On the exponential series of formal groups

九大理 白谷克已 (Katsumi SHIRATANI)

§1. Introduction

Let p be an odd prime. In the prime cyclotomic field $\mathbf{Q}_p(\zeta_p)$ generated by a primitive p-th root ζ_p of unity over the p-adic rationals \mathbf{Q}_p , there are explicit formulas of Takagi for the reciprocity law.

Let $\pmb{\xi}_0$ = $(1-\zeta_p)$ denote the prime ideal in $\pmb{\mathbb{Q}}_p(\zeta_p)$, and select a prime element $\mathring{\omega}$ such that

$$\tilde{\omega} = p^{-1}\sqrt{-p}$$
, $\tilde{\omega} \equiv \zeta_p - 1 \pmod{20}$.

Take Takagi basis κ_i $(1 \le i \le p)$ as basis for the multiplicative group of the principal units U_1 modulo \mathbf{p}_0^{p+1} in $\mathbf{q}_p(\zeta_p)$. Then the following formulas for the p-th norm residue symbol (,) hold.

$$(\kappa_{\mathbf{i}}, \kappa_{\mathbf{j}}) = 1$$
 for $\mathbf{i} + \mathbf{j} \not\equiv 1$ (mod p-1),
 $(\kappa_{\mathbf{i}}, \kappa_{\mathbf{j}}) = \zeta_{\mathbf{p}}^{-\mathbf{i}}$ for $\mathbf{i} + \mathbf{j} \equiv 1$ (mod p-1),
 $(\tilde{\omega}, \kappa_{\mathbf{i}}) = 1$ for $\mathbf{i} = 1, 2, \cdots, p-1$,
 $(\tilde{\omega}, \kappa_{\mathbf{p}}) = \zeta_{\mathbf{p}}$.

For any principal unit $\nu \in U_1$ we have the congruence with some integers $t_i(\nu) \in \mathbf{Z}$, called the Takagi exponents,

$$v \equiv \kappa_1^{t_1(v)} \kappa_2^{t_2(v)} \cdots \kappa_p^{t_p(v)} \pmod{\S_0^{p+1}}.$$

Then it holds that for any ν , $\mu \in U_1$

$$(v,\mu) = \zeta_{p}^{p-1} it_{i}(v)t_{p-i}(\mu)$$

$$(\overset{\circ}{\omega}, v) = \zeta_{p}^{t_{p}(v)}$$
.

These are called Takagi's formulas.

Now, the power series on indeterminate X

$$E(X) = e^{L(X)} = \prod_{(m,p)=1}^{\pi} (1-X^m)^{-\frac{\mu(m)}{m}}$$

with $L(X) = \sum_{k=0}^{\infty} \frac{1}{p^k} X^{p^k}$ is known as the Artin-Hasse exponential series, and $E(X) \in \mathbf{Z}_p[[X]]$ plays the central role in the proof for the complementary laws of reiprocity in the cyclotomic case [1]. Then we have the congruences

$$\kappa_i \equiv E((-1)^{i-1} \overset{\circ}{\omega}^i) \pmod{p+1} \qquad (1 \leq i \leq p)$$
.

For the details we refer to [6].

§2. Exponential series of the Lubin-Tate groups

Let k be a finite extension over \mathbb{Q}_p , and σ the integer ring, \mathbf{g} the prime ideal, π a fixed prime element in k respectively. Let $q = p^c$ denote the number of the elements of the residue class field of k, namely, $\sigma/\mathbf{g} = GF(q)$.

Let $f(X) \in \sigma[[X]]$ be a Frobenius power series belonging to the prime element π , namely

$$f(X) \equiv \pi X \pmod{\deg 2}$$
, $f(X) \equiv X^q \pmod{\pi}$

hold. Then there is a unique Lubin-Tate formal group $F = F_f$ attached to the series f, especially $f(X) = [\pi]_F(X)$ is an endomorphism of F.

Let $^{\Lambda}_{f,m}$ denote the group of $^{\pi}$ division points in the algebraic closure k_s of k, and $L_{\pi,m} = k(^{\Lambda}_{f,m})$ the field of $^{\pi}$ division points over k. Then we denote the integer ring, the prime ideal in $L_{\pi,m}$ by σ_{m-1} , γ_{m-1} respectively.

Now, for any $\alpha \in F(\S_n)$, $\beta \in L_{\pi,n+1}^{\times}$ take an element $\gamma \in k_s$ such that $[\pi^{n+1}]_F(\gamma) = \alpha$, and define the norm residue symbol $(\alpha,\beta)_n^F$ due to Wiles [5], [7] as follows:

$$(\alpha, \beta)_n^F = \sigma_{\beta} \gamma - \gamma \in \Lambda_{f,n+1}, \quad \sigma_{\beta} = (\beta, L_{\pi,n+1}^{ab}, L_{\pi,n+1}^{ab}),$$

where $L_{\pi,n+1}^{ab}$ means the maximal abelian extension of $L_{\pi,n+1}$ and $\sigma_{\beta} \in G(L_{\pi,n+1}^{ab})$ denotes the Artin map in local class field theory.

There is the isomorphism $\lambda_F: F \stackrel{\sim}{=} G_a$ from the group F to the additive formal group G_a over k satisfying $\lambda_F'(0) = 1$. This power series $\lambda_F(X) \in k[[X]]$ is called the logarithm of F and is explicitly given by a formula

$$\lambda_{F}(X) = \lim_{n \to \infty} \frac{1}{\pi^{n}} [\pi^{n}]_{F}(X) .$$

The inverse power series $e_F: G_a \stackrel{\circ}{=} F$ with $e_F'(0) = 1$ is called the exponential series of F.

Now, we define an exponential series $E_{\mathbf{F}}(\mathbf{X})$ as follows :

$$E_F(X) = e_F(L(X))$$
 with $L(X) = \sum_{k=0}^{\infty} \frac{1}{\pi^k} X^{q^k}$.

Then we see $E_F(X) \in k[[X]]$, but more precisely $E_F(X) \in X$ $\sigma[[X]]$. This fact depends on the generalization of the Dieudonné-Dwork lemma.

Lemma 1. It is necessary and sufficient for a power series $P(X) \in Xk[[X]] \text{ to belong to } X\sigma[[X]] \text{ that } P(X^q)_{\overline{F}}[\pi]_F(P(X)) \text{ has all the coefficients divisible by } \pi, \text{ namely}$

$$P(X^{q})_{\overline{F}}[\pi]_{F}(P(X)) \in X\pi\sigma[[X]].$$

The Dieudonné-Dwork lemma is a special case of Lemma 1 for the multiplicative group $G_{\rm m}$ and $\sigma=Z_{\rm p}$.

By the definition of $E_{F}(X)$ we have directly

$$E_{F}(X^{q})_{\overline{F}}[\pi]_{F}(E_{F}(X)) = e_{F}(-\pi X)$$
,

and we know $e_F(\pi X) \in X\pi \sigma[[X]]$. Consequently we conclude from Lemma 1 that

$E_{F}(X) \in X\sigma[[X]].$

§3. Complementary laws

We consider the basic formal group $\,\xi\,$ attached to $\,f(x)$ = $\pi x\,+\,x^{q}\,.$

For each $n \ge 0$ we take a prime element $u_n \in \Lambda_{f,n+1}$ in $L_{\pi,n+1}$ such as $[\pi]_{\xi}(u_n) = u_{n-1}$, $[\pi]_{\xi}(u_0) = 0$.

It holds from the Iwasawa-Wiles formula [2], [5], [7] that for any $i \ge 1$

$$(E_{\xi}(u_n^i), u_n)_n^{\xi} = \left[\frac{1}{\pi^{n+1}} T_n(\frac{\lambda_{\xi}(E_{\xi}(u_n^i))}{\lambda_{\xi}(u_n)u_n})\right]_{\xi}(u_n),$$

where T_n denotes the trace with respect to $L_{\pi,n+1}/k$. By the way we have $\lambda_{\xi}(E_{\xi}(u_n^i)) = L(u_n^i) \in L_{\pi,n+1}$, because we have in general $\lambda_F(X) = \sum\limits_{m=1}^{\infty} \frac{c_m}{m} \; X^m$ with $c_m \in \sigma$. Thus we have

$$(E_{\xi}(u_n^i), u_n)_n^{\xi} = \left[\frac{1}{\pi^{n+1}} T_n(\frac{L(u_n^i)}{\lambda_{\xi}(u_n)u_n})\right]_{\xi}(u_n).$$

Lemma 2. Assume $\ell \geq 2n+2$. Then we have $\frac{1}{\pi^{\ell}} T_n(\frac{u_n^{iq^{\ell}-1}}{\lambda_{\xi}^{i}(u_n)}) \equiv 0 \pmod{\pi^{2(n+1)}}.$

This can be obtained by virtue of the different v_n equal to $\mathbf{r}_n^{q^n}((n+1)(q-1)-1) \sim \pi^{n+1} u_0^{-1} v_n$.

Lemma 3. We have

$$T_n(\frac{u_n^r}{\lambda \xi(u_n)}) = \begin{cases} 0 & \text{for } 0 \leq r \leq q^{n-2}, \\ -\pi^n & \text{for } r = q^{n-1}. \end{cases}$$

Especially

$$\frac{1}{\pi^{\ell}} T_{n}(\frac{u_{n}^{iq^{\ell}-1}}{\lambda_{\xi}^{i}(u_{n})}) = 0 \quad \text{for } iq^{\ell} < q^{n} ,$$

$$\frac{1}{\pi^{n}} T_{n}(\frac{u_{n}^{q^{n}-1}}{\lambda_{\xi}^{i}(u_{n})}) = -1.$$

These formulas come out from Euler's identity, Lagrange's interpolation formula for polynomials. The next lemma follows similarly from the same and noticing the minimal basis of $^L\pi$,n+1/ $_L$, to be 1, u_n ,..., u_n^{q-1} . $T_{n,n-1}$ denotes the trace with respect to $^L\pi$,n+1/ $_L$,...

Lemma 4. Assume $n \ge 1$. Then we have

$$T_{n,n-1}(\frac{u_n^r}{\lambda_{\xi}^{!}(u_n)}) = \begin{cases} 0 & \text{for } 0 \leq r \leq q-2, \\ \frac{\pi}{\lambda_{\xi}^{!}(u_{n-1})} & \text{for } r = q-1, \end{cases}$$

$$T_{n,n-1}(\frac{u_{n}^{r}}{\lambda_{\xi}^{!}(u_{n})}) = \frac{\pi}{\lambda_{\xi}^{!}(u_{n-1})} \sum_{\substack{s_{0}, r_{1} \geq 0 \\ (q-1)(s_{0}+1)+r_{1}=r}} {\binom{s_{0}-r_{1}}{r_{1}}} u_{n-1}^{r_{1}} {\binom{s_{0}-r_{1}}{r_{1}}} \text{ for } r \geq q.$$

Now, by a repeated use of Lemma 4 we see

$$T_{n,0}(\frac{u_{n}^{r}}{\lambda_{\xi}(u_{n})}) = \sum_{n=0}^{\infty} (-1)^{s_{0}^{+\cdot+s_{n-1}^{-r}1^{-\cdot-r}n}} {s_{0}\choose r_{1}} {s_{1}\choose r_{2}} \cdots {s_{n-1}\choose r_{n}} \pi^{n+(s_{0}^{+\cdot+s_{n-1}})-(r_{1}^{+\cdot+r}n)} \frac{u_{0}^{r}n}{\lambda_{\xi}(u_{0}^{+\cdot+s_{n-1}})} \frac{u_{0}^{r}n}{u_{0}^{r}n}$$

where the summation is taken over the integers s_i , $r_i \ge 0$ satisfying $(q-1)(s_i+1) + r_{i+1} = r_i \ (0 \le i \le n-1)$, $r_0 = r$.

Therefore, after noticing that $T_0(u_0^{r_n})=0$ for $r_n\not\equiv 0\pmod{q-1}$ and $r_n\equiv r\pmod{q-1}$, we have

$$(E_{\xi}(u_n^i), u_n)_n^{\xi} = 0$$
 for $i \not\equiv 1 \pmod{q-1}$.

In the sequel we compute $(E_{\xi}(u_n^i), u_n)_n^{\xi}$ for the cases $i \equiv 1 \pmod{q-1}$.

First, from Lemma 4 for $iq^{\ell} \ge q^n$

$$(*) \qquad \frac{1}{\pi^{\ell}} \operatorname{T}_{n}(\frac{u_{n}^{\operatorname{iq}^{\ell}-1}}{\lambda'(u_{n})})$$

$$= \sum_{\substack{j_1, \dots, j_n}} (-1)^{j_0-n-1} {j_0-1-j_1 \choose j_1(q-1)} {j_1-1-j_2 \choose j_2(q-1)} \dots {j_{n-1}-1-j_n \choose j_n(q-1)}^{j_0-(q-1)(j_1+\cdots+j_n)-\ell}$$

where $j_0 = \frac{iq^{\ell}-1}{q-1}$ and j_m runs over the integers satisfying $\frac{q^{n-m}-1}{q-1} \le j_m \le \frac{1}{q} \ (j_{m-1}-1) \ .$

Here we can find easily the minimum of all the exponents of π , when ℓ and j_1, \cdots, j_n run over the possible ranges under the assumption $1 \leq i \leq q^{n+1}$ -1, $i \equiv 1 \pmod{q-1}$. The minimum exponent

becomes $t + s_q(\frac{i-q^t}{q-1})$, where t means the non-negative integer such that $q^t \le i < q^{t+1}$ and $s_q(x)$ denotes the sum of the coefficients of the canonical q-expansion of x.

Consequently, under the condition q > 2n + 2 we have a congruence

$$\frac{1}{\pi^{n+1}} T_n(\frac{L(u_n^i)}{\lambda_{\xi}^i(u_n)u_n}) \equiv \frac{1}{\pi^{n+1}} A_0^{(i)} \pi^{t+s_q(\frac{i-q^t}{q-1})} \pmod{\pi^{n+1}} ,$$

where $A_0^{(i)} \in \mathbb{Z}$ is the sum of all coefficients of terms with the exponent $t + s_q(\frac{i-q}{q-1})$ of π in the formulas $(*)_{\ell}$, $n-t \leq \ell \leq n$.

After a simple observation we see that there are two terms with coefficients not zero to be considered, namely in the cases $\ell=n-t$, n-t+1. Furthermore, these coefficients cancel out. Thus we obtain

$$(\mathrm{E}_{\xi}(\mathrm{u}_{\mathrm{n}}^{\mathrm{i}}), \mathrm{u}_{\mathrm{n}})_{\mathrm{n}}^{\xi} = 0$$
 for $1 \leq \mathrm{i} \leq \mathrm{q}^{\mathrm{n}+1} - 1$.

Because there is the isomorphism $\phi: \xi \stackrel{\sim}{=} F$, $\phi'(0) = 1$ and $(\alpha, \beta)_n^F = \phi(\phi^{-1}(\alpha, \beta)_n^\xi)$ holds, we obtain, by denoting $v_n = \phi(u_n)$, the following

Theorem 1. Under the assumption q > 2n + 2 we have

$$(E_F(u_n^i), u_n)_n^F = 0$$
 for $1 \le i \le q^{n+1} - 1$, $(E_F(u_n^{q^{n+1}}), u_n)_n^F = v_n$.

The second formula follows from the fact that $E_{\xi}(u_n^q) = [\pi]_{\xi}(E_{\xi}(u_n))_{\overline{\xi}}e_{\xi}(\pi u_n)$, and repeatedly $E_{\xi}(u_n^{q^{n+1}}) = [\pi^{n+1}]_{\xi}(E_{\xi}(u_n))_{\overline{\xi}}e_{\xi}(\pi^{n+1}u_n + \pi^n u_n^q + \dots + \pi u_n^q)$, and from Lemma 3, namely $(E_{\xi}(u_n^{q^{n+1}}), u_n)_n^{\xi} = u_n$.

§4. Explicit formulas in prime division fields

In this section we give a generalization of Takagi's formulas stated in Introduction.

First, the formula of de Shalit reads as follows [2] :

For $\alpha \in F(\boldsymbol{\xi}_n)$, $\beta \in L_{\pi,n+1}^{\times}$ take a power series $h \in X\boldsymbol{\sigma}[[X]]$ such that $\alpha = h(v_n)$ and the Coleman power series $g(X) \in X\boldsymbol{\sigma}[[X]]$ with $\beta = g(v_n)$. Then it holds that

$$(\alpha, \beta)_{n}^{F}$$

$$= \left[\frac{1}{\pi^{n+1}} \left\{ \sum_{v \in \Lambda_{f,n+1}} (\lambda_{F} \circ h - \frac{\lambda_{F} \circ h \circ [\pi]_{F}}{\pi}) \delta g(v) + \frac{dh}{dX}(0) (1 - \frac{Ng}{g}) (0) \right\} \right]_{F}(v_{n}) ,$$

where Ng denotes Coleman's norm operator of g and δg means the logarithmic derivative of g, namely $(\delta g)(X) = \frac{1}{\lambda \frac{1}{F}(X)} \frac{1}{g(X)} \frac{d}{dX} g(X)$.

By making use of de Shalit formula we obtain the following

Lemma 5. For $i \geq q$ or $j \geq q$ or $i \not\equiv 1 \pmod{(j, q-1)}$ we have

$$\frac{1}{\pi} T_0(\frac{L(u_0^1)ju_0^{j-1}}{\lambda_{\xi}(u_0)(1-u_0^j)}) \equiv 0 \pmod{\pi}.$$

For q = i + mj, $1 \le m \le q - 1$, $1 \le i$, j

$$\frac{1}{\pi} T_0(\frac{L(u_0^i)ju_0^{j-1}}{\lambda_{\xi}^i(u_0^j)(1-u_0^j)}) \equiv \begin{cases} 0 & (\text{mod } \pi) & (i = 1), \\ \\ j & (\text{mod } \pi) & (i \geq 2). \end{cases}$$

Thus we have under the condition q = i + mj

$$(E_{\xi}(u_0^i), 1-u_0^j)_0^{\xi} = [-j]_{\xi}(u_0)$$
 for $i \ge 1$.

From this lemma we obtain

$$(E_{\xi}(u_0^i), E(u_0^j))_0^{\xi} = [j]_{\xi}(u_0)$$
 for $q = i + p^a j$, $(E_{\xi}(u_0^i), E(u_0^j))_0^{\xi} = 0$ otherwise.

Herein E(X) is the ordinary Artin-Hasse exponential series in Introduction.

Finally, for any Lubin-Tate group F isomorphic to ξ over σ belonging to the prime π we obtain the following

Theorem 2. We have

$$\begin{split} &(\mathsf{E}_{F}(\mathsf{u}_{0}^{\mathbf{i}})\,,\;\mathsf{E}(\mathsf{u}_{0}^{\mathbf{j}}))_{0}^{F}\,=\,\left[\mathsf{j}\right]_{F}(\mathsf{v}_{0}) & \text{if } \mathsf{q}\,=\,\mathsf{i}\,+\,\mathsf{p}^{a}\mathsf{j}\,,\;\mathsf{p}^{a}\,|\,\mathsf{q}\,\,,\\ &(\mathsf{E}_{F}(\mathsf{u}_{0}^{\mathbf{i}})\,,\;\mathsf{E}(\mathsf{u}_{0}^{\mathbf{j}}))_{0}^{F}\,=\,0 & \text{otherwise}\,\,,\\ &(\mathsf{E}_{F}(\mathsf{u}_{0}^{\mathbf{i}})\,,\;\mathsf{u}_{0})_{0}^{F}\,=\,0 & \text{if } 1\,\leq\,\mathsf{i}\,\leq\,\mathsf{q}\,-\,1\,\,,\\ &(\mathsf{E}_{F}(\mathsf{u}_{0}^{\mathbf{q}})\,,\;\mathsf{u}_{0})_{0}^{F}\,=\,\mathsf{v}_{0}\,\,. \end{split}$$

In particular, in the case where $k=\mathbb{Q}_p$, q=p, $F=G_m$, $\pi=p$ and necessarily $v_0=\zeta_p^{-1}-1$, $u_0=-\tilde{\omega}$, the formulas in Theorem 2 coincide just with Takagi's formulas quoted in Introduction.

References

- [1] E. Artin und H. Hasse, Die beiden Ergänzungssätze zum Reziprozitätsgesetz der ℓ^n -ten Potenzreste im Körper der ℓ^n -ten Einheitswurzeln, Abh. Math. Sem. Univ. Hamburg, 6(1928), 146-162.
- [2] E. de Shalit, The explicit reciprocity law in local class field theory, Duke Math. J., 53(1986), 163-176.
- [3] J. Dieudonné, On the Artin-Hasse exponential series, Proc. Amer. Math. Soc., 8(1957), 210-214.
- [4] K. Iwasawa, On explicit formulas for the norm residue symbol, J. Math. Soc. Japan, 20(1968), 151-164.
- [5] K. Iwasawa, Local class field theory, Oxford Univ. press, 1986.
- [6] K. Shiratani and M. Ishibashi, On explicit formulas for the norm residue symbol in prime cyclotomic fields, Mem. Fac. Scie., Kyushu Univ., 38(1984), 203-231.
- [7] A. Wiles, Higher explicit reciprocity law, Ann. Math., 107(1978), 235-254.