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On the effectiveness of the method of regularization

- In the Case of Numerical Harmonic Continuation -

Takashi Kitagawa
L E R e R IEE
1. Introduction. We consider the problem of harmonic continuation of

a function which shall be stated that given a harmonic function h(r,8) in

the unit circle with known r < 1, find h(r,8) for r=1. If we set

2(8) = K(r,8)

and

f($) = h(1,$),
then this problem can be formulated by the Fredholm integral equations of
the first kind of the form

1 J2n 1 - r2

(1.1) f(t) dt = g(s).

2n 0 1-2rcos(s-t)+r
from which> we directly‘ recognize>the problem is ill-posed. This can be
viewed as direct inversion of Poisson integral to find g(s) in the unit
disk from ébthe“bou‘ndary value of f(t) for t on the unft circle which we
denote C(1). T | |

The diffipultyvpfvthis problem can be understood fromvthe relation of
the Fourier‘coefficients (ak} and {bk) of f and g that-jf—

(a,cos (k8) + b, Sin(ka)),

o
ne-18

f(8) = "a, + K

k=1

then
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g(G) = a, + sin(ke)).

(=]
ners

rk(akcos(kﬁ) + bk
k=1
This explains " that if r < 1 is very small and the g is contaminated

some perturbation, 'say JAg, the perturba{ion fntrbdﬁéed to f cén

magnified by the factor of 1/rk.

In »the present paper we propose a method for this problem based

the fundamental solution method and ihe method of regularization which

applicable for harmonic continuation not only to the unit disk but also

any simply connected region. In Section 2 we give a brief introduction

the fundamental solution method .and. basic result on convergence.

Section 3, we. present numerical scheme for harmonic continuation and

discuss the convergence of the method in Section 4. In Sections 5 and

by
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is
to

of

In

wve

6,

which is the main part .of this paper, we examine the numeriéal'stability

of the method based on our previous papers [{10] and (111. Some numerical

examples are included in the last two sections.

2. Fundamental Solution Method. To illustrate the idea of fundamental -

solution method, we first consider the Dirichlet problem of Laplace

equation of the form
2.1)  Au=o0 in @
(2.2) u=g'0n N,
2

vhere @ = { w € R 'HwHZ < p .

The fundamental solution méthod approximates the'solution u(x) by -

(2.3) un(x) =

. Cy G(x,yk) . X € Q

[ e §==]

1

vhere G(x,y) is the Green's function for (A,Q),

i
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1
G(x,y) = - — log lix - yil, . x,y € R%,
2 .
points yk’s, called charge points, are chosen appropriately and ck's are
constants to be determined. The vector ¢ = (Cl’ 02,...,cn)t ¢ R" is

called charge and determined in such a way that un(x) satisfies the

boundary condition

~

(2.4) un(xj) = g(xj) j=1,2,...,n,

~

where xj's are properly chosen n collocation points on the boundary. Let
the charge points Y sYgsee¥y be on the auxiliary boundary which is the

outer circle with radius R (with "outer" we imply R > P).

2n

~ — (k-1)i
With the collocation points xk = P e n and the charge points
2n
o (k-1)i
Y = R e , k=1,2,...,n, the following results are known.

Theorem 2.1.(Katsuradaf8]) a) The approximate solution u, converges

to the solution u exponentially with respect to n. More precisely

(2.5) Il u - u He =
2 : - n/3 n/3
sup lu(x) | ————— ((1+C(R,P)) (P/r) + 4(p/R)7 7Y,
lixli,= T, 1 - ¢/t :
where we suppose that the harmonic extension of u exists in Qr = (wvl
0

Hwn2< ro) with P < ry - C(R,P) is a constant depends on R and P.
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b) The condition number of the coefficients matrix of the equation (2.4)
which determines ' the charge ¢ grows exponentially with respect to n.

Approximately the condition number Cond(n,R) can be estimated by

log R R
(2.6) Cond(n,R) ~ ——— n (— /2 |
2 p

The estimate (2.6) follows from the fact that the coefficient matrix for

A

the particular location of xk and yk is circulant. For the properties of

circulant matrices, see e.g. Davis(1]. Numerical stability of this me thod

is studied in Kitagawall0].

3. Numerical Scheme for Harmonic Continuation
The numerical scheme proposed here makes use of the fundamental

solution methqéﬁ and the method of regularization. Suppose that the

harmonic funection h(x), x € R2 to be continuated is given on a circle c(p)
with radius p» and we shall seek its harmonic continuation on the circle
C(¥) with radius ¥ > P. We also assume that the function h(x) = h(r,8) is

harmonic . for r ( Ty and Ty >« > P. The process of the fundamental

solution method for this problem of harmonic continuation shall be as

follows.

STEP 1. Let R be the radius of the auxiliary circle C(R) on which we

2n
. (k-1)i
scatter the charge point y = (yl,yz....,yn) with yk = R e .
k=1,2,...,n, where i denotes the imaginary unit. We determine the charge ¢

(cl.cz,...,cn) in such a way that
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c
1

"o

(3.1) hn(wj) = ) = g(wj) s = 1,2,...,n,

where wj's are properly chosen n collocation points on:the circle C(P).

STEP 2. We approximates the values of the harmonic continuation h(x)

of h(x) on the circle C(¥) by the formula

(3.2) ' ﬁn-(x> =

c G(x,yk) , X € C(¥)

k

H~s

k=1

One may consider this approach 1is quite straight forward and the
method should work out well as in the case bf the Dirichlet problem. The
situation, however, is completely different from the‘casé ;nd the direct
application of above numerical method produces unacceptable results. This
is especially true when the rétio R/b is relatively.large.yln the rest of
the/ paper, we deal with the convergence and the numerical stability of’

numerical procedufe proposed above in detail.

4., Convergence of the Method. Since we have the convergence result
in the case of the Dirichlet problem, the convergence of the numerical -
method for harmonic continuation proposed in Section 3 is rather straight

forward. See [12] for details.

5. Numerical Stability of the Method.

5.1. Formulation and Basic Results. The method of Section 3 reduces
to the numerical process of the following two steps:
1) Weksolve an ill-conditioned‘linear system of (3.1) in the form of

(5.1) 'e = g
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for given data g which may be contaminated by some perturbation Ag, where

m n

g€ Y=R", ¢c€ X =R and I''X > Y with

. . : : , ; : .
L= . = . . € ji = .
(T ¢, kgl Cy .G(wj‘,ykA) ‘ g;wj), W5 c(m, ; 1,2, , N
2) We use the intermediate solutionec.to obtain the final result f by
(6.2) f=Ac,
where f € X and A : X » Y with

fj = hn(xj) = .

s

. Cy G(xj,yk) = (A c)j,'xj € C(Y), i=1,2,...,0.

Due to the ill-conditioning of (5.1), some 'large' perturbatioﬁ Ac
may be introduced to the intermediate solution <¢. One may assdme
intuitively that the error ||Af]| in the final result f is on a level with
llacll or as large as [{|All  |lacll. If this is the case, the method of
regularization Groetsch[6] and Tikhonov et al.[14], applied to (5.1) may
be very effective. But this is not always true. Even if the error l|lacll is

5

Véry large, 'HAfH -can be very small. In this cése, we do not necessafily
have to use the method. In some cases, we may have worse result by using
the méfhod; To examine whethef the method of regularization is effective

or not for ‘this class - of numerical procedures, we have the following

results.

We assume that given data g = g + Ag and the interﬁeéiéte solution ¢
= ¢+ Ac . We have T c = g as well as gs;l). Let qiz czﬁzif.. 2o 20
be : singular values of I and jui) i=1,2,...,m, (vj) j=1,2,...n be singular

vectors of I'. Reflecting the ill—conditionihg of I', we assume that dn >0

as n 2 ®, We can see that ||Ac|| » « as s 2 0 from
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. n
(5.3) Ac = ¥ — (Mg, u) v,

2

Next, we suppose that the final result f = f + Af. We have f = A ¢

~

as well as (5.2). Let 612 62 e ... & dn = 0 be singular values of A and

(ui) i=1,2,;..,m, (vj) j=1,2,...n be singular vectors of A. As for [|Af]],

we have the following result from Theorem 4.1 in Kitagawal[l0].

Theorem 5.1

(5.4) At s Iz * 8l lHagll
where
(6.5a) = =(,,), & .=0, /0
ij ij i J
(5.5b) 8 =, ) , B8, .= (v,, v.,), i,j=1,2,...,n.
' ij ij i Jj .

Z % O represents the Hadamard product of the matrices = and O and H'HF

denotes the Frobenius norm.

We here construct the matrices © and £ to examine the numerical
stability of the method of Sectibn 3. We compare the matrices with those
of the case of the Dirichlet problem and conclude that, unlike the case of
the Dirichlet problem}

(i) the whole numerical process of 1) and 2) for harmonic continuation
'shall be very unstable as the ratio R/P becomes large
(ii) we need to employ the method of regularization to stabilize the ill-

conditioned linear system of (4.1).
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5.2. Matrices Z and © for Harmonic Continuation. The elements Eij of

which we called explosive factor matrix in [10-11], represent the upper

—
o)
—

?

bound of magnification of the ui—component (Ag,ui) of perturbation Ag to
uj- component (Af,uj) of Af. For instance, the largest element Elﬁ gives

the ‘upper bound of 61/ Gn which coincides with the straight forward upper

bound with. the spectral norm ||-||_ of matrix given by |lafll s Ir71
v 's °0 . }

s
i . -1 - ~
1Al S llagll, since | "l s Al g = © 1/ s . On the other hand, the
elements Bij of ®, which we <call distortion coefficients matrix,

represents the actual ratio of propagation of (Ag,ui) to (Af,uj). The

actual magnification of propagation of (Ag,ui) to (Af,uj) is given by sijx

eij and the .upper bound of the total propagation of Ag to Af is given by

the square root of the sum of squares of Eijx gij’ or |IZ x OHF.

Fig. 5.1. and  5.2. represents typical patterns of E and ©
respectively in the case of Dirichlet problem. The elements of matrices =
and © are given by the rounding off the fractions of logarithm with basis

4.5 5.5

S a,. <10

. We
1]

10. For instance, an element aij = 5 stands for 10

set the parameters R = 4, P = 0.5 and n = 16. As is shown‘in (101, the

elements Eij grow large for small i's and large j's (upper right corner of

(1]

) and the diagonal elements Eii's are almost unity, while the elements

(=]

ij almost vanishes except  for near diagonal elements'and the diagonal
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Fig.5.1. EXPLOSIVE FACTOR MATRIX FOR DIRICHLET PROBLEM
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elements are. again élmost unify. Consequently, the large elements of Eij

cancel out by'multiplying the cprresponding elements of gij (Fig. 5.3).

Fig.5.4uand 5.5 represents the typical patterns of the matrices Z and
(%) respectiveiyv in the case of harmonic continuation. The parameters R, P
and n are identical to ‘th;se of the case of Dirichlet problem andvthe
radius < of‘ the circle where the harmonic continuation of h(x) shall be

sought is set to 2. The matrix = shows quité different feature ffom that

of the Dirichlet problem. The elements Eij for large j (right half) do not

decrease to unity even for near diagonal elements. This is because the

decay of the singular vaiues Ui of T is much faster than the singular

A

values Gi oft A. Table 5.1 and 5.2 shows the decay of both singular values

of (Gi} and (Gj) respectively. The corresponding elements gij of near

diagonal eléments~‘are close tq uhity as. is in the case of Dirichlet

problem. Thus . the large elements of Eij remains at lower right corner of

Ex0 as is shown in Fig. 5.6, and accordingly the perturbation (Ag,u;) for

i = n shall be significantly magnified and propagates to (Af,uj) for j =

n. This ' explains the numerical instability of the fundamental solution
method for harmonic continuation and implies the necessity of employing

the method of regularizaiton.
6. Effectiveness of the Method of Regularization

The method of regularization applied to the equation (5.1) with

perturbation Ag can be written as

40
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(6.1) (ritr+u1r¢ = rtg +am

We write the solution of (6.1) é(u,Ag). To examine the effectiveness of
the method of regularization, we have the next result from Theorem 3.1 in
Kitagawallll. We use the notations of f(},Ag) = A c(},Ag) and Af(},Ag) =

f(1,Ag) - £(0,0) in the theorem.

Theorem 6.1

(6.2) Haf QLA S II:g % QHF lell + Hsp * OHF lHagll
where
’ o _ .8 g _ 0 2
(6.3a) Ee —(Eij) , Eij = o, N / (dj(6j+ M)
o _ P p_ " 2
(6.3b) 25 -(Eij) s Eij = o, cj / (dj+ H)

and the rest of the symbols are the same as Theorem 5.1.

Based on the Theorems 5.1 and 6.1, we can examine the effectiveness of the

method of regularization very clearly. Letting

(6.4) ' () = £(1,0) - £(0,0)

and

(6.5) P(M,08) = f(H,08) - £(1,0),

we have

(6.6) HAf OL Al S P OLAD L + IOV

PO, Ag) defined by (6.5) represents the error due to Ag to the solution f
with 'regularization. If we compare the error due to Ag with that 6f f
without regularization, we can recognize' when the regularization is
effective. |

More specifically, we have

12
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(6.7) lleouall s NI, * Bl llagll
and ,from Theorem 5.1,
(6.8) [lafll s lIE = allg lloell.
Checking corresponding elements of Ep ,2 and 6, we can examine the
effectiveness of the regularization. We also have
(6.9) lsooll s lIE, * 6l llell.
This explains that we should avoid using the method of regularization when
it is not effective and we should choose the regularization parameter M
carefully.

We actually construct the matrices EC ,Ep and 8 and we examine how

the method of regularization stabilizes the numerical process and how we

choose the regularization parameter.

6.2. Matrices Ep and EC for Harmonic Continuation. We first note

that since the elements gij of the matrix © is independent of the

regularization parameter M, the distortion coefficients matrix @ is common
with that without regularization given by Fig. 5.5. We set the parameters
R =4, P = 0.5, ¥ =2 and n = 16 which are identical with those of Section

5.2. The regularization parameter is set as M = 10-9 for the first set of

figures from Fig. 6.1 to 6.3 and Table 6.1. We also note that the matrices

and © do not depend on g or Ag at all and,

(1

= and Ep as  well as
aceordingly, we do not have to construct these matrices for different

funetions of g.

13
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First we examine the elements E?j of matrix Ep due to perturbation

pg to study how the method of regularization stabilizes the numerical
process 1) and 2) of Section 5.1. The elements are again given by the
rounding off the fractions of logarithm with basis 10. Fig. 6.1 représents'

P

the explosive factor matrix Ep with regularization. The elements Eij of

o~

ecritical part of lower right corner (i = n and j = n ) are less or equal
to O and significantly smaller than those of £ without regularization of

Fig. b.4. This can be understood very easily if we compare the elements

P and &, 6f Z and Z.. As we have seen in Section 5.2 the elements Ei.

i ij °t. p i

grow large for large i and j mainly because the denominator cj approaches .
to zero as j = n.
On the contrast, the denominator (6§+ K) of the elements E?j do not

approach to 2zero even if j » n and dj approaches to zero as far as the
regularization  parameter H > 0. Since the numerator of the elements E?j
are irrespective to y, the elements E?j for large j's do not grow large as

in the case of Eij of = without regularization. Accordingly, as is shown

in Fig. 6.2, the corresponding elements E?j* e in lower right corner of

ij
matrix Ep* ® are much smaller than those of. the matrix Ex%0 (of Fig. 5.6).
The harmful =~ elements Jlarger than 2 have disappeared in Fig.6.2.

Moreover the Frobenius. norm of p* 6 reduces . to 2.38X102 from

1

1.54><105 of HEp* oll F This explains that the method of regularization

19
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Table 5.2. SINGULAR VALUES OF LAMBDA

Table 5.1. SINGULAR VALUES OF GAMMA
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P

significantly reduces the magnification of the prbpagation of the
perturbation Ag to the final approximation f in the case of harmonic
continuation. This 'situation is totally different from ‘ﬁhe caée of
bDirichlet problem in which the method of regularization is not effective.

Another factor of error &(x) which is defined by (6.4), however,
shall be inevitably introduced when we employ the method -of
regularization. Though the wupper bound of the error (M) is given in

(6.9), its interpretation is somewhat more delicate than the case of Eb

The element Efj X Bij of the matrix Eg * @ involved in (6.9) represents
the magnificatidn of the propagation of (g,ui) to (Af,uj) due to
introduction of the regularization parameter M. The size of (Ag,ui) may

not differ much among different i's, but the fourier coefficients (g,ui)

of g may be quite different in size. This is because the function g is
harmonic and very smooth, which may results in very rapid convergence of

the coefficients (g,ui) to zero.

For our example for harmonic function h(x) = h(s,t) = 52 - t2 + 2s -
2t + 1, the Fourier coefficients (g,ui) are given in Fig.6.4 which shows

that the Qoefficients from (g,ul) to (g,us) are significant and the rest

of them are numerical zero. This means that from the first to the fifth

columns (left part indicated by rectangle in Fig. 6.3) of the matrix EC*
® are of great significance. Fig. 6.3 represents the matrix Eg* ©, which
we temporarily call zeta-magnifier matrix, for the regularization

parameter M = 1077,

/6
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Fig. 6.3. ZETA-MAGNIFIER MATRIX WITH REGULARIZAITON

Table 6.1. REGULARIZED SOLUTION

-9-14-13 -9 -9(-1 6 3 -3 -2 -3 -1 -1 B8 0 2
-7 -7 6-10-10/-6 6 4 5 -2 -2 -2 -1 0 0 1
-7 -6 -7-10-16{-6 6 4 4 -2 -2 -2 -1 -1 0 1
-18-14-14 -3 -4/-7 6 -3 4 -2 -3 -1 -1 8 0 1
-19-15-14 -4 -3 6 -1 -3 -3 -2 -2 -2 -1 -1 -1 1
-18-14-14-10-10-1 -1 -3 -4 -1 -1t 0 -1 1 -1 1
-18-13-14-10-18{ -1 -1 -3 -3 -2 -2 0 -1 0 B8 2
-19 -15-15-186-16| 6 6 2 2 -1 -1 6 0 0 2 2
-19 -15 -16 -16 -11{ -6 -7 ‘2 2 -1 -1 ©0 @8 1 1 2
-19-15-16-11-11}-1 6 -2 -3 3 2 1 1 2 1 2
-19 -16 -15-11 -18 -6 -1 -2 -3 2 ¥ 6 0 1L 2 2
-20 -16 -15 -11 -11{ -7 -1 -3 -3 -1 -1 3 3 3 2 3
-19 -17 -16 -12 -12{ -1 -8 -3 -4 06 -1 3 3 2 3 3
-20 -16 -16 -11 -12| -7 -7 -3 -3 -1 -1 1 1 4 4 3
-20 -17 -17 -11 -13} -8 -8 -3 -3 -3 -1 2 1 4 4 4
-20 -16 -16 -11 11| -7 -1 -3 -4 -1 -2 6 1 3 3 %

Fig. 6.4. FOURIER COEFFICIENTS OF G

-0.400E+01
-8.302E+01
0.262€+01
-0.683E+00
0. 185£+00

0.793e-06 -

0.131E-06
-0.277E-06
-0.118E-05
-0.163E-05
-0.105E-05
0.231E-86
" 0.838E-08
0. 190CE-06
0.31SE-06
0.611E-06

REGULARIZATION PARAMETER = 1.E-9

TRUE FUNC. W/0 REGULA. WITH REGULA. ERR. W/0 REG. ERR. WITH REG.
0.90000E+81  0.S0256E+01 0.00000E+01  -0.25608E-01  -8.29564E-04
0.59932E+01 0.58887E+01 0.59933E+01 -0.54388E-02 -0.68188E-04
0.10000E+01°  0.S6555E+00 0.939397E+00 0.34452E-01 0.32425E-04
-0.399326+01 -0.3936SE+01  -0.39933E+01 -0.5667SE-01 0.73671E-04
-0.70000E+01  -0.70700E+01 ~0. 7000CE+01 0.69967E-01 -0.19073E-04
_0.70547E+01  -0.69828E+01  -0.70546E+01 -0.71892E-01 -0.6198SE-04
-0.46569E+01 -0.47202E+01  -0.46568E+01 0.63382E-01 0.31471E-04
-0.13978E+01 -0.13526E+01  -B.13979E+01 = -0.45197E-01 0.10872E-03
0. 1600CE+01 0.98016E+00 0.939395E+00 0.19843E-01 0.54777E-04
0. 16636E+01 0.16551E+01 0. 16637E+01 0.85666E-02 -0.21219E-04
0. 10000E+01 0.10364E+01 0.10000E+01  -0.36360E-01 0.29206E-05
0.33636E+00 0.27723E+00 0.33633E+00 0.59132E-01 0.24438E-04
0. 10000E+0L 0.10729E+01 0.10001E+01 -0.72886E-01  -0.58770E-04
0.33978E+01 0.33214E40L 0.3397SE+0L 0.76459E-01  -0.98944E-04
8.66569E+01 0.67259E+401 0.66569E+01  -0.63032E-01 0.47684E-05
0.90547E+01 0.90032E+01 0.90546E+01 0.51465E-01 0.61983E-04

/17
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If there exist some large elements, saY on a level with 0 or larger,

within the columns 1-5 of the zeta-magnifier matrix EC* 8, it is fatal for

our example and the approximation of harmonic continuation shall be

instantly demolished, since (g.ui) for i=1,...,5 are much larger than
(Ag,ui) and error as large as llgll shall be introduced. This is the case

when we choose.  the regulafization parameter too large. For the zeta
magnifier matrix of Fig. 6.3 , Since the maximal element in the first 5
columns is -3, welcan expect the method of régularizatibn works out well.
The Table 6.1 presents éétual'numerical‘results dh accuracy attained
without regularizétion (denoted by " wW/0 reg." in the table) and with

regularization (denoted by " with reg.” in the table) for u = 10_9. "True

func." in Table 6.1 gives the exact value of the harmonic continuation on
the circle C(¥) and "err." stands for error. Numerical result without
regularization attains accuracy of only 1 or 2 decimal digits, while that
of with regularization attains 4 of 5, which shows the examinétions of
matricés abo?e are reliable and the method of regulazization is effective.

The last’set of Table 6.2 and Fig. 6.5 shows the case when we choose
the regularization parameter too large and the parameter M = 10_2. In this

—

case, Frobenius norm of the :matrix :p*G_due to perturbation Ag is as

sma{l as 2.4XI00 and there shall be virtually no magnification of
propagation of Ag to f. Table 6.2, however, apparently shows that the
regularized solution is completely destroyed. Fig.6.5 of zeta-magnifier

—

matrix :c* ©® explains the reason clearly. The first 5 columns of EC* 6 of

Fig;‘ 6.5 ihclude the elements of 0 and 1, which is fatal as is mentioned

above and the regularized solution immediately breaks down.

/‘P»
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Table 6.2. REGULARIZED SOLUTION vs. NONREGULARIZED SOLUTION
REG.PARAMETER = 1.E-2
TRUE FUNC. W/0 REGULA. WITH REGULA. ERR. W/0 REG. ERR. WITH REG.

0.90000E+61 0.89062S6E+01 0.25576E+01  -0.2S608E-01 0.64424E+01
0.59932E+01 0.59887E+01 ~ 0.18431E+01 -0.54388E-02  0.41501E+01
0. 10000E+0L 0.96555E+00  0.99680E+00  0.34452E-01 0.31997E-02
-0.39932E+01  -0.39365E+01 0.15047E+00  -0.5867SE-01  -0.41437E+01
-0.70000E+01  -0.70700E+01 -0.5639SE+00  0.68967E-01  -0.64360E+01
-0.70547E+01  -0.69828E+01  -0.10365E+01 -0.71892E-01 -0.60181E+01
-0.46589E+01 -0.47202E+01  -0.11965E+01 0.63382E-01  -0.34603E+01
-0.13978E+01  -0.13526E+01 -0.10226E+G1 -0.45197€-01  -0.37524E+00
0. 10006E+01 0.98016E+00 -0.54424E400  0.19843E-01 0.15442E+01
0. 16636E+01 0.16551€+01 0.16443E400  0.855868E-02 0.14982€+01
0.10000E+0L 0.10364E+01 0.9S680E+00 - -0.36360E-01 0.31998E-02
0.33636E+00 0.27723e+00  0.18292E+01 0.59132E-01  -0.14928E+01
0. 10000E+01 0.10729€+01 0.25378E+0r  -0.72886E-01  -O.1S378E+01
0.33978E+01 0.33214E+01 0.30162€+01 0.7645SE-01 - 0.38169E+00 .
0.68563E+01 0.67259E+01 0.31901£+01  -0.69032E-01 0.34667E+01
0.80547E+01 0.90032£+01 0.38301E+01 0.51465£-01 0.60245E+01

Fig. 6.5 ZETA-MAGNIFIER MATRIX WITH REGULARIZAITON

-2 8 6 -5 519 -4 -2 -3 -2 -3 -1 -1 06 @6 2
-0 6(6 6|4 4 49 49 -2 -2 2 -1 0 0 1
-0 |0 B}-6 519 -4 -3 -3 -2 -2 -2 -1 -1 @ 1
-1 -7 -1} 1 Q5 -4 -3 4 -2 -3 -1 -1 0 0 1
-12 -8 -7 0 1|49 4 -3 -3 -2 -2 -2 -1 -1 -1 1
- -7 -1 -6 62 2 -2 -3 -1 -1 0 -1 1 -1 1
-1 -7 -7 6 612 2 -3 -3-2-2 0-1 0 0 2
-2 8 8 6 6|4 -4 2 2 -1 -1 0 6 0 2 2
-2 8 -9 6 -6(4 -5 2 2-1-1 08 6 1 1 2
-2 8 8 -1 -7T|]4 4 2 -2 3 2 1 1 2 1 2
-2 89 8 -1 6|4 4 -2 -3 2 3 08 6 1 2 2
-13-6 8 -1 -7|4 5 -3 -2 -1 -1 3 3 3 2 3
-12-186 9 -1 -7{5 -5 -3 4 0 -1 3 3 2 3 3
-3 8 -9 -1 .75 5 -3 -3 -1 -1 1 1 4 4 3
-13-18-18 -7 8|6 -6 -2 -3 -3 -1 2 1 4 4 4
-3 9-16 -1 -7{5 5 -3 -3 -1 -2 08 1 3 3 5

[1]

This implies that the matrices Eg 2y and © give us’an idea on the

choice. of the regularization parameter. We should choose ¥ in such a way

that

i) we reduce the size of element S?j of Ep whose corresponding elements of

eij of © are close to unity

ii)we avoid contaminating the elements E?j of EC whose corresponding

elements of eij of O are close to unity and the corresponding j-th

Fourier coefficients (g,uj) are significant.
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7.Concluding 'Remérks. We considered a method of numericai harmonic
continuation wusing .tbe fundamental solutioh me thod and the method of
regularization. It is demonstrated in this paper thatkTheorems 5.1 and 6.1
can be useful not only to examine the numerical stability of a class of
numerical proceddfés given by 1) and 2) of'Section 5.1 but also, as a tool
for those who‘ design a nﬂmericalvmethod, to study Qhether the method of
regularization is effective or not and how to choose the regularization

parameter when one applies it.
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