0.$$

Then we will show the existence of the solutions of (3.6) instead of (1.1). In the rest of this section, we assume, for simplicity, that $u_0=0$ and f=0. The proofs remains valid for each $u_0 \in V$ and $f \in \widetilde{V}$, with minor changes.

Proposition 1. the mapping $L^*+L^*(\widetilde{A}+\widetilde{G})L$ is a pseudomonotone mapping from \widetilde{V} into \widetilde{V} .

Proof. From (A1), it is easily verified that $L^* + L^*\widetilde{A}L \colon \widetilde{V} \to \widetilde{V}'$ is a monotone hemicontinuous mapping. Let $\{v_n\} \subset \widetilde{V}$ be a sequence such that v_n converges to v weakly in \widetilde{V} and

(3.7) $\lim \sup \langle L^* v_n + L^* (\widetilde{A} + \widetilde{G}) L v_n, v_n - v \rangle \leq 0.$

Since v_n converges to v weakly in \widetilde{V} , we have that for each $t \in (0,T)$, (Lv_n) (t) converges to (Lv) (t) weakly in V. Since G is completely continuous, we find that $G((Lv_n)$ (t)) converges to G((Lv) (t)) strongly in V, for all $t \in (0,T)$. Then noting that

 $\|G((Lv_n)(t))\|_* \le a\|(Lv_n)(t)\|^{p-1} + b \le a(T^{1/2}\sup\|v_n\|)^{p-1} + b$ for each $t \in (0,T)$, we obtain by Lebesgue's bounded convergence theorem, that $\widetilde{G}(Lv_n)$ converges to $\widetilde{G}(Lv)$ strongly in \widetilde{V} . Thus we obtain that

(3.8) $\langle \widetilde{G}Lv, Lv \rangle = \lim_{n \to \infty} \langle \widetilde{G}Lv_n, Lv_n \rangle$ Therefore we have by (3.7) and (3.8) that

 $\lim \sup \langle L^* v_n + L^* \widetilde{A} L v_n, v_n - v \rangle \leq 0.$

Then by lemma 1.3 of Chap II of (2), it follows that $L^*v_n + L^*\widetilde{A}Lv_n$ converges to $L^*v_n + L^*\widetilde{A}Lv_n$ weakly in \widetilde{V} , and

 $\langle L^*v + L^*\widetilde{A}Lv, v \rangle = \lim_{n \to \infty} \langle L^*v_n + L^*\widetilde{A}Lv_n, v_n \rangle.$

Then from (3.7), (3.8) and the equality above, we find that

 $<L^*v + L^*(\widetilde{A} + \widetilde{G})Lv$, $Lv - z> \le \lim\inf <L^*v_n + L^*(\widetilde{A} + \widetilde{G})Lv_n$, $v_n - z>$ for each $z \in \widetilde{V}$. This completes the proof.

Proposition 2. Let $\{v_n\}$ be a sequence in \widetilde{V} ' such that v_n converges to v weakly in \widetilde{V} ', $\{Lv_n\} \subset \widetilde{V}$, Lv_n converges to Lv weakly in \widetilde{V} and

 $\lim \sup <(\widetilde{A}+\widetilde{G}) \operatorname{Lv}_n, \ \operatorname{Lv}_n - \operatorname{Lv}> \leq 0.$ Then $(\widetilde{A}+\widetilde{G})\operatorname{Lv}_n$ converges to $(\widetilde{A}+\widetilde{G})\operatorname{Lv}$ weakly in \widetilde{V} , and $\lim <(\widetilde{A}+\widetilde{G})\operatorname{Lv}_n, \ \operatorname{Lv}_n> = <(\widetilde{A}+\widetilde{G})\operatorname{Lv}, \ \operatorname{Lv}>.$

Proof. Let $\{v_n\}$ be a sequence in \widetilde{V}' satisfying the hypothesis of Proposition 2. Then by using (3.1) and (3.4), we can see that that $\{\|\widetilde{A}Lv_n\|_*\}$ and $\{\|\widetilde{G}Lv_n\|_*\}$ are bounded. We first show that (3.10) $\lim_{n \to \infty} \inf_{x \to \infty} (A((Lv_n)(t)) + G((Lv_n)(t)), (Lv_n - Lv)(t)) \ge 0$ for all $t \in (0,T)$. Suppose that for some $t \in (0,T)$, (3.11) $\lim_{x \to \infty} \inf_{x \to \infty} (A((Lv_n)(t)) + G((Lv_n)(t)), (Lv_n - Lv)(t)) < 0$. From (A2) and (G2), we have that

(3. 12) $(A((Lv_n)(t)) + G((Lv_n)(t)), (Lv_n - Lv)(t))$ $\geq C_2 ||(Lv_n)(t)||^p - C_3 - C - C_1(1 + ||(Lv_n)(t)||^{p-1})||(Lv)(t)||$ $- (a||(Lv_n)(t)||^{p-1} + b)||(Lv)(t)||.$

Then it follows from (3.11) and (3.12) that $\{\|(Lv_n)(t)\|\}$ is bounded. Then since G is compltetly continuous, $G(Lv_n)(t)$ converges to G(Lv)(t) strongly in V. Therefore we have that $\lim_{n \to \infty} (G((Lv_n)(t)), (Lv_n)(t) - (Lv)(t)) = 0$. On the other hand, we have from the monotonicity of A that

lim inf $(A((Lv_n)(t)), (Lv_n - Lv)(t)) \ge 0.$

for all $t \in (0,T)$. Then we have that

 $\lim_{n \to \infty} \inf \left(A((Lv_n)(t)) + G((Lv_n)(t)), (Lv_n - Lv)(t) \right) \ge 0.$

This contradicts to (3.11). Thus we have shown that (3.10) holds for all t ϵ (0,T). We can see from (3.12) that

$$h_n(t) = (A((Lv_n)(t)) + G((Lv_n)(t)), (Lv_n - Lv)(t))$$

$$\geq K_1 ||Lv(t)||^p + K_2$$

for all t ϵ (0,T) and n \geq 1, where K₁, K₂ are constants depending on C, C₁, C₂, C₃, a, and b. Then by Fatou's lemma, we have that

(3.13)
$$0 = \int_{0}^{T} \lim_{n \to \infty} \inf_{n} (t) dt$$

 $\leq \lim \inf \int_{0}^{T} h_n(t) dt \leq \lim \sup \langle (\widetilde{A} + \widetilde{G}) Lv_n, Lv_n - Lv \rangle \leq 0.$

The inequality above implies that $\lim_{n \to \infty} \int_{0}^{T} |h_{n}| dt = 0$. Then we can choose a subsequence $\{h_{n}\}$ of $\{h_{n}\}$ such that

(3.14)
$$\lim_{i} (A((Lv_{n_i})(t)) + G((Lv_{n_i})(t)), (Lv_{n_i} - Lv)(t)) = 0,$$

a.e. $t \in (0,T)$. By (3.12) and (3.14), we find that $\{\|Lv_{n_i}(t)\|\}$ is bounded for a.e. $t \in (0,T)$. Since $(Lv_{n_i})(t)$ converges to (Lv)(t) weakly in V', we have that $G(Lv_{n_i})(t)$ converges to G(Lv)(t) strongly in H, for a.e. $t \in (0,T)$. Therefore it follows from (2.6) that

lim (G((Lv_n)(t)), (Lv_n)(t) - (Lv)(t)) = 0. Then we have $\lim_{i} (A((Lv_{n_i})(t)), (Lv_{n_i} - Lv)(t)) = 0 \quad a.e. \quad t \in (0,T).$

Then since A is monotone, we have from lemma 1.3 of Chap. II of (2) that $A(Lu_{n_i}(t))$ converges to A((Lv)(t)) weakly in V'. Here we observe by using (3.1)-(3.4) that for each $z \in \widetilde{V}$ and $t \in (0,T)$,

(3.15) ((A + G)((Lv_n)(t)), (Lv_n)(t) - z(t)) $\geq K_3 \|z(t)\|^p + K_4$ for each $n \geq 1$. Then from Fatou's lemma, we find that

there exist real numbers K_3 , K_4 such that

$$(3.16) < (\widetilde{A} + \widetilde{G})Lv, Lv - z >$$

$$= \int_{0}^{T} \lim_{i} (A((Lv_{n_{i}})(t)) + G((Lv_{n_{i}})(t)), (Lv_{n_{i}})(t) - z(t)) dt$$

$$\leq \lim_{i} \inf_{i} < (\widetilde{A} + \widetilde{G})Lv_{n_{i}}, Lv_{n_{i}} - z >$$

$$\leq \lim_{i} \sup_{j} < (\widetilde{A} + \widetilde{G})Lv_{n_{i}}, (Lv_{n_{i}} - Lv) + (Lv - z) >$$

$$\leq \lim_{j} \sup_{j} < (\widetilde{A} + \widetilde{G})Lv_{n_{j}}, Lv - z >, \text{ for all } z \in \widetilde{V}.$$

The inequality above implies that $(\widetilde{A}+\widetilde{G})Lv_n$ converges to $(\widetilde{A}+\widetilde{G})Lv_n$ weakly in \widetilde{V} . We also obtain from (3.13) that (3.9) holds.

Proposition 3. For each k > 0, the equation

(3. 17)
$$L^*v + kJv + L^*(\tilde{A} + \tilde{G})Lv = 0$$

has a solution $v \in \widetilde{V}$.

Proof. Let $B_r = \{v \in \widetilde{V} \colon \|v\| \le r\}$ for r > 0. Since the mapping $L^* + L^*(\widetilde{A} + \widetilde{G})L : \widetilde{V} \to \widetilde{V}'$ is pseudo-monotone and $J : \widetilde{V} \to \widetilde{V} \subset \widetilde{V}'$) is

monotone hemicontinuous, we can see that the sum kJ + L* + L* $(\widetilde{A}+\widetilde{G})L$ is also pseudo-monotone (cf. Proposition 23 of (4)), for each k > 0. Then we have ,by using theorem 7.8 of (6), that for each n \geq 1, there exists a solution $v_n \in B_n$ of the inequality

(3.18) $\langle L^*v_n + kJv_n + L^*(\widetilde{A}+\widetilde{G})Lv_n, z - v_n \rangle \ge 0$ for all $z \in B_n$. The inequality (3.18) implies that for each $m \ge 1$,

(3.19)
$$\lim_{n \to \infty} \sup (\langle v_n + (\widetilde{A} + \widetilde{G}) L v_n, L v_n - L v_m \rangle + k \langle J v_n, v_n - v_m \rangle)$$

$$= \lim_{n \to \infty} \sup \langle L^* v_n + k J v_n + L^* (\widetilde{A} + \widetilde{G}) L v_n, v_n - v_m \rangle \le 0.$$

By putting v = 0 in (3.18), we have

 $(3.20) \quad k\|v_n\|_{*}^2 + c_2\|Lv_n\|^p + c \leq c_3 \qquad \qquad \text{for all } n \geq 1.$ The inequality above implies that $\{\|v_n\|_{*}\}$ and $\{\|Lv_n\|\}$ are bounded. Then we may assume without any loss of generality that v_n converges to $v \in \widetilde{V}$ weakly in \widetilde{V} and Lv_n converges to Lv weakly in \widetilde{V} . Then from (3.19), it is easy to see that

(3.21) $\limsup (\langle v_n + (\widetilde{A} + \widetilde{G}) L v_n, L v_n - L v \rangle + k \langle J v_n, v_n - v \rangle) \leq 0.$ Here we choose a sequence $\{z_n\} \subset \widetilde{V}$ such that $z_n \in \operatorname{co}\{v_n\}, z_n$ converges to v strongly in \widetilde{V} and $L z_n$ converges to L v strongly in \widetilde{V} . Then since $\langle L v_n - L z_m, v_n - z_m \rangle \geq 0$, we find, by letting v, v and v that

(3.22) $\lim \inf \langle v_n, Lv_n - Lv \rangle \ge 0$. Also we have by the monotonicity of J that (3.23) $\lim \inf \langle Jv_n, v_n - v \rangle \ge 0.$

Combining (3.22) and (3.23) with (3.21), we have

(3.23) $\limsup \langle (\widetilde{A} + \widetilde{G}) Lv_n, Lv_n - Lv \rangle \leq 0.$

Then we obtain by Proposition 2 that $(\widetilde{A}+\widetilde{G})Lv_n$ converges to $(\widetilde{A}+\widetilde{G})Lv_n$ weakly in \widetilde{V} , and

(3. 24) $\lim \langle (\widetilde{A} + \widetilde{G}) Lv_n, Lv_n \rangle = \langle (\widetilde{A} + \widetilde{G}) Lv, Lv \rangle$.

Then the inequality (3.18) implies that

(3.25) $\langle L^*v + kJv + L^*(\widetilde{A}+\widetilde{G})Lv, z \rangle \geq \langle (\widetilde{A}+\widetilde{G})Lv, Lv \rangle$ for all $z \in \widetilde{V}$. Since $z \in \widetilde{V}$ is arbitrary, we find that $L^*v + kJv + L^*(\widetilde{A}+\widetilde{G})Lv = 0$.

4. Proof of Theorems. In the following, we assume that (A1), (A2), (G1) and (G2) are satisfied. We first show that the assertion of Theorem 1 holds for each $u_0 \in V$ and $f \in \widetilde{V}$.

Let u_0^{ϵ} V, f^{ϵ} \widetilde{V} and let \widetilde{A} , \widetilde{G} be as in section 3. Then by Proposition 3, there exists a solution v_n^{ϵ} \widetilde{V} of the equation

(4.1)
$$L^*v_n + \frac{1}{n}Jv_n + L^*(\widetilde{A}+\widetilde{G})Lv_n = 0$$

for each $n \ge 1$. Multiplying (4.1) by v_n , we find that

//

(4.2)
$$\frac{1}{n} \|v_n\|_*^2 + c_2 \|Lv_n\|_*^p + c \le c_3$$
 for each $n \ge 1$.

From (4.2), we have that $\{\|\|Lv_n\|\|\}$ is bounded. Then it follows from (3.1) and (3.4) that $\{\|\|\widetilde{A}Lv_n\|_*\}$ and $\{\|\widetilde{G}Lv_n\|_*\}$ are bounded. It also

follows from (4.2) that $\lim_{n \to \infty} \|\frac{1}{n} J v_n\| = 0$. Since L^* is injective in \widetilde{V} , the equation (4.1) can be rewritten as

(4.3)
$$v_n + \frac{1}{n}(L^*)^{-1}Jv_n + (\widetilde{A} + \widetilde{G})Lv_n = 0$$
 for each $n \ge 1$.

Here we note that $<(L^*)^{-1}Jv_n$, $Jv_n>\geq 0$ for $n\geq 1$. Then multiplying (4.3) by Jv_n , we have

for $n \geq 1$. Thus we find that $\{\|v_n\|_*\}$ is bounded. Then we may suppose without any loss of generality that v_n converges to $v \in \widetilde{V}$, weakly in \widetilde{V} , and Lv_n converges to Lv weakly in \widetilde{V} .

While, we have by multiplying (4.1) by $v_n - v_m$ that

(4.5)
$$\langle v_n + (\widetilde{A} + \widetilde{G}) L v_n, L v_n - L v_m \rangle + \langle \frac{1}{n} J v_n, v_n - v_m \rangle = 0.$$

Then since $\frac{1}{n}Jv_n$ converges to 0 in \widetilde{V} as $n \to \infty$, we find that

(4.6)
$$\lim_{n\to\infty} \langle v_n + (\widetilde{A} + \widetilde{G}) L v_n, L v_n - L v_m \rangle = 0 \quad \text{for each } m \ge 1.$$

Then it is easy to see from (4.6) that

(4.7)
$$\lim_{n \to \infty} \langle v_n + (\widetilde{A} + \widetilde{G}) L v_n, L v_n - L v \rangle = 0.$$

Since $\lim_{n \to \infty} (v_n, Lv_n - Lv) \ge 0$, we have by (4.7) that

(4.8)
$$\limsup \langle (\widetilde{A} + \widetilde{G}) Lv_n, Lv_n - Lv \rangle \leq 0.$$

Then by Propostion 2, we find that $(\widetilde{A}+\widetilde{G})Lv_n$ converges to $(\widetilde{A}+\widetilde{G})Lv_n$ weakly in \widetilde{V} . Therefore we obtain from (4.1) that $L^*v + L^*(\widetilde{A}+\widetilde{G})Lv = 0, \text{ i.e., (1.1) has a solution.}$

Now let $u_0 \in H$ and $\{u_n^0\} \subset V$ be a sequece such that u_n^0 converges to u_0 strongly in H. Then by the argument above, we have that for each $n \ge 1$, there exists a solution u_n of the problem

(4.9)
$$\frac{du}{dt}^{n} + Au_{n} + G(u_{n}) = f, \quad 0 < t < T,$$

$$u(0) = u_{n}^{0}.$$

Here we assume for simplicity that f=0. Then multiplying (4.9) by \boldsymbol{u}_n and integrating, we have

(4.10)
$$\frac{1}{2} |u_n(t)|^2 + C_2 \int_0^T ||u_n(s)||^p ds < (C + C_3)T + \sup_n |u_n^0|^2$$
.

Then $\{u_n\}$ is bounded in \widetilde{V} . Also by (2.3) and (2.6), we see that $\{\frac{du}{dt}^n\}$ is bounded in \widetilde{V} . Here we put $v_n = \frac{du}{dt}$ for each $n \ge 1$. Then from the observation above, we may suppose that v_n converges to $v \in \widetilde{V}$ weakly in \widetilde{V} and $u_n = Lv_n + u_n^0$ converges to $u = Lv_n + u_0$ weakly in \widetilde{V} . We set $(\overline{Az})(t) = A(z(t))$ and $(\overline{Gz})(t) = G(z(t))$ for each $z \in \widetilde{V}$ and $t \in (0,T)$. Now we multiply (4.9) by $u_n - u$ and integrate. Then we have

(4.11)
$$\limsup < (\overline{A} + \overline{G}) (Lv_n + u_n^0), (Lv_n + u_n^0) - (Lv + u_0^0) > 0$$

$$= \limsup < \frac{du_n}{dt}, u - u_n > 0$$

 $\leq \limsup_{n \to \infty} (-|u(T)-u_n(T)|^2 + |u_0-u_n^0|^2 + \langle \frac{du}{dt}, u_n-u \rangle) \leq 0.$ Therefore the hypothesis of Proposition 2 is satisfied with Lv_n replaced by Lv_n+ u_n^0 and Lv replaced by Lv + u_0 . It is easy to verify that the proof of Propostition 2 remains valid for A, G, Lv

and Lv_n replaced by \overline{A} , \overline{G} , $Lv + u_0$ and $Lv_n + u_n^0$, respectively. Therefore we find that $(\overline{A}+\overline{G})(Lv_n + u_n^0)$ converges to $(\overline{A}+\overline{G})(Lv + u_0)$ weakly in \widetilde{V} . Thus we obtain $v + (\overline{A}+\overline{G})(Lv + u_0) = 0$. This implies that $u = Lv + u_0$ is a solution of (1.1). We can see that $u \in C(0,T;H)$ by the usual argument (cf. theorem 4.5 of (3)),

REFERENCES

- (1) Attouch A. & Damlamian A., On multivalued evolution equations in Hilbert spaces, Israel J. Math., 12(1972), 373-390.
- (2) Barbu V., Nonlinear semigroups and evolution equations in Banach spaces, Noordhoff, Leyden (1976).
- (3) Barbu V., & Precupanu Th., Convexity and Optimization in Banach Spaces, Editura Academiei R.S.R., Bucharest (1975).
- (4) Brezis H., Equations et inequations non lineaires dans les espaces vectoriels en dualite, Ann. Inst. Fourier. Grenoble 18(1968), 115-175.
- (5) Browder F. E., Non-linear equations of evolution, Ann. Math., 80(1964), 485-523.
- (6) Browder F. E., Nonlinear Operators and Nonlinear Equations of Evolution in Banach spaces, Proceedings of Symposia in Pure Math., XVIII, Part 2(1976).
- (7) Crandall M. G. & Nohel J. A., An abstract functional differential equation and a related Volterra equation, Israel

- J. Math., 29(1979), 313-328.
- (8) Gutman, S., Compact perturbations of m-accretive operators in general Banach spaces, SIAM J. Math., 13(1982), 789-800.
- (9) Gutman, S., Evolutions governed by m-accretive plus compact operators, Nonlinear Analysis TMA, 7(1983), 707-715.
- (10) Hirano, N., Local existence theorems for nonlinear differential equations, SIAM J. Math. Anal., 14(1983), 117-125.
- (11) Hirano, N., Abstract nonlinear Volterra equations with positive kernels, SIAM J. Math. Anal., 17(1986), 403-414.
- (12) Pavel N. H., Invariant sets for a class of semi linear equations of evolutions, Nonlinear Analysis TMA, 1(1977), 187-196.
- (13) Pavel N. H., Equations d'evolution multivoques dans des espaces de Banach, C. r. hebd. Seanc. Acad. Sci. Paris 287 (1978), 315-317.
- (14) Pazy, A., A class of semi-linear equations of evolution,

 Israel J. Math., 20(1975), 23-36.
- (15) Vrabie, I. I., The nonlinear version of Pazy's local existence theorem, Israel J. Math., 32(1979), 221-235.
- (16) Vrabie, I. I., An existence result for a class of nonlinear evolution equations in Banach spaces, Nonlinear Analysis, 6(1982), 711-722.
- (17) Vrabie, I. I., Compactness methods for an abstract nonlinear Volterra integrodifferential equations, Nonlinear Analysis TMA, 5(1981), 355-371.