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Algorithmic Construction of the Recursion Operators
of Toda and Landau-Lifshitz Equationf
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Abstract

A new approach to the construction of recursion operators of completely in-
tegrable system is exhibited. It is explicitly applied to derive the hierarchy of

equations of motion of the celebrated Toda lattice as well as the well known
Landau-Lifshitz equation.
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A. Recursion Operator for the Toda Lattice

The equations of motion for the Hamiltonian System of the Toda lattice with
Hamiltonian )
H= Z{é—p% +e””"+1-‘”f'} . 1)
‘- ,
are: . '
N ©)
and the shift operator of the Lax pair acting on the vector
. t
wn = [ n] (3)
€

is given by (Takhtadzhan and Fadeev (1979))

La(M\)Yn = Y1 | . (4)
where '
L= ] s)
After introducing
Up = €ng1 (6)

(4) yields the following second order difference equation for v,:

Avp = e:':M'l—x"'Un-l-l + (_pn)vn + Up_1 (7)
Define now |
a, = eintiTon s bn = —Dn (8)
then (7) is written as: ‘
AnUnt1 + bpUp + V1 = Av, : o (9)
The time evolution of the auxilliary vector v, is expressed in terms of v,’s as
Unt = (AnVnt1 — Bavn)ay (10)
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and the compatibility of (9), (10) gives:
[ans + Aan(Any1 — An) — an(bn+1An+1_— bnAn) — an(ant1Bni1 — @n_1Bn_1)] ny1

+ [bn,t + /\(a'an — an—an—-l) + bn(an—-an——l - a'an) + an-—lAn—l — a'nAn+1] Up = 0
(11)

hence both coeflicients of v, and v, should vanish i.e.

a'n,t + Aan(An-{-l - An) - an<bn+1An+1 - bnAn) - an(an+an+1 - Qn—an—l> =0 (12)

and ‘
bn,t + /\(aan - an—an—l) + bn(an—an——l - a'an) + an—lAn—l - anAn—H =0 (13)

One may postulate
N N N N
Ap=3 ADN B, =3 BUN (14)
Jj=0 - 3=0
So after substitution of (15) into (12), (13) and equating coefficients of A/, one
obtains thefollowing equations: o

an(Agzﬁ’-)l - A%N)) =0 7a'nB7(zN) - an—lBg-\f)l = (15)
@nt = An(bni1 Al — b AD) + an(ani1 B — an1BYY)) (16)
bn,t = bn(anBSzo) - an—iBgl)—)l) + anASz()%)-l - an—lAgzozl (17)

an(AY7D — ATD) = ap(b1 AT, — 0, AD) + an(an41BY)s — a,1BY)  (18)
anBy(zj—l) - an——pr(lj—_ll) = bn(anBy(zj) - an—1B1(1121) + anAg—?-l - a"—lAglj-)-l (19)

fory=1,...,n.
Upon introducing the operators A, At (cf. Soliani et al., (1983))

Aty = Upy1 — Uy
Aty = Upy — uy | (20)
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one may write (17), (18) in matrix form

an] [ an(d=AT)a,  a,Ab, ][BY

but| | —bnAtan CanA — Ata,| [ AD
and (18), (19) expressed as: ‘
B,(,j—l) B1(1j) 3
© {A%j—l)} = [Ag)} | (22)

where

~_ [0 anA |
o) :} {—A"’an O] (23)‘

Note that this operator was present by Soliani et al., (1983). The recursion

relation takes the form

B1(1,j_1) i ng) B,(,j)
[A%j‘l)} = [A%”} =" [ASZ)] | 24
From (25) one obtains recursively: ‘ :
Bf(zo) N BﬁzN) f
o) =¥ [ )
and since a solution of (15) is
A =c, BM =0 (26)
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where c is an arbitrary constant, the hierarchy of the Toda lattice is given by:

o et

C

The first system of equations (N =0, ¢ = -1) -

SRR R

an-1 — Qn
is equivalent to (2), using (8). The second system (N = 1) is:

—an,Ab,
Ata,

[‘;j — 0070 [_?1] o (29)

and, after noting that

| 0 a‘l(A+)‘1
-1 __ n
- 07 = [ - A-lg-l 0 (30)
where
(A7 ), = = 3 u; (31)
j=n
(29) becomes:
an,¥ _ an(an+1 - 2an + an—l) - an(b%_g_l - bz) (32)
bn,t - —bn(an—l - an) - an(bn-kl - bn) + an—lbn—l - anbn
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B. Landau-Lifshitz Equation

The Landau-Lifshitz equation (LL) is given by
S;=SxS;;+SxJS e
where J is the diagonal matrix ‘
J = diag (Jr,J2,J3) | (2>
and S is the classical unit spin S = (Sl’ Sy, S3), i.e.,
S-S=1. (3) ‘

It is well known that (1) is completely integrable and Sklyénin (1979) and
~ others presented its Lax—parir. Sirrce the LL equation is the continuum limit of'
the equation of motion of the quantum non-isotropic Heisenberg Hamiltonian;
(the so-called XYZ), it is not surprising that the Lax pair is expressed in terms of
Jacobi elliptic flrnctions. The algebraic structure of (1) was studied in detail by%
Date, Jimbo, Kashlwa,ra and Miwa (1983) who derived its quasi-periodic solutions. ‘
as well. Furthermore Fuchsstemer (1984) studied its master- symmetrles |

Consider the equation for the auxilliary vector 1 given by
3
";[}z = —1 (Z:l SjoO’j) ¢ = -—-ZLQ/) (4)
j= |

6
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while I may be viewed as the shift operator associated with the Lax pair. The

operators o; are the Pauli spin operators given by

R VY R ) B

and the Jacobi elliptic functions W; are given by Sklyanin as:

W= psn(l, k)
s ©
W= o
with the modulus k given by
k:'{jj:ﬁ}l/mo<k<1 | (7)

and the arbitrary normalization parameter p as well as the parameters o, 3 are

defined by
.1
CWE-Wi= Z(Jg -h)=a (8a)

1
W2 -Wi= (=) =8 __ - (8b)
Formally, one may express the time evolution of the auxilliary vector ¢ as

P = —iVy (9)

7
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and the structure of the operator L suggests that V has similar form, i.e. one

may postulate
3
A PLAIT
‘ J=1 ‘ ‘
with the compatibility condition
L—-V,—i{L,V]=0

that takes the form

J

3 3 3 3
S;Wio; =3 Vi Wio; —i LZ S;Wjaj, > ViWjo;| =0
=] J=1 =1 j=1

Equating coefficients of o; for j = 1,2, 3, one obtains

2WoWs

S, ;=
1,t W

(S3Va — SoVs) + Vi

as well as other cyclic permutations.

It is convenient to introduce the parametrization

A=W, Ws, p=W2

DY | =

with the immediate identity

N = T+ o)+ B)

(10)

(11)

(13)

(14)

(15).
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where «, 3 have been defined by (8a), (8b). Thus, (13) and its cyclic permutations

take the form

510 = P (51— 5y13) + Vi (160)
N .

Sat = (M—Ag)ﬁ(sﬁ/é - S3V1) + Vo | (16b)
+

O34 = s '6);” to) (S2V1 = S1Va) + Vi (16¢)

One may formally represent the Operators Vi by the finite expansions

Vi = (u+/8) Z n— ja(lj) +y un—jbgj) (17a)
=0 =0
v, = (p +>\a)u 3 i) + 3 priny) (17b)
j=0 . J=0 i
Vi = (p +ﬁ)}fﬂ +a) & Z 1 —]a(J) + Z 7 —Jb(f) (17¢)
- j=0 Jj=

(J)

In other words, determination of the operators a;”’, b;m) is equivalent to a

determination of V. Upon substitution of (17) in (16a) one obtains

Sl,t (M}'f‘ /8) Z ,LL" ] (J) + Z v —Jb(J)
0

_ e+ B) [52 ((ﬂ - a)(]u +8) S mmiad) 4 3o “n—-jbgj))

+a)r i n i
~sy (MR S i 1 5 Jb%“)] (18)
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- namely
Sy = PIED) - omi(ald) — sp) + 550) + 3 w30
3=0 J=0
—4(p+ )8y Y p"iaf) + 4uSs Y- p"a (19)
7=0 j=0 -
or

‘ + noo . . . n (G .
S10 = HED) S mi(af) — 50 + 580 + 32 I8 — 498108
|
n—1 . . . |
—4 3w [Sra " — Syaf ] (20)

j=—1

Similarly, the other two equations are given by

Sy = L omiof) — 50 + 50 + 32 10 + d0Ssal?)
j=0 j=0 ;

| ;\

4 5 (550"~ 51a§") (200)
|

j=—1

‘S__w+ﬂXu+®§§ ~i(a) — 5,89 + o)

3t — 3\ as

+ 3 (bY) — 40810 + 46520y — 45 umI(S1a8D — $pa*D) (200
>

j=-1

Equating coefficients of 4’ and A\~!y’ independently one obtains

S xa® =0 (21)
Sx bW =al) ;5=01,...,n (22)

~ 10
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S x alth) = ’i-'?bgj) —(AS)xa¥ ;j=0,1,...,n—1 (23)
S; = b{M — 4(AS) x a » | (24)

where A is diagonal matrix given by

A= diag («, ,0) (25)

First, one solves (22) for b9
bW = -8 x al) + ¢;S (26)

where g; is a scalar function of x to be determined by requiring the solvability

condition for (23):

{bY) — (448) x aW} .S =0 (27)
This condition gives: |
iz = {Ss x @) + (448) x a} . § (28)
1e.
g; =071 ({S, x al!) + (448) x a(j)} - S) (29)

where 07! indicates antiderivative with respect to x.
- Then | ,
bY) = —8 x al) + [(44S) x a¥) . S| 8

11
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1 [07t ({8, x a¥) + (448) x a®} - 8)] 8,

Now (23) yields:

204D = -—%S x {bY) - (448) x a?} + f;118

where the scalar f;;; is to be determined by the requirement
alt).s =0 ,

for (22) to be solvable for bU). Using (31), (32) yields

fit1e = zll’sz X {bgj) — (44S) x a(j)} .S

le.
1 . .
fr1 =707 (S: X {bY) — (448) x a¥} . 8)

so,

: 1 : .
al+D) — _ZS x {bgf) — (4A48) x a(])}
1. : .
+7[071 (82 % {bY - (448) x aV} . 8)] S
Finally, introducing the operators:

©'a=Sxa+[07'(S: xa-8)|S

12

(30)

(31

(32)
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and
Qa = %{_s X a,, — (448) x a + [(44S) x a- S| S
+[071 ({82 x 2, + (448) x a} - S)] S, } (37)
we can write (35) and (24) as:

and

S; = 4Qa™ (39)

Next, one has to deal with the “starting points” of the recursion, a(®, b(®, It
is best illustrated by an explicit derivation of the hierarchy (39) for n = 1:

From (21), solving for va(o), one obtains:
a® =F,8 (40)
It turns out that F, is a constant in order to be able to solve (22) for b(®:
bO = _ES xS, + G5 (41)
where G, is a new constant in order that (23) be solvable for a):
a®) = 1S+ 1 {Go(8 X 8.) + F [S.0 — (S -..)8])

13
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+F,{(S- AS)S — AS}
Since a{l) has to be normal to S,
g 1 ,
fl,:c - FO{Z(S:E S:ca:) —S;- AS)} =0
Since S is a unit vector, i.e. S-S = 1, one has:
-S5:8,:=8;-S;
and
S - Sx:m: : g‘(s * Sz:n)a:

so (43) yields:

~ 1
fi=F + gFo [(Szz — 4A4S) - S]

where Fj is a constant. Hence

a) = {Fl + %FO [(S,z — 4AS) - S]} S + %GOS x S,

1 Fo(Sex — (8- 5.,)8) + E,[(S - AS)S — 48]

and

a;(’:1) — {Fl + %‘Fo [(sz — 4AS) . S]} S,
+£80— {(S:c:c - 4AS) S + (S:L‘:z:c - 4AS$) ’ S} S

14

(42)
(43)

(44)
(45)

(46)

(47)



+211—GOS X Sas + %FO{Sém (Sy82)S — (S - S4e2)S — (S - S,0)S,)

+F, {2(S, - AS)S + (S - AS)S, — AS,}
Then, solving (22) for b(), one gets
bV = ¢S -8 xal
where g; has to sativsfy the equation (cf. (28))
iFO [S. X (448,) - S
+8,5 % (448) -8~ 8, X Sy - 5]

91,2 = z]i'Go [Sa: . Sa:m + 4AS - S:c] -

1.e.

'gl,x——éG S, - S, + 44S - S|

1

+7F5[8. (m—4AS}-S]~m

and because of (45):

g =G — %GO [(S.e — 44S) - S] + EF [S, x (S.s — 448) - §]

193

(48)

(49)

(50)

(51)

(52)

One may set n = 1 in equation (24). The resulting evolution equation contains

the arbitrary constants Gy, Fi, G,, F,. By letting all but one vanish, one obtains

the hierarchy of evolution equations as:

(i) S;=S,

15
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(ii) Sy =S xS;; + (44S) xS
which is the same as
S:=Sx8S;; +SxJS o | (54)

“because of (8a,b) and (25).

(i) Si=Suwet5[(S:-8.) = JS S+ ]S +3(S, Su)S  (59)

This equation was obtained by Date, Jimbo, Kashiwara and Miwa (1983)
(iv) St =S X Sypze + Ss X Syus — % 3S - S,. +S - JS|S x S,,
+[3(S; - Sm) —S,-JS|S xS, —[S; X (Szz+JS)-S]S,
+—;- [3(S - Sez) +(S-JS)](JS) x S
—[Sz X (Szz+ JS) -S|, S + (S X JS;)z + Szz X (JS).

Detailed account of this work, in particular the bi-Hamiltonian formulation and

~ the connection with the master-symmetry approach, will be published elsewhere. |
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