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1. Introduction

Consider the following delay-differential system:

x(t) = x(t-1) + u(t), u(t) : input vector

x{(t-1). y(t) : output vector. (1)

«
+
il

integrator delay

u(t) x(t) x(t-1) y(t)
>

R L°[-1,0]
Block diagram for the above systenm

Clearly , we need to have a function space on [0, 1] (or [-1, 0]) to
store the last one second behavior for the state-space model. (Hale [6]
and others.)

A well-known standard choice is:

X = R x Le[-1,0] (called an M. space)
by Delfour, Mitter, and others ([3,4]). It induces the following

functional differential equation:

dixy z4 (~1) 1
—-[ ] [ + u(t), z:(0) = x4
dt Lz, W(a/38)z. (0) . 0 1

y z¢(-1). (2)

This model has been effectively used for many purposes, say, optimal

control, feedback stabilization, etc. Recently, there is even a control
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scheme by actively using a delay element in the compensator (called

repetitive control: [10], [18]).
Question: Where does this function space (and the model (2)) come from?

2. Spectrum, Eigenfunction Completeness and Reachability.

Standard Realization Procedure ([15, 16, 17]):
Basic Idea: Use the left shift ¢: in L2,,.[{0,0) as a universal model.

1) Express the input/output relationship of system (1) as y = A%u

where A is the impulse response of (1).

2) Express A as the ratio q-!'¥p of distributions with compact
support in (-c0,0]. In (1), A = 8/{s-:’-s8}. (If this is possible,

A is called pseudo-rational.)

3) Take the closed subspace
Xa = {x ¢ L2,,.[0,0); supp (g¥x) in (-c0,0]} (3)
as the state space and 61 in Xea as the generating semigroup for

state transition.

q¥x x(t)




In the above example, X9 is given by the closure, taken in
L2,,,[0,0), of the space of solutions of the equation

(d/dt)x(t+1) = x(t), for t = O.
It is readily seen that this space is isomorphic to

R x L2[0,-1].

4) The desired functional differential equation model is then given
by
(d/dt)xi () = Fx¢ () + A(-)u(t) (4)

where F : infinitesimal generator of o:.

Questions on the above construction:
a) What is the meaning of supp(q¥x) in (-o0,0]?
b) When does q have compact support in (~-c0,0]?
c) What is F ?
d) What is o(F)?
e) What is the space M of (generalized) eigenvectors of F?
f) When is M dense in Xa?

h) When is system (4) reachable?

Some Remarks and Answers:

On a),b): Paley-Wiener Theorem:
Theorem (Paley-Wiener-Schwartz [14]) q is a distribution with compact
support contained in (-o0,0] iff

q"(s) is an entire function of s such that

la”(s)| = C(1+|s|)rexp(a-Re s), Res = 0
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< C(1+]s])n, Re s <0 (5)

This implies
x € Xa <=> supp (gq*¥x) in (-00,0] (6)
(Note supp (g*x) is always compact.)

=> all singularities of x"(s) are cancelled by q"(s).

On c): F = d/dt (better to write d/dt by change of variable). Remark:
The model (2) is actually obtained by the above realization procedure.
Somewhat surprisingly, the right-hand side operator in (2) is actually

the differential operator d/dz represented in the space R x L2{0,1],

which is isomorphic to Xe¢. For details, see [17].

On d): Spectrum of F.
Let us compute the point spectrum only.
(AI-F)x=0 <=> dx/dt = ax, x e Xo
<=> H(t)exp(at) < Xa
<=> q"(s)-1/{s-1} satisfies the Paley-Wiener estimate (5).
<=> q"(s)-1/{s-1} is an entire function.
<=> q"(a) = 0.
Actually, we can prove that ([15])
i) if q"(A) = 0 then A < #(F).
Therefore,

ii) every x < o(F) is an eigenvalue (with finite multiplicity).

On e): Let m := order of X as a zero of q"(s).

Then the generalized eigenspace MA corresponding to A is



span {exp(at), texp(at),...,trexp(at)}.
=> M = span {exp(at), texp(at),...,trexp(at)}.
A,
On f): M is dense in Xao

<=> x* € (Xo)?, <x*,x> =0 forall x eM=>x" =0 (7)

[REMARK] This question is closely related to the question of
reachability, feedback stabilization, etc., and has been studied via the
state space representation as in (2) by a number of authors: [7], [8],
{91, {101, [12]1, [13], etc. (some of them only study reachability).
However, a concrete algebraic criterion is fairly difficult to obtain,
and has been obtained via somewhat ad hoc methods for delay-differential
systems (e.g., [9], [11], [13]). We here attempt to pursue a more
unified and systematic approach for pseudo-rational systems, which are

known to include the class of delay-differential systems.

Our question is then: What is (Xo)'?

[LEMMA 1] (X¢)’ = U L2[-n,0]/q¥(u L2[-n,0])

= lim L2[—n,0]/q*(lim L2[-n,0]) (8)

Proof. Omitted. A standard fact from locally convex duality, and the

fact that L2,,.[0, w) is the projective limit of {L2[0, nl}. O

fLEMMA 2] <x*,x>=0 for all x ¢« M <=>

x*"(s)/q”(s) = entire function of s.

Proof. For simplicity, assume q"(s) has simple roots only. The duality
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in Lemma 1 is ([16])
<p,x> 1= §o(t)x(-t)dt = § ¢(-t)x(t)dt,
¢ < lim L2[-n,0], x ¢ Xa.
Then <x*,x> = 0 for all x ¢« M <=>
xt,exp(at)d>=x-"(A)=0, any A such that q~(a)=0.

<=> x-"(s)/q"(s) is entire. O

Therefore, we have proved

x*1M <=> x*"(s) = q"(s)¢(s) for some entire function ¢(s).

If any such ¢ were the Laplace transform of a distribution with

compact support in (-c0,0]}, then M would be dense in Xd, i.e.

system is eigenfunction complete.

this

Let us first prove that ¢ is always the Laplace transform of a

distribution with compact support not necessarily contained in (-c0,0].

To this end, we need to prove, in view of the Paley-Wiener theorem

(5), that
i) ¢{s) is an entire function of exponential type;
ii) it has polynomial growth on the imaginary axis.

We give a proof for i) only (for details, see [19]).

Proof of i) By the well-known Hadamard factorization theorem ([2]) for

entire functions, it is clear that ¢ is of order 1, i.e.,
for any € > 0, there exists R > 0 such that

lo(s)|<exp(]s|1*€)



for |s| > R.

We must quote the following deep result by Lindelof from complex
analysis:
[Lindele’s theorem] ([2]) Let f be an entire function of order 1. Let
A1ssse3Any...be the zeros of f(s), counted according to multiplicity.
Define

n(r) := no. of zeros of f in |s| < r

S(r)

1]

p) 1/
IAn|Sr

Then f(s) is of exponential type, i.e., [f(s)| < Cexp(K|s|) iff
i) n(r) = O(r);

ii) S(r) is bounded.

Proof of ¢ = exponential type.

Let {A1,+445Any...} be the zeros of q”(s), and {ul,...,sn,...} the zeros
of ¢(s). Then the zeros of x*"(s) = {Al,...,an,...} U {ul,. ... un,...}.
i) n_ (r) = O(r) is obvious since x*"(s) satifies this property

b2

ii) |S¢(r)|=|SX.A(P) - SqA(r)l
<IS,.(T)] + IS~ (D)1,
so that S¢(r) is also bounded. O

Suppose now that we have agreed that ¢ is indeed the Laplace
transform of a distribution with compact support. (To show this we need
a little more work to ensure that ¢(s) is of polynomial growth on the
imaginary axis; see [19].) In view of the fact (8),

eigenfunction completeness <=> supp ¥ < (-,0] for all such ¢.

(9)
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Question: When is supp ¢ ¢ (-c0,0]?
Define

r(¢) := sup {t; t < supp ¢}.

[LEMMA 3] Suppose r(¢), r(y) < co. Then
r(¢*p) = r(p) + r(y).
Indication of Proof.
r(e*p) = r(p) + r(y) is obvious.
To prove the reverse inequality, we need to show
¢,p do not vanish in a neighborhood of endpoints a, b
=> ¢%yp does not vanish in a neighborhood of a+b.
This follows from the local version of the Titchmarsh convolution
theorem ([5]). (Need to go back to the original proof, or a proof by

Miksinski; the usual proof ([20]) covers only the global version.) 0O

[THEOREM 1] The system (4) is eigenfunction complete (i.e., M is dense in

Xa) iff r(q) = 0.

Proof. Observe that r(¢%q) = r(x*) < 0 and r(p*xq) = r(¢)+r(q).

If r(q)=0 then r(y)=r(x-)=<0.

q &b

r{q) -r{q)
] |
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Conversely, if r{q) < O, theﬁ aﬁy ¢ with supp ¢ < (0,-r{q)) gives
rise to an x* such that ¢:= x"xq-!
has the property

i) 7 (s) is entire, and r(¢) > O.
This contradicts statement (9), whence the eigenfunction completeness.

0
Let us now consider the reachability (controllability) question.

[DEFINITION] The system (4) is said to be quasi-reachable if the set of

all elements in Xa that can be driven from 0 by a suitable application

of an input is dense in Xs, It is said to be sgpectrally reachable if

any element in M is reachable from 0 by an action of an input.

(LEMMA 4] The above system is spectrally reachable iff
rank [q"(x) | p™(a)] = full for any A < C.
In the present scalar case, this is equivalent to:
no common zero between q~(s) and p~(s).

Proof. Omitted. 0O

[LEMMA 5] Let T be a system. X is quasi-reachable iff the following

system is quasi-reachable.

> -
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Combining the above lemmas together, we have

[{THEOREM 2] The system (4) defined via X< is quasi-reachable iff

i) rank [q™{(A) | Pp"(A)] = full for any A ¢ C; and

ii) max {r(q), r(p)} = O.

Sketch of Proof. We only prove the sufficiency. For details, see [19].
Case I) r(q) = 0. 1In this case, the space M of eigenfunctions is
already dense. Since by i) the system is spectrally reachable, i.e.,

every element in M is reachable, we must have quasi-reachability.

Case II) r(q) < O but r(p) = 0. In this case, form the feedback
system in the above diagram. Then the new system has the impulse
response (q+p)-1*p,‘i.e., we have a new denominator (q+p). Clearly,
r(gq+p) = 0. Then by Lemma 5 and the above argument in Case 1I), the

result follows. O
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