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1. Introduction

This is a summary of the author's recent paper [5].

We consider the initial value problem for the Boltzmann equation:
(1.1) Fy v-vXF = Q(F,F) ,
(1.2) F(0,x,v) = FO(x,v) .

Here F = F(t,x,v) denotes the mass density of gas molecules with velocity
v = (v],vz,v3) € R3 at time t > 0 and position x = (x],xz,x3) € R3 .
v is the gradient with respect to x and Q(F,F) 1is the term related

to the binary collisions of molecules, which is given explicitly as follows:

(1.3) o(F,G>(v)=%”2 (6, [vav ) F(v )6(vi) +F()6(v') -

s2xR3
- F(v)G(vy) - F(vy)G(v) }dwdv, .

In (1.3) we use abbreviations such as F(v) = F(t,x,v); v' and v, are
molecular velocites which produce v and v, after a collision, namely,
v = v ((vemv)cwlw, vy = vy - ((ve-v) rwdw for w e SZ; q(8,]|ve-v|) (where

8 1is defined by (v,-v).w = |v,-v|cos®) is a function determined by the
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intermolecular potentials and is assumed to be of the cutoff hard type of
Grad- [2]. |

We study the problem concerning the existence of global solutions of
(1.1),(1.2) in a neighborhood of a Maxwellian, :Tﬁe key of the brbblem is
to get a su1tab1e decay estimate for the 11nearwzed Boltzmann equation
around the Maxwe111an (see [6] 7n. In the previous works [6] [7], such a
decay est1mate was obtalned by a method based on the spectral theory for
the Tinearized Bo]tzmann operator investigated in [1]. ‘Qur aim is to show’
the same decay est1mate by quite a d1fferent method Our method is the
SO- ca11ed energy method and makes use of the matr1x represetation of V-E,
the symbo] of the stream1ng operator VeV, wh1ch maps the nu11 space of -
the linearized coll1swon operator 1nto the subspace assoc1ated w1th the

th1rteen moments

2. Preliminaries

We consider the problem (i.i),(].Z) in a neighborhood of the normalized

Maxwellian M = M(v) :
(2.1)  M(v) = (20" 2exp(-|v|%/2)

M s an equilibrium of (1.1} since Q(M,M) = 0. F0110w1ng Grad [2],03],

~we introduce the new unknown function f = f(t,x v) by
(2.2)  F=m+n/%

The 5}5b1¢a (1.1),(1.2) is then transformed into

(\2'.3) | fy + ‘rv-vx;‘f + Lf = Fr(f,f)vr .

(2.4) f(0,x,v) = fO(x,v) .
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Here fy(x,v) = M(v)‘]/z(Fo(x,\}) _M(v))  and

Lf = - 2u7 1/ 2qmuY 25y |
(2.5) |
r(f,q) = M/ 2qm/ % M%)

First we sunmarize some known properties of the linearized collision

operator L. (For the details, see [2].) L is decoﬁposed in the form
(2.6) Lf = vf - Kf ,

where v = v(v) 1is the functionisatisfying v; < v(v) < v2(1+|v|) for
positive‘conétants Vis Voo and K is a'tompact selfadjoint operator on
Lz(v). Therefore L is a (uﬁbounded) sthetric operator on Lz(y). Also,
L s nonnegative, namely, (Lf,f) > 0 for f e L2(v) with Lf e L%(v),
where ( , ) 1is the standard inner prodd;t of Lz(v). We denote the null

space of L by N(L). It is known that
(2.7) N(L) = Tinear span of {wlM]/z,---,wsM]/z} ,

where

(28) W =1, gty 37123 v = v

(Recall that Vs is the j-th component of v.) Each ¥, s called a sum-
mational invariant. The following five functions form an orthonormal basis

of N(L).

1/2

. V7.
(2.9) e M , e, va

1/2

2
J+’| (Ivl -3)M

1
‘ V6
From the properties of L stated above we deduce that for f ¢ Lz(v) with

? \j=]’2’3$ e5 =

Lf ¢ L2(v),

(2,100 (L,f) 2 8, [(T-P)Fl5 .
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where 8 is a positive constant, l-(z denotes the norm of Lz(v), and

PO is the orthogonal projection from Lz(v) onto N(L) :

(2]

Z f ek

We remark that (2.10) holds true also for f e L%(v), where L?(v) is the
space of functions f ¢ Lz(v) such that (1+]v])f ¢ Lz(v).

Next we introduce the following thirteen functions.

]

by =1, b=y, 321,23, Vi o3e1.2.3,

¢j+4

(2.711) dg=vivy s g = vavg s by = Vv,

= (vl ‘s
$5470 = [v] Vi =1,2,3.

Notice that each summational invariant in (2.8) is a ]fnear combination of
the above functions: Ve = b k=1,---,4, and Vg = gt g+ 9. We denote
M1/2'

by W the subspace of Lz(v) spanned by the thirteen functions O

k=1,:-+,13, namely,

' 1/2
,¢]3M }.

(2.12) W = Tinear span of'{¢]M]/2,...
W is the subspace assoéiated with the thirteen moments, since the quanti-
ties [ ¢dev = (M]/24-f,¢kM]/2) are called moments of the distribution
function F. We shall introduce an orthonormal basis of W. Since N(L)
< W and the five functions CIPRERNF given by (2.9) form an orthonormal

basis of N(L), we choose additional eight functions €gs*,ey3 such that

'{e],---,e]3} becomes an orthonormal basis of W. They are given as

follows:
3 ~
€y = jZ]ckjej+4., k=2,3,
- 1/2 - 1/2 _ 1/2
(2.13) eg = VyV,M » eg = v2v3M s €= v3v]M "
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T a2 e /2 P
e. = — (|v]®-5)v.M , j=1,2,3.
j+10 S0 J
Here
~ ] 2 1/2 .
(2.14) e.., = — (vi-1)M , j=1,2,3,
| A

and the coefficients Cpj are chosen such that the three vectors cy =

(1//3,1//3,17/3), c, = (c2],c22,c23) and cy = (c3],c32,c33) form an

3

orthonormal basis of R°. This choice of ij i< based on the following

observation: The three functions in (2.14) form an orthonormal system of

L2(v) and e, = (& +E +E)//3.

3

%5 5 |
Now we consider v+£ (§ ¢ R”), the symbol of the streaming operator
Ve, on the null space N(L). For each £ « 113, VeE s fegarded as a
Tinear operator from N(L) into W, and therefore can be represented by

the 13x5 matrix with the entries ((V'£>ek’ez)’ 1<k<13, 1s8<5.

Hence we introduce for. £ ¢ R3,

(2‘]5) V(E) = (((v.g)ek’el))]ﬁk,2513 ’

which is a real symmetric matrix. Consider the-decomposition

(2.16) V(E) = ,

where V]](g), V]Z(E), VZ](g) and 'sz(g) are 5x5, 5x8, 8x5 and
8x8 matrices, respectively. We have Vﬁ(g)T = V]](E), V]Z(E)T = Vz](g)
and V22(€)T = V,,(E), where the superscript T denotes transpose. By
straightfoward calculation, using (2.9) and (2.13), we have the fo]1bwing

expressions:
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\
| 1
(0, & & gy 0
T A
&1 1 board
| n
(2.17) V]](E) = gy 0. 1E
! |
t3 ! ks
- -1l - - - - - - - __ _ - — —
] |
L L T L L B
0 |
(01t g, aggy | O
| |
. |
O Ayt b Agky O
—_— - + — = e e e e e e e e e m— — J—
I
0 1 52 g] 0 | 0
' !
0, 0 £ £ 0
(2.18)  Vy,(E) = , 3 ¢
|
01 & 0 g oo
e
|
|
0 | | a4£]
|
|
0 ' 0 : a4€2
I
\ 0 : 3453)
where £ = (£),€5,3), 2, = 23, ayy = Y2y, k=2,3, §=1,2,3, and

3, = /375 .

3. Construction of a compensating function

We introduce the notion of a compensating function for the Boltzmann
equation (2.3). Let B(Lz(v)) be the Banach space of bounded linear

operators on Lz(v), with the operator norm.

Definition 3.1. Let S(w) be a bounded linear operator on Lz(v)

with a parameter o e SZ, i.e., S(w) € B(LZ(V)) for each w e 52. S{w)

is called a compensating function for the Boltzmann equation (2.3), if the
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following conditions are satisfied:

(i) s(+) e (5% B(L%(v))) and S(-w) = -S(w) for each w e S°.

(i) iS(w) 1is a selfadjoint operator on Lz(v) for each w € 52.

(ifi) There exists a positive constant & such that for any w e'S2 and

f e L?(v),‘the following inequality holds.
Re (S{w)(v-w)f,f) + (Lf,f) 2 §]F]5 .

In order to show the existence of a compensating function for the

Boltzmann equation, we prepare the following

Lemma 3.1.  There exist matrices RJ, i=1,2,3, which satisfy the
following properties: Each R isa 13x13 real skew-symmetric matrix

with constant entries. Moreover, there exist positive constants 3 and
)T m13

€ 3

C] such that for any w e 52 and W = (W],';',W]3
(3.1) Re:< R(Q)V(m)w w> 2 cqlw |2 - Cylw '2
) o ’ I RS LA |

where R(w) =] waj for w = (w],wz,w3), V(w) is the matrixz defined by
. ‘ _ T _ T

(2.15) wtthv>£ replaced by w,»wI = (w],"‘,WS) . Wp S (W6,"’sW]3) s ané

<, > denotes the standard inner product of C]3.

Proof. We define RY, j=1,2,3, by

,‘,;v21(€) o ‘

where o is a positive constant which will be determined later, V]z(g) :

and V21(g) ~are the matrices in (2.16), and
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R T
. T
-, | ro
1 | I
(3.3) R0 = | -g, 0 Lo

: | i
!
-83 : 0
—_— e, e = = = = - - - -
.\ 0 | 0 0 o ' 0

By the definition, each Rj is'a 13x13 real skew-symmetric matrix with .
constant entries. We shall show (3.71). Put U(E) = R(E)V(E) and Tet

U(e) = (U, (8 o2

From (2.16) and (3.2) we have

be the decomposition of the same type as in (2.16).

Uy 6) = Ry (81U (8) + Vi, (£)Vy (E).

By a simple calculation, using (2.7) and (3,3), we know that for w e S2

)T 5

and wy = (W]’f'fews e 7,

5

‘ 2
-C lel ’
22 K

5 2
(3.4) Re < Rn(w)V”(w)wI,.wI > 2 CZIW]I

where c, and C, are positive constants. On the other hand, it follows
from (2.18) that rankVZ](w) =4 forany we 52 and hence |

5
. ~ . C 2 2

where C3 is a positive constant. We multiply (3.4) by o > 0 and then
add the resulting inequality to (3.5). Choosing o such that aC, = c4/2,

we obtain

(3.6) Re < U]](w)wl,w1'> .2 c|wI|2

with ¢ = mih{acz, c3/2}. The desired estimate (3.1) is an easy consequence

of (3.6). Therefore the proof of Lemma 3.1 is comp]ete}

185
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We denote the components of the matrix R(w) 1in Lemma 3.1 by rkn(w)’

k,2=1,---,13, and define the operator S(w) with a parameter w e S2 by
]3 2 H

(3.7) S(w)f = ) §=1Brk2(w)(f,el)ek , f e ? (V)i’

where B -is a positive constant. We shall shoﬁ that the above S(w) is a

compensating function for the Boltzmann equation.

Proposition 3.2.  The operator S(w) defined by (3.7) is a«compen—
sating function for the Boltzmann equation, providéd'that B>0 . 1s
sufficiently small. Moreover, for each w e S?, S(w) maps 1L2(v) into

the subspace W defined by (2.12).

Proof. Since {e],---,e13] is an orthonormal basis of W, the last
statement of the proposition is obvidus ffom the definition‘(3.7). We shall
check conditions (i), (ﬁ) and‘(ﬁi)‘o% Définition 3.1. Condition (i) ié an

- easy consequence of R(w) =} ijj. Let f, ge Lz(v). We have from (3.7),
13

(3.8) (S(w)f,g) = T
k,2=

]Brkg(w)(f,el)(g,ek)..

let w and u be thé:veétors in C]3_>who$e k-th coﬁponehts are '(f,ek) '
and (g,ek), respectively. The equality (3.8) then gives (S(w)f,q) =

B < R(w)w,u >, where,7< , > 1is the standard inner product of C]3. This
relation showsvthat iS(w) s a:se1fadjoint operator on L2(v), since
‘R(w) is real skew--symmetrfc;L fhﬁs'condition (#) is verified. Fina]]y;
we check condition (iii). Léﬁ‘ f'e"Li(Q). From (3.8) we have -
13

(3:9)  (Slva)f,n) = T ergle)((vu)fie))(fe) .
_ » 4= .-

We denote the orthogonal projection from L2(v) onto W by P, namely,

PF= T (f.e,)e, .
k=1 KK



We substitute the decomposition f = Pf + (I-P)f into the right hand side

of (3.9) to obtain

{3.10) (S(w)(vew)f,f) = B < R{w)V(w)w,w > +
13 - _
+ k,%::]Ber'(w)((I - P)f,(.v-w)el)(f,ek’) ’

where V(w) 1is the matrix defined by (2.15), and w 1is the vector in 613

whose k-th companent is (f,ek). The second term on the right hand side of
(3.10) is bounded by BC|(I -PO)flzlflz, where C s a constant independ-
ent of B and P0 is the orthogonal projection from L2(v) onto N(L).
On the other hand, by virtue of Lemma 3.1, the real part of the first term
on the right side of (3.10) is bounded from below by Bc, P f|5 -
BC]](I-PO)f|§, where ¢y and C] are the positive constants in (3.1) and

hence do not depend on B. Therefore we obtain
2 2
(3.17) Re (S(w)(vew)f,f) zke(cl -e)lPOf]2 - BCQI(I -Po)f|2

for any € > 0, where C€ is a constant depending on € but not on B. We
add (2.10) to (3.11) and choose e and B such that € = c]/2 and BCE

= 6]/2. Then we get the inedua]ity

(3.12)  Re (S(w)(vw)f,f) + (LF,£) = 6,] €|

with 62 = mih{Bc]/Z, 6]/2}. Thus condition (iii) has been checked. This
completes the proof of Proposition 3.2.

4. Decay estimate for the linearized equation

We consider the initial value problem for the linearized Boltzmann

equation:

10

187
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(4.1) | fo+ v-fo +Lf=g,

(4.2) f(O,x,v) = fO(x,v) ,

3x R3. OQur aim is to

where g is a given function of (t,x,v) ¢ [0,») xR
show a decay estimate of solutions of (4.1),(4.2)\by an energy method simi-
lar to the one employéd in [4] (see aiso~[8]) for the discrete Boltzmann
equation. Our method is based on the existencé‘of a compensating function
for the Boltzmann equation.

Let us introduce function spaces. Hz(x) denotes the usual Sobolev

3

space on RX

of order %. We denote by H  the space of Lz(v)-functions
with values in H%(x), with the norm H’}{z. ~H% is the ‘space of L%(v)e
functions with values in Hgix); Lp’2 denotes the space of_Lz(v)afunctions
with values in LP(x). The norm of Lp,2 is.denoted by‘ 1[-]b,2.

Our result is then stated as follows.

Theorem 4.1. Let 23 0 and p, g€ [1,2]. Suppbse’thaf fO € Nl

n Lp’z. Moreover we assume that ¢ e Lw([O,w);]H2 n Lq,Z) and

3

(Pog)(t,x,v) =0 for »(t,x,v) e [0,0) x R” x R?,,where PO igs the orthogo—

nal projection from LZ(V) onto N(L). Let f be a solution of the prob-
lem (4.1),(4.2) satisfying f e L”([o,m);}ﬁﬁ and f, e L=([0,=); ¥ 1).

Then we have
(a.3) ROl < e VIl + FT, ) +
t .
oy 2
. c[o(nm) Y (gl + Ka(x)]q p)%de

for t e [0,), where vy = (3/2)(1/p-1/2), Y' = (3/2)(1/q-1/2) and C <is

a constant.

The decay estimate (4.3) with g = 0 has been obtained in [6],[7] by

1



a method based on the spectral theory for the lTinearized Boltzmann operator.

In drder to prove Theorem 4.1, we consider (4.1),(4.2) in the Fourier
transform:
(4.4)  Forilglva)f +LF=g,  w=g/lEl € 5P,
(4.5)  £(0,E,v) = f(E,v)
where f = %(t,g,v) denotes the Fourier transform of f = f(t,x,v). Let
S(w) be the compensating function for the Boltzmann equation constructed

in Prdpcsition 3.2 and let p be a positive constant. Put

ulg|

(4.6)  ELFI(t,E) = |F(t,6)]5 - —— (iSW)F(t,£),F(L,E)) , w = &/[E].

2 .
1+(g|
We shall show that for a suitably chosen u > 0, E[?] is a Ljapunov func-
tion of (4.4), which is régarded as an okdihary differential equatioﬁ in

L2(v) with a parameter £ ¢ R3.  More precisely we have

Lemma 4.2. For a suitably chosen u > 0, 'the function E[f] defined

by (4.6) satisfies the following inequalities.
11%:2 - YA
(4.7) ?-{flz < E[f] < 2|f]; ,
8 ~ A ~ 2
(4.8) o E[F] + 8o(£)ELF] < Clgl; ,
o 2 2
where & and C are positive constants, and p(E) = [E]7/(1+]E]%).

Theorem 4.1 can be proved by using Lemma 4.2. In fact, applying
Gronwall's inequality to (4.8) and using (4.7), we obtain for (t,£) e
[0,00)*X R3 ’

. . ~ _ ~ : t - [ _. ~ . .
(4.9 17(6e) 15 s e E TR ()2 c[oe SN (1) g, 0) |3 ae

where & is the constant in (4.8) and C is some constant. The desired

12

189
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estimate (4.3) is then obtained from (4.9) by the standard téchnique and
so we omit the argumehts. See, for example, [6] or [8]." : |

Proof of Lenma 4.2. We first note that (4.7) holds true for suffi-

ciently small u > 0; say, u e (O,u]]. To'show (4.8), we use the argUﬁeﬁﬁ
analogous to that employed in [4],[8]. We take the inner product (of;Lz(v))
f (4.4) and ;. Its real part is -

(4.10) _(%lfag)t + (LF,F) = Re (g, ) .
We apply -i|g[S{w), w = &/|&], 4.4) and then take the inner product
wﬁth %. Since iS(w) 1is a selfadjoint operator, the real part of the

resulting equality is
(4.0 G lel (s DY, + [el%Re (S(w) (v-w)f, )
= €| Ré {(iS(wILF,F) - (iS(w)g,f))

We calculate (4.70) 1+|£[ +(4.11) *u >w1th a positiVe constant u to

obtain

(.02)  (HOHEDEFD, + 0+ [E)LEF) +

+ ule]?Re (S(w) (vow)f,f) + (LF,F))

A

(1+]£]%) Re (g, ) + ulg| Re {(iS()LF,F) - (iS(0)g,f))

where E[?]' is the function definéd by (4.6). We assume that v e (0,17.
Then the second term on the left hand side of (4.12) is boundéd from below
by (1-w) (+]EI2) (LR, 8) 2 (1-u)6, (1+]€1%) [(1 - P)F|5, where we used (2.10).
On the other hand, by virtue of (3.12), the third term on the left side is
bounded from below by u62l512|?|g.: Therefore we have the following Tower

bound for the left’'side of (4.12).

13°
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(4.13) (3 O+[ElPELFD + (-nsy (1815 1= P FI + ws, L 121712

Next we estimate the right side of (4.12). Since PO§ = 0 by the assump-
tion, the first term on the right side of (4. ]2) is maJorlzed by

1+|g]2 { flzlqlz Aise,l%rom (3. 8), we see that the second term on
the right side is estimated by uC|g|[f| (](1 f|2 |g| , where C"ﬁs
a constant independent of y. Therefore, the r1ght side of (4{}2)»15 |

bounded by
(4.1) (e +uc ) (1415111 P15 + welel 71715 + ¢ (1+151%) 1913

for any € > 0, where CE is a constant depending on € but not on y e
(0,1]. We choose € and My such that ¢ = mih{6]/6, 62/2} and My =
min{1/6, 5]/6C€}. Then we have for y e (0,u2],

a . . ,\2.
(4.15)  SFELF] + & [(1-Po)FI; + us,n(E lfl2 clal

where C 1is a constant Now we put yu = m1n{u], “2} For this choice of
u, the inequality (4.15) comb1ned with (4.7) gives (4.8) with & = u62/2

This completes the proof of Lemma.4.2.

5.  Global solutions of the nonlinear equation

With the aid of the decay estimate (4.3) we can show the existence of
global solutions to the problem (2.3),(2.4) in the same way as in [6],[7].

Of course the result obtained is the same as that in [6],[7],

Theorem 5.1. Let £ > 3/2, 8> 5/2 and p « [],2].l We assume that
¥} ,2 ; L ‘
fo € Bgn LP2c. 15 ||If “2 g ¥ ‘[fO:"p ) s suttably small, then the

),(2.4) has a unique global solution £ in C ([0,); n

prob lem (2. B)

3
Be- 1 . . e
c([0,=); B g.1)+ Moreover, the solution satisfies

14
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510 Il g € Ul g + T,
for t e [0,o), where vy = (3/2)(1/p-1/2) and C 4is a constant.

Here we have emp]oyed the following notations: Bg is the space of

B(v) functxons with va]ues in H ( )}, where LB(V) denotes the space of

functions f = f(v) such that 1+|vl)8f e L%(v) and. ]+]y|)8f 50

uniformly as |v| > . The norm of is denoted by

i 1l g
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