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This paper is concerned with solving the constrained nonlinear
squares problem:

‘.Tminimiée 'f<X)'é'(1/2) fil(rj(x))z
subject to‘the inequality and equality-constfaints
g () S0, i=1,...,m,
hi(xd) =0, j=1,..., 1,
e vector of variables x € R", where the functions riG =1,

P, 8, =1,..., m),khj(j = 1,..., 1) are real and twice

nuously differentiable. .. v :
In developing numerical methods for solving general nonlinear

optimization problens, penalty fuhction methods, augmented Lagrangian

. fUnction methods, and gradient projection,methdds are,well.kndwn'[S].

Recent research has centered on implementing some form of a guasi-
Newton technique (Han[81,[9], Powel1[12], Yamashita[20]1). This class

of al

gorithms is known as the sequential quadratic programming (SQP)

method or the successive quadratic programming method. The'global
convergence, and the local and. superlinear convergence, of these
 methods have been investigated by a number of authors. '
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On the other hand, Dennis, Gay and Welsch[4] proposed the
guasi-Newton based method for unconstrained nonlinear least squares
problems, by using the special structure of the Hessian matrix. So,
for solving constrained nonlinear least squares problems, we can
combine Dennis, Gay and Welsch’s étrategy with the SQP method by
using the special structure of the Hessian matrix of the Lagrangian
function of the above problem. |

In Section 2, we state the SQP algorithm and the global conver-
gence of this method. Further, Goidfarb and Idnani’s QP method is
introduced. In Section 3, we summarize the quasi-Newton methods for
solving unconstrained nonlinear least squares problems. Section 4
gives a modification of the SQAP method for constrained nonlinear
least squares problems. In Section 5, the numerical experiments are
presented. Finally, the nonlinear optimization code ASNOP(Applica-
tion SyStemifo# Nonlinear Optimization Problems) is descfihed.
Through this paper, the subscript ”k” denotes the iretation number.

2. Sequent|al Quadratlc Programmtng Method

This section considers the general nonlinear programm:ng problem:
(NLP) minimize  f(x) o
subject to the inequality and equality constraints

S (2.1) g(x) = 0, sg(x) = (31(")’ cee s gm(x))T,

0, h(x) = (h (), ooy b x)T

(2.2) h(x)

- on the vector of variablés X € Rn, where the functions f(x), gi(x)
(i =1,...,m) and hj(x) (j =1,...,1) are real and twice continuously

differentiable. Solving Problem NLP can be réduced to finding a Kuhn-

¥

Tucker point (x*,k ,;z*) which satisfies the following conditions:

(Kuhn-Tucker condition)

(2.3) vxux*,x* ] #

1 > Vf(x ) + Vg(x ya¥ s vnexHTut =0,
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(2.4) g(x*) = 0,
(2.5)  nxH = o,
(2.6) A ¥z o0,

2.1 (AHTeh = o,

where L(x, A, u) is a Lagrangian function of Problem NLP defined by

(2.8)  LGGA,u) = £00 + ATg00 + 1 Th(x,

A, U are vectors of Lagrangian multipliers, Vf is‘the gradient
vector of f, Vg and Vh are the Jacobian matrices of g and h, respec-
tively. ‘

In subsection 2.1 below, we describe the SQP method for solving
Probiem NLP and the global convergence, following Han[9]. Since the
SQP method defines the search direction by solving the strictly
convex QP subproblem on each iteration, an efficient QP solver must
be chosen. In subsection 2.2, we recommend Goldfarb and Idnani’s QP
method and state some features of this. ‘

2.1 SQP Algorithm
The SQP‘algorithm is the following:
(SQP Algorithm)

Startihg.with a point xIEERn, an nXn symmetric positive definite
matrix B,, and three numbers & > 0, w€(0, 0.5) and 7 €(0, 1), the

algorithm proceeds, for k =1, 2, ... , as follows:

Step 1. Having x “and Bk, find the search direction d, by solv-

k
ing the QP suhprbblem:
(QP subproblem)

k

(2.9) minimize (1/2)dTBkd + <7f(xk)Td
(2.10) . subject to g(x ) + Valx)d = 0,
(2.11) n(x) + Vhixdd = 0,
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and choose Akk+1 and "y to be the optimal multiplier vectors for

this problem.
Step 2. If the vectors Xy 00 A K+1 and By satisfy the Kuhn-

Tucker condition of Problem NLP, then stop; otherwise, go to Step 3.
Step 3. Determine a step length o by the line search algorithm:

Step 3.1 Set Iik 1 = 1 and j = 1.
Step 3.2 If

_ T

then set a, = t3k i and go to Step 4; otherwise, go to Step 3.3,

where 8 8(x) is a line search objective function and is

defined by _
(2.13) 85 (x) = f(x)+8 max(0,8,(x)s...,8,(x), 1 hy G I,eue, 1h 1),
Step 3.3 Set.B K, j+1 =18 K, j’ J = +1and go to Step 3.2.

Step 4. Set «x = x, + a, d

k+1 k k' 'k’ ,
Step 5. Update Bk givihg a symmetric positive definite matrix Bk+l

by a quasi-Newton updating formula.

It should be noted that @ 8.(X) in (2.13) is an exact penalty

function and that the condition (2.12) is the extension of Armijo’s
rule to the nondifferentiable function [20]. Han[9] has shown that
~the line search algorithm in Step 3 terminates after a finite number
Aof procedure. Furthermore, the following theorem shows the global
convergence of the SQP method.

Theorem 1.(Han[9]) For given positive 8:, let the lével set at
a starting point { x €R"1 @ 8(x)é 0 S(XI) } be compact. Assume

that, at each k, the QP subproblem is feasible and there holds
(2.18) & = 1l x,;u = 11,;k||1.
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Suppose that there exist positive constants £ 1 and 5:2 sUch that_

(2.15) & Ivi2s viBy s g0V

for any v € R" and each k2 1. . - .
lThen either thg sequence’{(xk,x k+l;ffk+l)} ggherated‘by SQP
Algorithm terminates at a Kuhn-Tucker point of Problem NLP or any

accumulation point of the sequencé is a Kuhn-Tucker point of Problem
NLP.

In SQP Algorithm, the matrix Bk is an approximation to the
Hessian matrix of L(x,A,u) with respect to x, in the sense that

@] B Vax0T ThxT] ~ [T, 0, VT ThoT,

XX~k
Valx) 0 0 Vet 0 0
Vhix) 0 0 Vh(x) 0 0

where Y?xka = V?xxL(xk,A k"‘k)’ and Step 5‘|s the quasi-Newton

update, which is to construct a symmetric positive definite matrix

Bkil such that the secant condition

(2.17) Bk+lsk =Y

is satisfied, where
(2.18) S| T Xe1~ Xk

and : : _ ,
(2190 ¥y = Vil A B i) T Vb0 Ay -
Typical updates are the BFGS and the DFP updates, which possess

hereditary positive definiteness if and only if slyk > 0. However,

T

vectors sk and yk do not necessarily satisfy sky > 0 for the

k
constrained minimization. |If sxykéo, we can no longer obtain a sym-

metric positive definite ﬁatrik'yhich_satisfiesvtbe secant conditigﬁ.'
To maintain the positive definiteness of B, Powel1[12] has recommend-
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ed the condition '
(2.20) BlsiSk = 70 My * b\ + (1= )‘ B, S
instead of the orlglnal ‘secant condntion, ‘where ¢»k is a parameter

chosen such that sk(d’ky + (l k) Bksk) > 0 Powell has proposed

the formuia based on the BFGS update, which is expressed by

] T,
2200 By = B B S B/SBS 1 8T
where -
(2.22)  ®, =1 if sy 2 02sTBs

' k Kk = Kk

(2;23) d’k = 0 8 slBksk/sk(B sk yk), otherwlse

2.2 Goldfarb and Idnani’s QP Method
Goldfarb and Idnani[7] have developed a numerically stable dual
method for solving the sirictly convex QP problem

(2.20)  minimize (1/2)d7G d + a'd  with respect to d € R"

(2. 25) subJect to Cld+b s o0,

where G is an nXn symmetrlc positive deflnite matr|x, C is an nXm
matrix and a, b are n and m dimensional vectors, respectlvely In
this paper, we omut the details of their algortthm The features of
the algorlthm are as follows | ‘ |

(1) The unconstralned minimum of (2.24), =G 1, a, is used as a start-
ing pount in the prlmal space. The origin is used as a startlng point
in the dual space. o ' A

(2) The algorithm is based ooon projections onto aciive sets of con-
straints. : :

(3) The algorithm iterates: untll primal feasnbxllty (dual optimality)
is achieved. 1t is very important that the origin in the dual space
is always dual feasible, so that no Phase 1 procedure is required.
(4) The algorithm solves the QP problem (2.24) or indicates that it
has no feasible solution in a finite number of steps. \

(5) The numerical implementation is based upon the Cholesky factori-
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T

zation G = LL  and the QR factorization L'1

N = [ 02][RTI 017, where

L is an nXn lower triangular matrix, q is the number of the current
active constraints, R is a gXqg upper triangular matrix, [Qll 02] is

an nXn orthogonal matrix, and N is an nXq matrix whose columns are
the normal vectors of the constraints in the current active set.

Let the matrix P be P = LjT[Qll 02]. Whenever a new constraint is

added to or deleted from the set of active constraints, the matrices
P and R are updated by using the Givens rotation. Since q = 0 at

T

a starting point, the matrix P is set to L™ and the matrix R starts

from the empty matrix.

Note that the above algorithm can be easily applied to the
strictly convex QP problem with inequality and equality constraints.
It is important to be able to make use of the final active set in the
last outer iteration of SQP Algorithm, and if the starting point in
the primal space is feasible, we can use it as the new search direct-
ion directly. So it is stated that this QP method is particularly
suitable for the SQP method ([131,[181).

If we use Powell’s modified BFGS update (2.21) in the SQP method

with Goldfarb and ldnani’s QP algorithm, the matrix Bk is factorized

in the triangutar form. In which case, Gill, Murray and Saunders’
technique [6] can be used. They have dealt with the Cholesky
factorization of a symmetric rank one update

T _ T T
(2.26) Lk+1Lk+1 = LkLk + T ViV

where L, and L K
and o, is a scalar. 5o we have the following procedure:

K+l are nXn lower triangular matrices, v, is a vector

(Procedure A) > _ .
Step 1.Applying Gill, Murray and Saunders’ technique to Powell’s
modified BFGS update (2.21) in twice, we have the Cholesky factor
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. 2 )
Lk+l in 0(n“) operations.

Step 2. The matrix L;II is calculated in 0(n3) operations by the

backward substitution.
Step 3. In Goldfarb and ldnani’s QP algorithm, P = LLII is used
as anh initial matrix. '

3. Unconstrained Nonlinear Least Squares Problems

This section is concerned with the problem of minimizing a sum
- of squared nonllnear functﬁons

(3.1 £ = (1/2) j%i (rj(x))z,

where rj:Rn - R are twice continuously differentiable for j=1,...,p

and p2n. Most iterative methods for the above problem are variants
of Newton’s method. At the k-th iteration of Newton’s method, the
search direction d, is computed by ‘

2 - _
(3.2) \V/ f(xk) dk = Y7f(xk)

and the new point is generated by
(3.3) + d

Xke1 = Xk kK *

Here X\ is a current estimate of the minimum point x* and Vf, V72f

are the gradient vector and the Hessian matrix of f, respectively,
which are given by

(3.8) V) = JGOTrx0,
2 T 2
(3.5) VRO =100 I+ 3 RO ALNOE

where -
(3.6) r(x) = (r (0, «ov rp(x))T
and J is the pXn Jacobian matrix whose (i,j)-th element is 'Bri/‘akxj.

Since the cost of providing the complete Hessian matrix is often
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expensive, methods have been derived which use only the first deriva-
tive information. For example, the Gauss-Newton method and the
Levenberg-Marquardt method are well known. Since these methods
neglect the second part of the Hess:an matrix of f, they can be

¥

expected to perform well when the residuals at x aré small or the

functions r, are close to linear. However, when the residuals at x

are very large and the functions are rather nonlinear, these Méthods
may perform poorly [3,Chapter 10].

On the other hand, the. quasi-Newton approximation to the second
part of the Hessian matrix has been considered [3]1,[11]. Recently,
the robust algorithms have been proposed by Bnggs[l] and Dennls, Gay
and Welsch[4]. Since the nonlinear least squares algorvthms usually
calculate the Jacobian matrix J analytically or numerically, the

portion J(x)TJ(x) of Y72f(x) is always readily available, so we only

have to approxlmate the second part of V f(x) Thus, for unconstralnj
ed nonlinear_least squares(problems, |t has been considered that the
search direction can be computed by

T T
(3.7 (J(xk) J(xk) t A )dk J(xk) K
where M = r(xk) and the matrix Ak is the k th approxumatlon to the
second part of the Hessian matrix of f[11]. The,matrlx Ak is updated

such that the new matrix Ak+1 satisfies the secant condition

. B} N
(3:-8) Ay 8% Ve Ui T Y T IO ) I8
or
(3:9) Ay 8T Ve V= Gl =000 gy

The first is proposed by Broyden and Dennis (BD) [2], and follows
directly from the usual secant condition. The second is proposed by
Biggs[1] and by Dennis, Gay and Welsch (DGW) [4], and is based on the
special structure of the second part of the Hessian matrix. The -
Hessxan matrlces of r (J 1,...,p)_at Xi 41 can_be‘approximated by
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the form, in the direction of S\’

(3100 V2r () s~ Vil D= Vr(x),  §= L

We therefore have the secant conditiqn (3.9). The quasi-Newton
methods based on (3.7) are called the special purpose quasi-Newton
methods. | _

Special purpose quasi-Newion updates are usually of rank one or:
of rank two. Broyden and Deﬁnis'gave the following update:
(i)the BD update

(3.11) - 'Ak+1 = Ak + ((u Aksk)sk + sk(u ) )/sksk

' T 2 T
v((uk ksk) S, /(sksk) )sksk
Biggs and Dennis et al. have used scaling techniques and proposed the
following updates: |

(ii)the Biggs update o ,
, _ _ _a L T

T T
By = "™ / "k

(iii)the DGW update

(3.13)

L T T
(3.14) vAk+1" B A + ((v k K k)yk + yk(vk k k) )/skyk
_ _ 2 T
_ T T
(3.15) B K min( 1 sV /skAkskI R 1.),

vhere B is a scal!ng parameter.

The Blggs and the DGW methods are rohust for both cases of Iarge
and small resxdual problems. When the restdual at the minimum point

2
is large, information of the term E?Ir,(x)ﬁ7 r (x) is included in the
=1 J

matrix Ak#l’ so these algorithms perform as well as the BD‘method;

On the other hand, for .the very small or the zero residual problems,
these algorithms perform almost as well as the Gauss-Newton method.
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This is based on the fact that if the residual Hr(xk+1 2 k+1

becomes zero, then the parameter B K is zero and the new matrix Ak+l

JI, at x

hecomes a zero matrix.

4. Constrained Nonlinear Least Squares Problems

Consider the constrained nonlinear least squares problem:
(NLS)

(4.1) minimize f(x) = (1/2)r(x)Tr(x) = (1/2) _Z?I(rj(x))2
) . : J=

subject to the inequality and equality constraints

(4.2) 8 S 0, 800 = (g;(x), ..o, g, GN,
(4.3) h(x) = 0, hGO = (h Gy ooy b (O]

on the vector of variables x € R", where the functions rj(x)(j = 1,
.,Ap);‘gi(x)(i = 1,e.0s m), hy(§ = 1,..., 1) are real and twice
continuously differentiable, and r(x) is a residual vector given by
(4.4) r(x) = (ry(x), ..., rp(x))T. |

The Lagrangian function of the above is represented as

(4.5) L(x,A,n) = (1/2)r(x)Tr(x) + A.Tg(x) + LtTh(X),
and the Hessian matrix of this with respect to x is formed by

1.6) VL= 100+ ¢ oV (0+F & Ve GOFE u Vb (0,
XX j=l J i=1 i i =1 J
where J(x) is a Jacobian matrix of r(x).
For Problem NLS, Takahashi et al.[17] try to combine the SQP
method in Section 2 with the special purpose quasi-Newton method in
Section 3, that is, they approximate the second term of the Hessian

(4.8) by Ay > and the remainders by C,> respectively. Then we have

WD By = I ) + A+ G

in the field of curve-fitting and parameter estimation, the sample
size p is large but the number of variables is rather small, so it is

-11-
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not expensive, in practice, to store the matrices Ak and Ck. We can

use directly the Dennis, Gay and Welsch update (3.14) for approximat-
ing the second term of (4.6). Noting that the matrix Bk must be posi-

tive definitekfor the global convergence of the SQP method, we may

try to impose the requirement that the matrix Ak maintains the posi-

tive definiteness. So, we have an another update :
o T T T T

(4.8) AL =B A *T (LB, v kSkAksk) ViV,— B k(AkSk v+ kskAk)}’

(1.9 Y =  z/)kvk + (1- zpk)BkAksk,

“where Vi is defined by (3.9),

(4.10) T

K 0 if | slv k' SEp, p is a small‘positive constant,

T .
.(4.11) T k llskv K’ otherwise,

and
(4.12) o, =1 if stv, 2 0.2 B.s'A.s
: K kVk ‘2 By sAesio
(4.13)  ®, = 0.8 BkslAksk/s:(BkAksk—vk), othervise.

Further, for the matrix Ck’ we obtain the secant condition

where

: - T - vaTa - 31T
.15 uye = IVl D= V)T &+ TVRGy D= V)T a -
Various‘updating formulae which satisfy the above condition can be
obtained. Considerihg the positive definiteness of the matrix Bk in

(4.7), we propose Powell’s modified BFGS and the modified DFP updates
' T. ,.T T,.T

(4.16) Ck+l = Ck-Ckskska/skask~+ qqu/skqk
and

) T. T T, T T T.\,.T
(4.17) Ck+1 = Ck+(1+skask/squ)qqulsqu (Cksqu + qkska)/squ,

respectively, where , .
(4.18) 4 = d’kuk + (1—‘¢k) Cksk

-12-
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and

(4.19) ¢k

n

D R
1_ if S Y EVO.Z skask,:

(4.200 ¢, = 0.8 5,C;s,/8,(C,5,~u,), othervise.
- Now we present the SQP algorithm for solving Problem NLS:
(NLSSQP Algorithm) .
Starting with an n-dimensional vector x,,nXn symmetric matrices
Al’ Cl’ and three numbers‘ 8§ >0, we(, 0.5 and '\tE}(O, 1, the

balgorithm proceeds, for k = 1,2,..., as follows: v
Step 1. Having xk, Ak and Ck’ find the search direction dk by

solving the QP subproblem:
(QP subproblem)

(4.21)  minimize (1/Dd"UxDTIG) + A+ € d + V(x4
(4.22)  subject to  g(x, ) + Vaglx )d = 0,
(4.23) h(x,) + Vhix)d = 0,
-kt
this problem. ,
Step 2. |If the vectors x, , A

and choose A ahd “k+1 to be the optimal multfplier vectors fof

K+l and B satisfy the Kuhn-

Tucker condition of Problem NLS, then stop; otherwise, go to Step 3.
'Step 3 4nd 4 are the same procedures as SQP Algorithm.
Step 5. Uante,Ak and Ck giving A and C by the formulae

(3.14), (4.16) (or (4.17)).

k+i k+l1

Though the th expressions relating to cOhstraints in (4.6) are
approximated by only one matrix Ck in (4.7), partition of Ck can be.

considered, that is,

1 m ()2 9 L2
4- 4 C ~ A d ~ P i . N ,
( ’2 ) ) ?;l ) v gi(xk) an Ck j=1‘lk \Y4 hj<xk)

-13-
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~ where A ﬁ') and LtﬁJ) denote the i-th element of A K and the j-th

element of 2o respectively. |In which case, a similar secant

- . , ~L 2
condition to (4.14) is obtained for Ck+l and Ck+
updating formulae. Further, considering the expression (4.68) and the
linearity of functions, we have the following strategies:

1’ and we have some

(1)When all the model functions are linear (i.e., r(x) = Mx—b, where
M is an mXn constant matrix and b is an m-dimensional constant
vector), we set Ak = 0 at each step in NLSSQP Algorithm.

(2)When all the constraints are linear Ci.e., gi(x)»= a'irx—-zi and

h.(x) = pTx—-w., where a., z., p. and w, are constant vectors),
it J J ) R | J -
we,set,Ck,=_0 at each step in NLSSQP Algorithm.
(3)When all the model functions and constraints are linear (i.e.,

r(x) = Mx—b, gi(x) = a!'x--'zi and hj(x) = p}x-wj), Problem NLS

becomes the QP problem -

(4.25)  minimize C1/2x' (WTM) x = bTMx + C(1/2)bTb

(4.26) subject to a?x -z, 80, i =V1,..., m,
T - .

(4.27) Pix — w; = 0, Jj=1,..., 1.

If the matrix M is of full rank, we can use Goldfarb and ldnani’s
QP method [15].

5. Numerical Experiments and Discussions

This section presents the results of some numerical experiments.
The performance of NLSSQP Algorithm is compared‘with SQP Algorithm.
The algorithms were coded in FORTRAN 77 and the double precision
arithmetic was used. The convergence criteria used in all the algo-
rithms are as foilows:_ '
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S

g;(x) = g, i=1...,m
(5. IThx)l S &, =10,
A Dz —e, =1,
A g1 s e, =1,
(i)

where A k+1 denotes the i-th element of A K+1 and € is a tolerance.

For a comparison between SQP Algorithm and NLSSQP Algorithm, the
run was made on an NEC PC-9801 personal computer. Both algorithms
used Goldfarb and ldnani’s QP method, and three parameters 8§, w
and v were set to 10, 0.1 and 0.5, respectively. |In SQP Algorithm,

Powell’s modified BFGS update (2.21) with B1 = I and Procedure A

were used. In NLSSQP Algorithm, the updating formulae (3.14), (4.186)
and (4.17) with Al =0, C1 = I were used, and the Cholesky factori-

zation of the matrix (4.7) was done. A total of five problems were
solved. The starting points used and the optimal points can be found
in Hock and Schittkowski[10]. The test problems are as follows:

Problem 1 (No.57); n=2, m =3, 1 =0, p=44.
o 44 2
Minimize 2 { b —x —(0.49—x Jdexp(—x (a —8))} ,
=1 j 1 1 2 :

a; and bj (j=1,...,44) are given in [10],

subject to x1x2—0.49 Xo * 0.083 = 0, 0.4 = Xy -4 é'xz.

Probiem 2 (No.65); n=3, m=7, 1=0, p= 3. '
Minimize (x;=x)% + (x) + xy—=10)%/9-+ (x5—5)?

2 s s,

55 x. = 4.5 (i=1,2), -5 =

subject to x2 + x2 + X
1 2
-4, i x3

s 5.

..15-
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= 19.

(1+1/(12x2))'1[x3bx2 (x2/6.2832)0'5(cj/7.658)x2’1

exp(xz—-bcjx2/7.658)],

p = (117Q2x ) T LCb/xD*1 (x,/6.2832)05¢c 176581

| (1-—x3)exp(x1-bcjx1/(7.658x4))],

Problem 3 (No.70); n = 9, 1 =0, p
19 obs 2
Minimize < (F. +F —-F ),
j=1 1 2 j
Fl =
F =
b = x, + (l—-x )x., ¢. and FObS
3 37747 7] J
subjecvt to Xg + (1—x3)x4 =z 0,

0.00001 = X =

Problem 4 (No.79); n=5, m =0, |

N ' 2 2 _
Minimize (xl-l) + (xl—-xz) 4+ (xz--x3

X+ x§'+ x3—-2?-3(2)0'5

subject to 3

2 0.5
Xg= X3 + X, + 2—-2(2)

Problem 5 (No.100); n =7, m = 4, 1 = 0.

Minimize (x;—100% + 5(x,—12)% + x3 + 3Cx,— 1% + 10

2
+ 7x6 +

subject to  2x

- . )
7x1 + 3x2 +v10x3 + X~ X

2 2
23x1 + x2 + 6x6—-8x7 =

4x2 + x2—?3x X

2
p toxgT3x Xy + 2x

3

100 (i=1,2,4),

2 4 2
1 + 3x2 + x3 + 4x4 + 5x5

are given in [10],

=3, p= 5.

0.00001 = x3 s 1.
2 _ 4 o
)<+ (x3 x4) + (x4 x5)
0,
0, x1x5 = 2.

6
5

4
x7*-4x6x7—-10x6—-8x7

s 127,
s 282,
196,

+ 5x6—11x7 = 0.

4

Problems 3 and 5 were solved using the values 10-3, 10-4, respec-

tively, for the tolerance in the convergence criterion, and the others

were solved using & =

1076

Since Problem 3 (Himmelblau’s problem)

is printed incorrectly in [10], we referred directly to Himmelblau’s
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book(Applied Nonlinear Programming,1972). Note that Problem 5(Wong’s
problem) can be reduced to the nonlinear least squares problem(p = 9):

(5.2) 00 = (=107 + 5, =102 + D2 + 30x,— 1D? + 10?2
+ 50xg= D+ F-2F 4 20— xp)? + 20x7- D2
Tabie 1 displays the numerical results. These results suggest that

NLSSQP Algorithm is very promising.

Table 1. Comparison between SQP Algorithm and NLSSQP Algorithm

SQP with NLSSQP with NLSSQP with

Update (2.21)  (3.14) and (4.16)  (3.14) and (4.17)
Problem IT  FE QP IT FE QP IT FE QP
Problem 1 16 21 11 16 17 6 6 17 6
Problem 2 12 18 12 12 19 11 12 19 11
Problem 3 55 279 16 13 18 3 13 18 3
Problem 4 13 13 40 9 10 30 | 9 10 30
Problem 5 15 33 32 10 13 21 8 13 18

IT: the number of iterations. ,
FE: the number of objective function evaluations. ,
QP: the total number of inner iterations required in the QP algorithm.

Since we use the DGW update (3.14),the matrix Bk in (4.7) is not

necessarily positive definite. In fact, for Problem 1, the positive
definiteness of Bk was broken. When the positive definiteness_was

broken at t-th iteration, we tried to reset the matrix (4.7) as
follows; '
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0.
I.

g = 0-

. _ T
Reset 1: Set Bt = J(xt) J(xt)-
. _ T -
Resgt 2: Set Bt = J(Xt) J(xt) apd.At =
. _ T,, a2
Reset 3: Set B, = J(x,) J(x,) + 10
't 7 00
Reset 4: Set B, = J(xt)TJ(xt) + 10721 and A
. _ T
Reset 5. Set Bt = J(xt) J(xt) + Ct‘
Reset 6. Set B, =

Table 2 displays the
(3.14) and (4.16) by

using the above resetting rules.

" J(xt)TJ(xt) +Cyand Ay = 0.

numerical results of NLSSQP Algorithm with

These results

suggest that performance of the algorithm is sensitive to the choice

of resetting rule.

Note that the best result of Problem 1 in Table 2

is included in the appropriate column of Table 1.

Table 2. NLSSQP Algorithm with (3.14), (4.18) and Resetting

Reset 1 Reset 3 » Reset 5

or Reset 2 or Reset 4 or Reset 6
Problem IT FE QP IT FE Qp IT FE qQp
Problem 1 20 27 17 16 17 8 ‘20 27 15
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6. Nonlinear Optimization Code ASNOQP
The increasing importance of nonlinear optimization arising in

practical situations, e.g., engineering design, operations research
and economics, requires the development of suitable optimization
software. In recent years, a lot of effort has been made to imple-
ment efficient and reliable optimization programs. Schittkowski has
introduced, in [14], 20 different optimization codes in 26 versions
and tested them extensively from different points of view.
We have been developing the nonlinear optimization code ASNOP
since 1982, at the Information Science Research Center of Aoyama
Gakuin University. The numerical methods included in ASNOP are as
follows; o ; ' : .
(1)The quasi-Newton methods (e.g., BFGS method and DFP method) for
general unconstrained optimization.

(2)Goldfarb and Idnani’s method for quadratic programming.

(3)The augmented Lagrangian function method for general constrained
optimization.

(4)The SQP method, described in [18], for general constrained non-
linear optimization.

(5)The NLSSQP method, described in this paper, for constrained
nonlinear least squares problenms.

The details can be found in [16] and [18].
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