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On the exponential series of formal groups

K22 4 5% ¢, (Katsumi SHIRATANI)

§1. Introduction

Let p be an odd prime. In the prime cyclotomic field Qp(ﬁp)
generated by a primitive p-th root Cp of unity over the p-adic
rationals Qp, there are explicit formulas of Takagi for the reci-
procity law.

Let XO = (l—Qp) denote the prime ideal_in Qp(Cp), and select

Y
a prime element ® such that

ge
1"

ny - p-l — _ 2
w v p , Cp 1 (mod 30)

e

Take Takagi basis K (1 £1i 2 p) as basis for the multiplicative

group of the principal units U; modulo ;8+1 in Qp(cp). Then

the following formulas for the p-th norm residue symbol ( , )

hold.
(Kl, Kj) =1 for i+j # 1 (mod p-1)-,
(Ki, Kj) = Céi for i+j =1 '(mod r-1) ,
(@ , k) =1 for i=1,2, » p-1
(W k) =2,
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For any principal unit v € U; we have the congruence with

some integers ti(v) € 7, called the Takagi exponents,

to(v)  t,(Vv) to(v) +
vV = Kq 1Y K4 2+? Ky PV (mod $8 1)

Then it holds that for any v, u e U1

p-1
-.Zliti(v)tp_i(u)
(v, =&, ,
a t (V)
- p
(w,v) = &, -

These are called Takagi's formulas.

Now, the power series on indeterminate ‘X

_ H(m)
m
Ex) = eF(X) - T (1-XM
k(m’p)’:l
with L(X) = ) —X is known as the Artin-Hasse exponential
=0 p

series, and E(X)ve Zb[[X]] plays the central role in the proof
for the complementary laws of reiprocity in the cyclotomic case [1].

Then we have the congruences

c; = B(CDMY moa p2*h 1 < i < p)

For the details we refer to [6].
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§2. Exponential series of the Lubin-Tate groups

Let k be a finite extension over Qp’ and o6& the integer

ring, § the prime ideal, T a fixed prime element in k reSpec—

tively. Let q = pC denote the number of the elements of the
residue class field of k, namely, 073 = GF(q).
Let f(X) e o[[X]] be a Frobenius power series belonging to

the prime element T, namely
£(X) = 7X (mod deg 2), f£(X) = X% (mod m)

hold. Then there is a unique Lubin-Tate formal group F = Pf
attached to the series £, especially £(X) = [W]P(X) is an
endomorphism of F.

Let Ag n denote the group of ™ division points in the

H

algebraic closure kS of k, and Ln,m = k(Af,m) the field of

ﬂm division points over k. Then we.denote the integer ring, the

prime ideal in Lw,m by Om-1° &m-1 respectively.
X
- Now, for any. o € F(}n), ‘B € Ln,n+1 take an element Y €& kS

such that [Wn+l]F(Y) = a, and define the norm residue symbol
(u;B)i due to:Wiles [5], [7] as. follows
ab

=0, Y - v el , 0, = (B T,n+1l/ )
B F - f,n+l B, ’ > Ln,n+1 ’

F
n

(o, B)

ab

where Lﬂ,n+1 means the maximal abelian extension of Lw,n+1 and
Lab
oq € G( ﬂ,n+1/L- ) denotes the Artin map in local class field
T,n+l ' '
theory.
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e

There is the isomorphism Ap : F = G, from the group F to
the additive formal group G, over k satisfying AF'(O) = 1.
This power series AF(X) € k[[X]] 1is called the logarithm of F
and is eﬁplicitly given by a formula

..o 1 n
Ap(X) = lim =17 (X)

e

The inverse power series ep Ga F with eF'(O) =1 is

called the exponential series of F.

Now, we define an exponential series EF(X) as follows

1 .q*

Ep(X) = eF(L(X)) with L(X) = x4
0

nNe~1 8
b

L
Then we see EF(X) € k[[X]], but more precisely EF(X) € Xofl[X]].

This fact depends on the generalization of the Dieudonne-Dwork lemma.

Lemma 1. It is necessary and sufficienf for a power series-
P(X) € Xk[[X]] to belong to Xe[[X]] that P(XD)g[r]p(P(X)) has

all the coefficients divisible by 7, namely
PXDRIm1E(P(X)) € Xmol[X]].
The Dieudonné-Dwork lemma is a special case of Lemma 1 for the

multiplicative group Gm and O = Zp.

By the definition of EF(X) we have directly
Ep (XD plm]p(Bp (X)) = ep(-mX) ,

and we know eF(ﬂX) € XWO{[X]]Q Consequently we conclude from

Lemma 1 that



Ep(X) € Xo[[X]).

§3. Complementary laws

We consider the basic formal group & attached to f(X) =

X + x4,
For each n > 0 we take a prime element u, € Af,n+1 in
Ln,n+1 such as [n]g(un) = U, 1> [w]g(uo) = 0.

It holds from the Iwasawa-Wiles formula [2], [5], [7] that for

any i 21

. N (Bp (ul)
€ _ 1 E*7EYn ‘
(Eﬁ(uﬁ)’ Updn = [Wn+1 Tn(xé(unjun Ve lug)s

where T/ denotes the trace with respect to Lﬂ,n+1/k'

By the w?y we have AE(Eg(u;)) = L(u;) € Lﬂ,n+1’ becau;evwe have

in general AF(X) = Zl _ﬁg'xm with Ch €0 - Thus we have
m:

: L(ul)
g€ _ 1 n
(Eﬁ(u;)’ Undp = [ﬂn+1 Tn(ké(un)un)]i(un)

- Lemma 2. Assume % > 2n + 2. Then we have
Jiat-1

0 (mod TT2(n+1))

T (o) =
ok n(kg(un)

This can be obtained by virtue of the different ‘d; equal to

g, (@D (@)D o neldlg
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Lemma 3. We have

uf 0 for 0 <71 < qn—Z s
T, Gy
n E(un n n
ST -t~ for r = q -1.
Especially
igk-1
1 Un _ . 9 n
——_,Q/ Tn()\—'(rl-—T) = 0 for 1q < q N
m E n
q"-1
1 = -1

u
n
n Tn(xéiuni)

™

These formulas come out from Euler's identity, Lagrange's interpo-

lation formula for polynomials. The next lemma follows similarly

from the same and noticing the minimal basis of L'rr,n+1/L " to
; ’n',n
. . q_l .
be 1, LR up - Tn,n-l denotes the trace with respect to
Lﬂ,n+1/L
Tl

Lemma 4. Assume n 2 1. Then we have

T 0 for 0<r <gq-2,
u, _ =" =
Tn,n—l(x'(u i) - : .
£ n ; E for r = gq-1 ,
: Ag n-1
T ( un ) I oy (_l)so‘rl[SOJﬁrl S NS
n,n-1 Aé(un) Aé(un_lT 50’T1;0 T n-1 | Tt s q.

(q-1) (sg*D)+ry=r
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Now, by a repeated use of Lemma 4 we see

r . _ ' _ ; r
s t-+s

v 17T (s . - .
- (— n y = Z('l) 0 n-1 "1 n sO s11... Sn—l,ﬂn+(so+ +sn_l) (rl+ +rn) ..O
n,0 Ag(un) 1 c : Altu))

where the summation is taken over the integers s., r. 2 0 satisfying

(q—l)(si+1) *Tie 5T (0 £1 =g p—l), L
T
Therefore, after noticing that TO(uOn)

0 for T, # 0 (mod g-1)

and T, =T (mod q-1), we have
i I .
(Eg(un)’ un)n = 0 for iZ1 (mod q-1)

In the sequel we compute (Eg(u;], un)g‘ for the cases ivz'l

(mod gq-1).
First, from Lemma 4 for iq2 > qn
iqz-l
1 Yn
=} T RO
™ n
; SPRE R IS O B NS B S AN MRS 5 JOR JO Cos DG MR IO
jl,'°',jn j; (@-1)7 13, (g-1) J, (a-1) ?
iqz—l . . .
where Jo =r;atT~ and j, Tuns over the integers satisfying
n-m_y 1
T Sin2q Upg - D

Here we can find easily the minimum of all the exponents of 1,
when & and jq,---, jn run over the possible ranges under the

assumption 1 < i < q ~-1,

1 (mod q-1). The minimum exponent
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becomes t + s (%%%—), where t means the non-negative integer
such that qt i<g and sq(x) denotes the sum of the
coefficients of the canonical g-expansion of Xx.

Consequently, under the condition q > 2n + 2 we have a

congruence
i i—qt
L(ul) a8 t+s ( )
1 n - 1 (i) q-q-1 n+1
n+l Tn Al(u)u ) = n+1l A0 m (mod ) s
m E ' n’'n m

where Aél)e Z 1is the sum of all coefficients of terms with the

exponent t + sq(;:% ) of m in the formulas'(*)l ,, n-t < % < n,
After a simple observation we see that there are two terms

with coefficients not zero to be considered, namely in the cases
2 = n-t, n-t+l. Furthermore, these coefficients cancel out.

Thus we obtain

n+l1

I
L
1

[

(Eg(ui), un)i =0 for 1<

ne

Because there is the isomorphism ¢ : &
(@, B = o(o7"

the following

F, ¢'(0) =1 and

(a, B)ﬁ) holds, We obtain, by denoting v, = ¢(un),

Theorem 1.. Under.the assumption q > 2n + 2 we have

n+1

(Bp(up), un)i =0 for 1<i<q -1,

in

‘n+1

q £F =
(EF(un )5 un)n Vn
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The second formula follows from the fact that Eg(ug) =

n+1l
[W]g(Eg(un))zeg(nun), and repeatedly Eg(ug ) = [ﬂn+l]g(E£(un))E

n : .
eg(ﬂn+1u + ﬁnug oot ﬂuﬁ ) , and from Lemma 3, namely
qn+1 £
(Eg(un ), u ) = uy
§4. Explicit formulas in prime division fields

In this section we give a gensfalization of Takagi's formulas
stated in Introduction.
First, the formula of de Shalit reads as follows [2]
X
For a e F(:n), Be Lw,n+1

such that a = h(vn) and the Coleman poWer series g(X) € Xoi[X]]

take a power series h € Xof([X]]

with B = g(vn). Then it holds that

(o, B)F
o Apoho[T]
1 F F dh N
TS I Qpeh-—— )6g (V) +qy(0) (1-=8) (0115 (vy)

f,n+1

where Ng denotes Coleman's norm operator of g and §g means _
o . 1 1 d |
the logarithmic derivative of , namel § X) = X).
LOg 1 g y g) (X) X;TYT g(X) dIX g(X)

By making use of de Shalit formula we obtain the following

Lemma 5. For 1

fiv

q or j2q or i #1 (mod (j, q-1))

we have

iv.. j-1
(L(UO)JUO

Aé(uo)(l—u%)

2|

0 =0 (mod m)
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For q=41 +mj, 1 <m<gqg-1,

iy, j-1
vL(uo)Juo

A (ag) (1-u))

1
= T

o

Thus we have under the condition
(B (ud), 1-ul) = [
E-07 0’0
From this lemma we obtain

(Bg (ug), E(u}))g =

(B¢ (ug), EQui)Ig

Herein E(X) 1is the ordinary

Introduction.

11,7

A

0 (méd )

j (mod m)

q=1+mj

for

"j]g(uo)

[31g(ug) for

0 otherwise.

(i=1,

2 2)

v
[

+ p?j

Artin-Hasse exponential series

in

Finally, for any Lubin-Tate group F isomorphic to & over

& belonging to the prime

Theorem 2. We have

(Bp(ug), BENE = [H1p0v

]
(]

(Bpud), BN

F
uglg =

|
o

(Eg(up)

(Epd), ug)y =

0) if qg=1
otherwise
if 1< 1

b

A

we obtain the following

a. a
p°i, p la ,
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In particular, in the case where k = Qp, q=p, F=2¢6G
él -1, wuy = -¢, the formulas in

Theorem 2 coincide just with Takagi's formulas quoted in Introduction.

m’

m = p and necessarily . v, = ¢
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