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§1. Results

In this paper, we report the results of Kenmochi-Kubo [2] and
give the outline of proofs. Let QCRN (N21) be an open bounded set
with smooth boundary I'. We are interested in periodic behavior of
solutions to parabolic-elliptic problems with mixed-type boundary
conditions prescribed on time-dependent parts of the boundary.
Assume tha£ I' admits the decomposition: r = FD(tﬂ/FN(t)UTU(t), for
each t€R, where Fi(t) (i=D,N,U) are mutually disjoint ﬁeasurable
subsets of I'. Let  p:R—R be a non-decreasing Lipschitz-continuous

function. The following system is studied:

p(v)’ - Av = £ in (0,=)xQ,

p(v(0,+)) = u, in @,

v =20 on \p, o {t}xIy(t),

avv =0 on >t>0{t}XPN(t)'

v 50, d,v = 0, ve3 v = 0 on Lé>o{t}XFU(t)-
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kinds of problems arise from the free boundary problems for

- Here p(v)’= (v)) and 9, is the outward normal defrivative on I'. These
satulated—unsatulated flows in porous media. We refer to [3, 4] and
their references for related topics. 1In order to give a notion of -

weak solutions in variational sense, let us introduce the convex sets
K(t) = {Z€H1(Q); z=0 a.e. on I'j(t), zs0 a.e. on PU(t)}, for té€R.

Definition. Let J=R or R+. Let féLioc(J;LZ(Q)). Then a

2

loc(J;H1(Q)) is called a weak solution to E(K(t),p,f) on

function veL
J, if v(t)&eK(t) for a.e. tGJ,'p(v)EW1é§(J;L2(Q))' and v satisfies

the following variational inequality for a.e. t€&J:

J {(p(v) 7 (t)-£(t))(v(t)-z)dx + [ Vv(t)eV(v(t)-z)dx = 0,
Q Q

for all z€K(t).
Let us assume the following geometric condition.

(A.1) For each tER+ there is‘a C1—diffeomorphism 6(t,*):0 — Q
such that
(i) 6(0,+) = Id;

(ii) Fi(t) = G(t,Fi(O)), i=D,N,U, for all tER;;

2
. ) 9 3 0 =\ .
(iii) 5;(;9, 3—te; 5;;5{8 e C (R+><Q):
(iv) measrfwtgorD(t) > 0 (measr denotes the surface measure on T).

-2 =
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Lemma 1 (cf. Kenmochi-Pawlow [3]). Assume (A.1) holds as well as
1,1 12
(A.Z). . fEWlOC(R+,L (Q)).

Let U be such that there is VOEK(O) with u0=p(v0)., Then there is a

unique weak solution v to E(K(t),p,f) on R, satisfying p(v) t=0 = Yp-
Also the existence of a periodic solution is known.

Lemma 2 (cf. Kenmochi-Kubo [1]). In addition to (A.1) and (A.2)

assume that there is a constant T>0 such that
(A.3) £(t+T) = £(t) and T, (t+T,.) = [,(t) (i=D,N,U), for all t€R .
Then there is a weak solution  to E(K(t),p,f) on R+ such that

+

w(t+T) = plt), for a.e. t€R .

Such a solution  is called a T-periodic solution. Any

T-periodic solution can be extended as a solution on the whole of R
by using T-periodicity, provided that we extend the function f and
Ti(t) (i=D,N,U) periodically on R. The main result is stated as

follows.



' Theorem. Under conditions (A.1), (A.2) and (A.3), T-periodic
solution w to E(K(t),p,f) is unique and asymptotically stable in’ the

sense that for any weak solution v to E(K(t),p,f) on R+
o(v)(t) - plw)(t) — 0  in L?(Q) and weakly in H (Q) as t—.

Moreover the T-periodic solution w is the only one weak solution on R

such that the trajectry {w(t); t&R} is bounded in LZ(Q),

We shall give the outline of the proof of this theorem in the

next section. For the detailed proof, see [2].

Remark (cf. [1, 3, 4]).  As far as Lemmas 1 and 2 are concerned,
condition (iv) of (A.1) can be replaced by weaker one:

(iv)~’ meas FD(t) > 0, for all tER+.

r

§2. OQutline of Proof

The proof of Theorem is based on the following two lemmas.

Lemma 3. Assume (A.1), (A.2) and (A.3) hold. Let w and v be
weak solutions to E(K(t),p,f) on R+. Suppose that w is T-periodic

and that w s v (or w2z vVv) a.e. in R+XQ. Then we have

(1) p(v)(t+nT) — pl(w)(t) in LZ(Q) and weakly in H1(Q) as n—®

for all t€R+.
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Lemma 4. Let v and ¢ be weak solutions such that v 5. ¥ a.e in

R+xQ. Then

1/2

Y

(2) avv(t) 2 aVO(t) in the sense of H_ (T) for a.e. teR_,

that is <3 v(t),z> z < ¥(t),z> for all 268" 2(T) with z20. Here

—1/2( 1/2(r

<e,+> denotes the duality between H ') and H'! ).

Proof of Lemma 4. Fix t€R+. For each X>0 and p>0 let

VX Ll(t)€H1(Q) be the solution to
, ‘ :

Ar

v (t) - xav
u Ay

(t) = v(t) in Q,
u

-3 v (t)

]
VAU = HXFD(t)'Vx,u(t) *

1 +
EXPU(t).[vA,u(t)] on T,

where X (t) and Xr (t) are the characteristic functions of the sets
D U

FD(t) and FU(t), respectively. And let GA U(t) be similarly defined.
14
u(t), 3

The boundary conditions imply that avv GA u(t)ELz(I‘). Also
) r

Ay

it follows from v{(t) = O(t)' that VA u(t) < Gx u(t). Consequently
’ ’

(t) = -3 ¢ (t) on I'. Since 3 (t) and 9
Vv AIU /
-1/2

Y

-3 (t)

vVA,p

(T) as u+¥o

A\ v
vV Aru vV oAsu

converge to avv(t) and VavG(t), respectively ih H
and )40, we have (2). See'[2; Proposition 4.1] for the detail.

q.e;d.
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Proof of Lemma 3. We shall prove in the case w s v. The case

w2z v 1is similarly proved."

Since t »[[p(v)(t)—p(w)(t)]+| is non-increasing (cf. [3,

L (q)

41), we have by v 2z @

t o f'{p(v)(t)—p{w)(t)}dx is non-increasing.
£

In particular, since w is T-periodic,.

J p(v)(mT)dx = J p(v)(nT)dx for all n s m (n, méEN).
Q Q
Therefore
(3) lim J p(v){(nT)dx exists.
n—ew /Q

Next by viftue of [1; Theorem 1], {p(v)(t); téR+} is bounded in
H1(Q). Hence on account of the convergence result [4; Theorem 1.4],

' *
there are a subsequence {nk} of {n} and ‘a weak solution v. to
E(K(t),p,f) on R+ such that

* , 2 : 1
(4) p(v)(t+nkT) — p(v )(t) in L7(Q) and weakly in H (Q) as k-
for all teR+°

We are going to show that v = w. Then the entire sequence

p(v)(t+nT) converges to pl(w)(t) and we have (1). First by (3) and

— 6 -
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"(4) we see that

(5) f o (v ) (nT)dx = lim J‘pcvx(nT+nkT)dx
Q ko /Q
= lim J o (v) (mT)dx (put m = n+ny)
M—c0 °§

= lim f o (v) (n, T)dx
ko Q

i}

*
f olv )(0)dx, for all neN.
a ‘ :

* .
Therefore from the equations for v and it follows that

nT g N
JO dtaEJQ{p(V ) (£)-p(w) (£)}dx

(@]
"

nT .
J dtJ AV (£) -y (t))dx
0 Q

1]

nT R
I <3, (v(t)-u(£)), 1>dt, for all neN.
. . |

Qn the other hand, it is evident that ( < v*. ‘Therefore by (2)
avw(t) > avv*(t) in the sense of H—1/2(r) for a.e. t€R_.
Hence we have
<av(V(t)fm(t)),1> = 0, | for a.e. te€R_.

From this we can conclude that

-7 -
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(6) 3 w(t) = avv*(t) ‘ in 5 /2(T)  for a.e. téR+.

Next put TO = nt;OFD(t) and V = {zéH1(Q); z§0 on FO}' Since
measFFO > 0 by assumption, for each t€R+ there'is a unique solution

u(t)eV of the following variational problem:

(7) ‘ J Vu(t)+Vzdx = J {p(v*)(t)-p(w)(t)}zdx for all zeV.
Q Q '

It is seen from Poincaré's inequality that there exists a constant

C1>O such that

(8) Va(e) |,

for all t€R+.
L7(R) )

s o, lev ) (t)-ew ()]
: L7(Q)

From (6) and (7) we observe that

1 1oyt |2
2dt LZ(Q)

i

J Vu ' (t)*Vu(t)dx
9)

.k ,
{Q{D(v Y (E)-p(w) (t)} u(t)ax

J A(vT () -w(t))u(t)dx
Q ‘

B} J V(v (t)-w(t)) *Vult)dx
Q

1]

: . . :
- JQ(V (t)-w(t)){o(v ) (t)-p(w)(t)}dx.
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Hence by (8) and the Lipschitz continuity of o,

[0

a 2 2
yu(t) + C|yu(t) | ,
aE | le(Q) 21 12 (g)

1 d 2 o * ‘ 2
< 5 yu(t) + Colp(v )(t)-p(w) (L)
el T 2 gy Sl '12(0)
s daalvu(e)?, s j (v ) = (£)) {p (v ) (£) =p () (£)}dx
L7(q) Q. - :
< 0, for a.e. téR+.

From this inequalitiy we can conclude that

and f lva(e) (2, at < m.
0 L™(Q)

A
(&)

d 2
yu(t)
el !Lz(Q)

Consequently

|Fult)| ,  — O as t—se.
L7(Q)

Combining this with (7) we obtain

(9) j (v ) (E)=p(e) (£)}2d% — 0 as t—se for all zev.
Q.. : ‘

* .
Since {p(v )(t)—p(w)(t); téR+} is bounded in LZ(Q) ([1; Theorem 11])
and V is dense in L2(Q), the convergence (9) holds for all zéLz(Q).

In particular (zz1)
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[ {p(V*)(nT)—p(w)(nT)}dx — 0 as n—oo,
Q .

On the other hand, the T—periodicity of » and (5) imply that

J {p(V*)(nT)—p(w)(nT)}dx = J {p(V*)(O)—p(m)(O)}dX for all néN.
Q , Q

Hence

J (o (v )(0)-p(w) (0)}dx = O.
Q

Since p(v*)(O) z plw)(0), we have p(v*)(O) = p{w)(0). This

*
implies v = w. Thus we have proved Lemma 3. : : . g.e.d.

Proof of Theorem. First we shall show the uniqueness of
L2(Q)—bounded sélution bn R. Uniquenéss of T—periodicbsolution
follows from this. Let w be a T-periodic solution and let v be a
weak’solﬁtion on R sﬁch that {v(t)} ﬁER} is bounded in LZ(Q). We
first assume that ¢y =g v a.e. in RxQ. Since LZ(Q)—boundedness
implies H1(Q)-boundednéss (cf. [1, 3, 4]), there is a subsequence

*
{nk} of {n} and a weak solution v on R such that
*
v(t-n, T) — v (t) in L?() and weakly in H'(Q) as k—e.

On the other hand it follows from (2) and § < v that

-"10 -



158

(10) S (e ®-pienax = [ aw(er-uwit))ax
Q Q
= <8v(V(t)-@(t)):1>
< 0.
Hence
(11) lim J {p(v)(t)=p(w)(t)}dx = d exists.
t—- Q) )

Therefore for all té€éR

d = lim j {p(v)(t-n, T)=p () (t-n, T)}dx = j‘{p<v*)(t)-p<w)(t>}dx,
ko 1 Q Q

By the way, since ¢ = v, it follows ffom Lemma 3 that

*. : . : : , ‘ L
v (t+nT) - p(t+nT) — O in LZ(Q) and weakly in H1(Q) as n—»,

Consequently

0 = lim J {p(v*)kt+nT)—p(w)(t+nT)}ag = d.
Q

n—»o

Therefore it follows from (10) and (11) that J {pv)(t)-plw)(t)}dx
Q

is non-negative and non-decreasingly converges to d- =0 as t—-w,

Hence j (p(v)(t)-p(w)(t)}dx = 0 so that o(v) = plw) by v 2z w.
o ;

Therefore v = . Similarly we can show that v = i in the case @ z v.

- 11 =
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Now let v be an arbitrary LZ(Q)—bounded solution on R. For each
néN, put Yo,n = D(V)(“nTﬁJp(m)(:nT): and let v, be the weak solution
to E(K(t),p,f) on [-nT,x) satisfying p(vn)llt=—nT = uO,n'
Comparison result implies that v_ 3z vYy on [-nT,»). Also
LZ(Q)—boundedness:on v implies the uniform LZ(Q)-boundedness of
{(Valnen® Therefore the;e is a subsequence {nk}_gf {n} gnd;an

*
LZ(Q)—bounded solution v on R such that

Ve (B) — v*(t) in LZ(Q) and weakly in H1(Q) as k—o .
" . , .

for all t€R.

* . . N N . . -
Clearly v 2 vYy on R. Therefore from the argument before we have

* : ) . ; . .
Vv = p. Similarly there is an LZ(Q)—bounded solution v, on R such

that v, s VAy. And v, = . Hence we have Vv = y.
Next we shall show the asymptotic stability of the T-periodic

solution . Let v be any weak solution on R+. Then as befofe there

are weak solutions v and v such that V g VAW = vVy < V. By Lemma 3,

p(V)(t+nT)—p(w)(t+nT) — 0 (n—w). On the other hand (cf. [{3; Lemma

5.41), [p(@) ()l (8)] 4, 5 [p(T)(s)-plw)(s)] | for all
L' (Q) L' (Q)

0<s<t<w. So we have p(V)(t)—p(m)(t) — 0 (t—ew): Similarly

o(V) (£)=p(w) (£) — 0 (t—w). Since o(v)(t)-plw)(t) s

A

p(VI(E)-plw)(t) s p(¥)(t)-p(yw)(t), we obtain p(v)(t)-plw)(t) — 0

(t—w) . g.e.d.

- 12 -
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