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STEADY GAS FLOWS PAST BODIES AT SMALL KNUDSEN NUMBERS
— BOLTZMANN AND HYDRODYNAMIC SYSTEMS —
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. ABSTRACT

Steady gas flows at small Khﬁdsen numbers around arbitrary bodies
(asymptotic behavior for small Knudsen numbers of the solution of time-
independent boundary value problems of the Boltzmann equation over a
* general domain) are considered when the Reynolds number of the system is
of the order of unity. The generalized slip flow theory developed for
the Boltzmann-Krook-Welander equation is extended for the standard
Boltzmann equation. From the result, the effect of gas rarefaction on the
flow (the relation between Boltzmann and hydrodynamic systems) is clarified,

and several features of the force on a closed body in the gas are derived.

I. INTRODUCTION
‘The relation between the hydrodynamic equation and the Boltzmann
equation has been discussed by various authors.l—9 In this connection
the Hilbert and the Chapman-Enskog expansions are oftenkmentioned. The

expansions, however, are not derived in the framework of the boundary-value

*gmax, #A—E



162

problem, and the hydrodynamic equations derived have some awkward properties ‘
in consideriné;fhe béundary-valﬁe‘probieﬁ.2’3‘b .

In this paper; fékiﬁg fhé timé-i;aependenf/géuﬁdéfyrvalue problem of
the Boltzmann equation.over a general domain, we investigate the asymptotic
behavior of the solution foryémalivKnudsen numbers to derive a set of
hydrodynamic equations and their boundary conditions ﬁhat covers some
effects of the Knudsen number (gas rarefaction). From the result, the
effect of gas rarefaction on velocity and_temperaturé fields is discussed,

and several features of the force acting on a closed body in a slightly

rarefied gas are derived.

II. ASYMPTOTIC SOLUTION FOR SMALL KNUDSEN NUMBERS

II-1. Analysis and Hydrodynamic Systemé
Mach number Ma, Reynolds number Re, and Knudsen number Kn, important

parameters in characterizing slightly rarefied gas flows, are related 353
Ma ~ Re Kn.

This relation is important in considering the asymptotic analysis for small

4,5

Knudsen numbers (Kn << 1). The linear theory ’~, where the quantities of
O(Maz) are neglected, is applicable only for very small Re (Re << Kn).

The standard Hilbert expansion1 corresponds to the case with Re > . When
Re is of the order of unity (the case of our interest), we must take into
account that Ma is of the same order of smallness as Kn. In the present
paper, noting that Ma is a measure ofrdeviation from an equilibrium state
at rest, we investigate the asymptotic behavior for Kn << 1 of the system

where the deviation from a uniform equilibrium state at rest is of the

order of the Knudsen number of the system. Owing to limited space, we
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give only the outline of the analysis.

We introduce the notations: TO’ PO’ fO’ and &, are the temperature,

0
the pressure, the:velocity distribution of gas molecules, and-the mean
free path of our reference equilibrium state at rest; R is the (specific)
gas constant; L is the characteristic length of our system; in is the

12,

rectangular space coordinates; (ZRTO) i is the molecular velocity;
fo(l + ¢) is the velocity distribution of gas molecules.

The behavior of the gas ¢ is described by the Boltzmann equation:

2 _ 1 | |
Cy gar = FILO) + 300 01, | | W
o fnto /oo (2)
2 L 2 ’ '

where the standard collision integral J(1+¢, 1+¢) is split into two parts:
the linearized operator L(¢) and tﬁé remainder J(¢, ¢). The complete
definition of the collision operators'is not giQén here,‘but no confusion
will take place. | |

On the boundary a condition for the reflected molecules is imposedl’zz
¢ =0, @m0, | | (3)

where n, is the unit normal to the boundary, pointed to the gas, and ¢w is
a given function or is related with ¢ (Cini < 0).
The asymptotic solution of the boundary-value problem is obtained

in the form:

Oq = 01
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= k+¢K2k2+”" ‘ ~(6)

P = %1

where ¢H’ called hydrodynamic part, represents the overall solution, and
¢K’ Knudsen-layer part, the correction near the boundary. Since we are
considering the case where the perturbed distribution ¢ is of the order of
k, ¢Hm and ¢Km are of the order of unity.

First we determine ¢H as a solution of the‘Boltzmann equation whose
length scale of variation is of the order of thevcharacteristic length L
of the system [B¢/3xi = 0(d)]. Substituting Eq. (5) in the Boltzmann

equation (1) and arranging the same order terms of k, we obtain a sequence

of integral equations for ¢Hm:
L(¢Hm) = Inhomogeneous term (¢Hm-l’ ..."¢Hl)’ (7)

which can in principle be solvedkfrom the lowest order. Frqm the
solvability condition* of Eq. (7) with m 2 2, we get a sequence of partial
differential equations, called hydrodynamic equations, that govern the
component functions of the expansions corresponding to Eq. (5) of
hydrodynamic quantities (velocity, temperature, etc.).

Since the hydrodynamic part ¢H’ obtained without paying attention to
the boundary condition, cannot in general be made to satisfy the boundary
condition (3) [the differential operator is multiplied by the small
parameter k in Eq. (1)1, we introduce the Knudsen-layer correction ¢K’
which is assumed to have the length scale of variation normal to the
boundary of the order of %9 [kniacp/axi = 0(¢)] and to be appreciable only

near the boundary. Substituting Eq. (6) with . previously obtained in

* Homogeneous integral equation L(¢) = 0 has the five independent solutions

2
1, Ci’ and Ci'
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Eq. (1) and arranging the terms with the properties of g and oy in mind,
we obtain a séQuenée.of (inhomogéneous) one-dimensional linearized

Boltzmann equations.'

3¢
K1 _ . '
e A | 8)
g2
Ciny an- = L0yp) + 23((ogy) s byy) + I(yys oy
3s 1) ds 9¢
051 9% 2, °%1 ,
- Ci[(ax.)O 3s. T (ax.)O ds 1, : ' 9
i 1 i 2
X, = nikn + xwi(sl’ SZ)’ | , - (10)

where X 1 is the boundary surface, n is a stretched coordinate normal to

2

surface n = const., and ( )0 denotes that the quantity in ( ) is

the boundary, sl and s, are (unstretched) coordinates within a parallel

evaluated at n = 0. The boundary condition for ¢Km at n =0 is
%m = Pum = P (¢;n; > 0), (11)

where ¢wm is defined by

— 2 e @
¢w B ¢wlk + ¢w2k. + * - , ‘ . (12)
The boundary value of ¢Hm’ which is undetermined, is involved in the
boundary condition (11). The analysis of the equationé under the condition
that ¢K vanishes rapidly away from the boundary gives conditions among the
boundary values of hydrodynamic'pafts of hydrodynamic quantities and their

6,10-12

derivatives as well as the Knudsen-layer correction ¢K.. These
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conditions serve as boundary cond1t10ns for the hydrodynamlc equat1ons

and are hereafter called Sllp boundary condltlon for convenlence.

Lo

Here we llst the hydrodynamlc equatlons The non- dlmen51ona1
hydrodynamic quantities Uss P T and w are introduced: (2RT )

gas velocity, po(]_+ p) the pressure, To(l + 1) the temperature,

. is the
it

pO(RTO)_1(1.+ w) the density. The hydrodynamic quantities are split into H

and K parts and expanded in power series of k as in Egs.

(4),(5), and (6).

e and w,, are defined in ¢H by_the same formulae as u, etc. in

[uiH’ PH; T H
¢ (Appendix 2), and u . etc. are defined as the remainders. ]
Py
ox, 0,
i
%uim
“x, 0,
i
ou,... - ] 82
u AL _ 1 °PH2 1 dugm
JH1 ~ ox T3, 2N T _2°
| i X,
) 3
aTHl ] l;y 9 Tl
WL T2 2
_ J
auIHZ - awHI
] H1 3x, °’
*3 i axJ
du du
iH2 iHl
"jH1 Tox, + (ugpUy ) 3
19 1 P 1
alal B TR AN R P £V 2 B 16 R
i 9x
h|
4 du du o
1. 9, iH1 JHL..
A~ L e~ P
3 3 i
i w2, PPu
JHl ox, j H1 jHl JH2 ij 57jH1 ij
du 2
_1 iH1 jHl lma 1 2
=i Oy, t )+ 5 (T * 35Ty
3 i axj

(13)

(1l4a)

(14b)
(140)

(15a)

(15b)

(15¢)
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where Y, are numerical constants related with'the collision operators L
and J (App. 1).

Equations for (u ) [Eqs. (1l4a ~ c)] are the Navier-Stokes

H1® "H1’ PHZ

equations for an incompressible fluid, and the successive equations for

(u

iHn’ “Hm® PHm1’ ™ 2 2) are the same order differential equations as

Egs. (l4a ~ ¢). These sets of equations are derived by a systematic small

parameter (k) expansion, where no assumption is made on the form of the
velocity distribution function but special attention‘ie paid to the
estimate of physical variables so that the analysis may cover physically
interesting cases with finite Reynolds numbefs. Incidentally, in the

standard Hilbert expansion, sets of the first-order differential

equations, starting with the Euler equations for an ideal gas, are derived;

in the Chapman-Enskog expansion, the order of the differential eddaﬁions,
starting also with the Euler equations, increases with the progress of
approximation.

The slip boundary conditions for the hydrodynamic equations (13 ~15c)
take the same form as those for'the'Boltzmann-KrookrWelander equation
except for numerical constants.’ The latter results are givenrin Ref. 5
for solid boundary where neither evaporation nor condensation takes place
and in Ref. 13 for interface between gas and its condensed phase where
evaporation or condensation is.taking place. (Fo%ibrevity, the former
boundary is hereafter called solid boundary and the latter interface.)
The slip boundary cond1t10ns are as follows.

‘x .

(i) On the SOlld boundary

u -u = 0, (17a)

iH1 wil

(16)
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T T Y1 = 0o
Ju Ju
, iH1 SHL H1
(ujgy = uyidty = Kol * ax, gty - Ky 55
Uity = 0
e g m
B2 © w2 T %1ex, Py
(ii) On the interface
(uigy = Yuip)t; = 0
*
Pg1 ~ Pyl C,
Yt L |
a1 T d,
du du
iH1 | C%4H1
(Wigy = Wity = Kolmy, + 3%, It
9T
H1 A
T K gk, b T Koty g ()
* c
P2 " Pu2 C4 a1 1
=u n + H1
h:var i i %
H2 T w2 4, 4
C
au Ju 6
%% HL
ol e, My |7 KUy
3 i q
6
5 Cq Cq
+(ugpny) taYim ™
dg dg

23

(17b)

(18a)

(18b)

(18¢c)

(19a)

(19b)

(19¢)

(20a)

(20b)

(20c)



where ti is the direction cosine of a tangential vector to the boundary;

k/L is the mean curvature of the boundary where the sign of each principal
curvature is taken negative when the corresponding center of curvature is
on the gas side; Uoim® Tem’ and Pm 2T€ the terms of the expansions of the

1/2u

velocity (ZRTO) 4 (with un; = 0), the temperature To(l + Tw) of the

boundary, and the saturation gas pressure po(l + pw) at temperature

TO(l + TW):
u,=u ..k+u k2 + e ’ : (21a)
wi wil wi2 ? :
T =1 . k+c k2 + e (21b)
w wl w2 ?
P =p k+p k2+"' - (210)
W wl w2 I

[uwi’ Tw, and P, correspond to the deviation from our reference equilibrium

state and thus are of the order of k. The higher order terms of k are

retained for the convenience of treating the problems where the boundary

v *
values are not known beforehand.]; kO’ Kl’ dl’ KZ’ Cl’ CA’ C6’ C7, C8’ Cg,
%

ClO’ d4, d6’ d7"d8’ dg, d10 are numerical constants.  For B-K-W equation,

C, = 0.558437, C, = -2.132039, G, = 0.820853,
G, = -0.380569,  Cy = 2.320074, Gy = 1.066019,

=c 4= 1.30271 e -0.446749
Clp = Cp» | = 1.302716, 4, = -0. :
dg = 0.330345, d, = -0.131574, dg = -0.0028315,
dy = -0.223375, =0, k, = -1.016191,
K, = -0.383161, K, = -0.795186.

Finally, we list the hydrodynamic parts of the stress tensor™’

\ ' ' 1,2 1/2 . '
p0(6ij + Pij) and heat flow vector p0(2RTO) Qi (App. 2). The component
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functions of their expansions corresponding to Eq. (5) are:

iy - S N
3“131 du,

= = _ jH1
Pisu1 = Puabiye Pijm2 = Pu2biy ~ Y1€ i, + 3%, )
By = by - vy o2y Tamz 2 T » (22)
ijH3 H3 1] '1 ij Bxi 3 Bxk ij
2
_ (auiH1+au‘Hl)+ (8 Tyl 1 9 m 53
Y4"m1 ' ox, T ex, / Y3'ex,ex, 3 . 2 'ij’’
3 i i 7] axk )
9T )
5 H1-
QUpr = O Uua =~ 3 72 8%
o =-5 22 _s w1 f Ui
iH3 3Y2 9%,  &4Vs'Wl ax, ~ 2'3 _ 2 °
1 1 90X, J
J
The last term of Pin3 (QiHB) is non Navier-Stokes stress (heat flow) and
is called thermal stress. The term before the last in Pin3 (QiH3) shows

the temperature dependence of viscosity (thermal conductivity).
The results of this subsection (Sec. II-1) are the generalization of
the senior author’s work (Ref. 5) developed for B-K-W equation.

II-2. Velocity and Temperature Fields

The first order hydrodynamic equations [Egs. (14a @ c)] are the
Navier-Stokes equations for an incompressible fluid. The second order
equations [Eqs. (15a ~ c)] combined with Eqs. (l4a ~ c) differ a little
from the Navier-Stokes equation§ of a slightly compressible gas. If Y3 in
the numerical coefficient of 321H1/8x§ in the square brackets of the first
term on the right hand side of Eq. (15b) is zero, Egs. (15a ~ c) coincide
with the second order equations of the Mach number expansion of the
Navier-Stokes equations for a compressible gas. [Noting that the case
Ma = ak with a = 0(1) is under consideration, transform the k-expansion

to Ma-exp.] The difference is due to the thermal stress in Pin3.

10



This difference, however, can be eliminated by the replacement:

dz't ,
* y: H1 ST
Py3 = Pyg3 7 33 2 ' «

OX,

(24)

Further, the slip boundafy condition (up to the second order of k) does |
not contain ij [cf. Egs. (1?3)'w‘(18c); (19a) ~ (20c)]. Thus, we conclude:
Proposition 1l: Except for the Knudsen-layer éorrection, thé‘veioéify:and
the temperature fields of a slightly rarefied gas can be calculated
correctly up to the second order in the Knudsen number Ey fhe siightly
compressiblekNavier—Stokes equations with the slip boundary conditions.

The effect of gas rarefaciéqn comes in through the boundary condition.

(N. B. In an infiniﬁe-domain problem Vhere the pressure is‘specified at.
infinity, the pressure modified by Eq. (24) should be used. In most
physical problems, however, BZTHl/axgvvanishes_at infinity and no

correction is necessary.) .

TOI. FORCE AND ITS MOMENT ON A CLOSED BODY
Take a closed body B1 in a gas. The gas may or may not be bounded,
and other bodies may lie in the gas. We will investigate the force and

its moment on B.. In the following ahalysis; 3B, denotes the boundary of

1 1

Bl; SBO a élosed surface that encloses only B ih the gas; n, the unit

1
normal of the surface of integration under consideration pointed to the
region including infinity; dS its surface élement.

Theorem 1: The Knudsen-layer part of the momentum flux does not contribute
to the force acting on a closed body.

Proof: Let po(dij + Wij) be momentum flux tensor, where

. ‘ .2 .
Wij = Pij + 2(1 + w)uiuj, and Fi be the force, normalized by pOL , acting

11
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on a closed body Bl in the gas. Then,

F, = j ¥;4m4S- | (25)
3B .
1
Because BWij/axj = 0 in the gas (App. 3), the surface of integration can be
deformed arbitrarily in the gas. Taking a surface of integration SBO

outside the Knudsen layer, we have

F, = J ¥, . n.ds, | - (26)
i 3B ijH j
since Win vanishes there. Fgrther, because awin/axj = 0 (App. 3), we
can deform 3B0 in Eq. (26) arbitralily in the gas. aBo'may be in the
Knudsen layer, especially on the body’SBl; ’ (QED)

Theorem 2: The Knudsen-layer part of the momentum flux does not contribute

‘to the moment of fbrce acting on a closed body.

Proof: The moment of force Mi around origin, normalized by p0L3, is

expressed by

M, = ja. © i nn¥k;"595 ; , (27)
B :
1
where eijk is Eddington’s €. The proof goes parallel to that of Theorem 1
. . 3 _ ‘ _
if Wij is replaced by Sihkxhwkj because’axj eihkxhwkj = 0 from awij/axj 0
and Tis = Y (QED)

Corollary: On a solid boundary, F. and M, are calculated correctly up to

3
the k™ =order only by Pin on 9B,.

Proof: From the Knudsen-layer analysis, u,,..n = 0 on a solid

iH1™ T YiH2™i

boundary [cf. Egs. (l?a) and (18b)]. (Incidentally, u,..n, is not

iH3 i
necessarily zero.) ‘ ’ ‘ (QED)

As in Theorem 1, we can prove the following theorem with the aid of

12



the formulae in Appendix 3. (Proof omitted)
Theorem 3: The Knudsen-layer part of mass (energy) flux does not contribute
to the mass (energy) flow to a qlosed body.
‘ We prepare a lemma for Theorem 4:
Lemma: Let f(xi) be a function three times continuously differentiable in

a domain containing a closed surface (say 9B,/ . Then

2 2
o f o f _
J (ax.ax. - éij)njds =0, - (28a)
aBO i 7] axk

2 2 ,
jaa € 5%;%;; - §;§ ;)5S = 0. (28b)
0 m

Proof: Extend f(xi) over the whole region inside 8BO keeping its smoothness
and apply Gauss theorem. C - (QED)
Theorem &: The non Navier-Stokes stress in p;3 system contributes neither

to the force nor to the moment of force on a closed body.

The non N-S stress in p§3 syst. means the thermal stress in Pin3 modified
by the replacement (24).

Proof: Its contributions to Fi and Mi are, respectively, proportional to:

2 2

173

a7t 9 T : ] -
G—2 . —Hl s )n_as, (29a) .
3B axiax. 3x2 ijoj
1 k
and
2 2
37T 97T .
| L % 'm -
J Eihkxh(ax 3 x 5 ij)njds. (29b)
3B k7] 9x
1 m
After deforming 9B, to 9Bj, apply the lemma. (QED)

Combining Theorems 1, 2, 4 with Proposition 1 we find:

Proposition 2: Under the condition of Proposition 1, the force and the

13
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moment of force on a closed body can be compyfed cqqrgcfly up to the
k?—order of F, and My by the chssicaZ hydrodynamic progedyre based on

the Navier-Stokes solution and the N-5 stress if the slip boundary condition
18 faken into account.

The results of this section are the generalization of the senior

author’s work (Ref. 14) developed for the linearized Boltzmann equation.

APPENDIX
1. Numerical constants Yy

Let A(Qz) and B(Cz) be the solutions of the integral equations:

Lic,A(D] = - ¢ (68 - D),

LI(LE, - %czéij)B(cz)] = - 2058 - %czéij),
with the subsidiary condition:

j:c4A<c2>exp(-c2)dc - o,

where L[+++] is the' linearized collision oberator [cf. Eq. (1)] and CZ =‘C§.

C(Cz), D(ﬁz), and G(Ez) are introduced by
2 3 2. 2 2
2J[¢” - 5 CiCjB(C )1 = CiCjC(C ) + D(C )sij’

23[¢% -

NI

| 2., _ 2
1) = o).

The y; are defined by the integrals of these functions:

Y; = Ig(B), v, = 2I.(A), Y5 = I,(AB),

271

Y, + Ig(B) + 51,(BC), s = - 6v, + 2I(A) + 2I,(AG),

14
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where

8 (T on., .2 2
I (F) = —— | £ F(")exp(-£7)AC,
n 15v/7 Jo =P

with F = A, B, etc. For B-K-W equation Yi = 1, and for the hard sphere

model Yi arelS:
v, = 1.2700, v, = 1.9223, Y4 = 1.9479, Y, = 0.63489,
Yg = 0.96070.
2. Relations betﬁeen ui, T, etc. and ¢
w = f¢EdT, | (1+ w)ﬁiv= )Ci¢Ed§,
21+ w)t = S(@F - 3B - (1 +wl,  p=w+T +or,
Pij = ZICiCj¢EdC,- 2(1 + w)uiuj,
Q = JTLNEAL - Ju, - P - Fpuy - (14w,
where
E =1 Zexp(-c?), dT = dt,dC,dly,

and the integration is carried out over the whole space of Ci.
3. Conservation equations |

Multiplying Eq. (1) by E, C,E, or CiE and integrating over the whole
space of Ci’ we have

3 ~ 5 - _
K[(l + w)uj] = 0, ax.[2(1 + m)uiuj + Pij] = 0,

a 5 3 2 .
3xj 543 + uini + 5PU; + (1 + m)ujui + Qj] = 0.
These relations also hold with subscript H since hydrodynamic part is a

solution of Eq. (1).

.15
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