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On Gevrev Singularities of solutions of equations with non svaplectic

characteristics

Tsutomn SAKURAT ( Tq B 74 )

(Saitama Univ. Urawa 338) i%Tj;Tlffi

In this note we shall construct parametrices for a specific class

of differential operators with non svmplectic characteristics and
clarifyv the structure of Gevreyv singularities of solutions of the

corresponding equations using constructed parametrices.

0. Notation and preliminaries

N

If ¥ 1is an open set of R and vy 2 1, the Gevrev class of
ordef v; which we denote by Qv(x), is the set of all y e 27(x)

such that for everv compact set K ¢ ¥ there is a constant (¢

K

18%ulz) ) < C§a1+l(a!)v, z € K.

for all milti—indices o € NN;

We use the following definition of the Gevrey wave front set given

by Hormander [14].

Definition 0.1. If x c RY and u € 2°(¥) we denote by WF (u)
the complement in T7*(X)\O of the set of (z,&) such that there
exist a neighborhood Uy c ¥ of . a conic neighborhood vy ¢ RN\O

€ £ (%) which is equal to y in

of £ and a bounded sequence U,

U and satisfies
1%,(8)1 < c"‘”(k”‘/nsr)*. K =1,2,--

for some constant ¢ when ¢ € v, where ﬁk denotes the Fourier

transform of uk.

wpl(u) is also denoted by WFA(u) since this is one of the
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definition of thebanalytic wave front set known to be ecuivalent tm'
the otheré; see e.g. Bony [3].

If n denotes the canonical projection of 7*(X)\0 on X then
U € Gv(X\n(va(u))) and for a differential operatbr p ‘with

analvtic coefficients, we have

WFv(Pu) c WFv(u) c Char p v WFV(Pu),

‘where Char p denoteszthe characteristic set of p. We say that p

is @Y microhypoelliptic at (z,2) if there is a conic neighborhood

Vo T*(X)\0 of (z,£) such that

WFv(Pu) nyv-= WFv(u) nv.

1. Statement of the results

Let ¥ be the submanifold in T*(RN)\O of codimension 2d+d’

given by

= < ’J . I T s s s = = e e o= =
z= {(.L',&)GT*(R )\O, £1 \Ed’ 0, El E_d_*_d. 0},

where 0 < g < d+d” < §. With this 3 we set

N d_pd’ _od"
R, (xR xR

i

RngZ =R {(d+n=N. d"+d"=n)

and denote by & = (z,n) = (t.p",n") the dual variables of z = (t,y)

= (t,y .y") € @%sz:xﬂzi. (In this coordinate % = ((t,y.t.n".n");

t=t?n’=0, n”=0}.)
For a fixed integer j z'i we shall consider a differential

operator of order un with polyvnomial coefficients of the form:

Y 5B n
aaﬁyt DyD »

|<m
+|8 {+(1+R) 18" |

(1.1) P = p(t:D,,D)

d .

where (o«,8,y) = (ot,87,8",7) € Ndkwd'xwd"xw and (Dt,Dy) =

t

quasi-homogeneity:

(—ia_.-iay). Note that the symbol p{¢,t,n) has the following



(1.2) p( /3P APe, 0P a0y = 2Pttt on), A0

with p = 1/(1+4).
Po denote the principal syvmhol giveﬁ by

1.3 polt.ton) = S a . t'nf".
) + s

For a point (gz,£) = (O,ﬁ;0,0,ﬁ“)‘e T (|a”] = 0) we suppose:

(H-1) There exists a constant 2 > O such that
5 ) sy v h n P ;, li (i fis (i ’
lpo(t,t,n UMz el icli+in  1+1817)YY,  (t.tv.n’) € ExRYxRY™ .

_We also consider the following condition due to Grufin.
(H-2)  For all n° e R, Ker p(t,D,.n".7") n 9(8%9) = (0},

Here p(t,Dt, *,p") is considered as an operator acting on y(Rf)

d

n
with a parameter p- € R

Remark. If h =1, (H=2) is known to be equivalent to ¢~ micro—

hypoellipticity with loss of p/2 derivatives; see e.g. Boutet de
Monvel-Grigis—Helffer [4], see also Grufin [10],[111,112] and the

other authors [8]1,[15],[281.

Theorem I. Let P be an operator of the form (1.1) satifyiang (H-1),

(H-2) for (z,8) € . If v =2 1+h then P is G’ micro-

hypoelliptic at (z,£).
The condition v > 14k 1is the best in the sence that

Theorem II. Let P be an operator of the form:

(1.4)

o
"

- r 1 " + * )
p (t.D Dy ) q(Dy,)

t

[

b s s 5
pt 0D S bgD.

21
t 16" 1=m B

Ll *18" |<n xB”
fvI=la|+(1+R) 8" |-m
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sastisfying (H-1) for {(0,2) € =. Then one can find a neighkorhood

U of the origin in RN and a solution u € CHU) of Pu=0 in U

stch that for every v < l+h

(1.5) (0,8) € WF (u) c w'rAm) c ((z.28); zey, r\>0}.

If 1 < v < 14k we can get a result on propagation of
singularities of solutions for these operators,
Let A be the involutive submanifold of T*(RN)\O containing X

given by
- . rone x ¢ N .
A= {(tt}‘;f’ﬂ s N )ET-(R )\O: n —O)‘

Then in the canonical way A defines a bicharacteristic foliation in
¥ as well as in A; that is, each leaf ro is an integral
submanifold of dimention - of the vector fields generated by

s, . (Note that = T Y for all
{Syl ayd’} {Note tha Tp(ro) Tp(z)n.p(z) or all p €

ro-)

Theorem III. Let Fo be the bicharactaristic leaf passing through
(z,£) € ¥ defined as above and W be an open set containing (z,£)
such that FO N W is connected. Suppose that P is an operator of

the form (1.1) satisfying (H-1) for (i,é) and that 1 < v < 1+p.

C1f we 2 ®Y) and W (PU) nTo N W =8 them either Ty n W

N WFv(u) =¢ or TognNW c WFv(u).

Remark., If R =1 and v =1 this is a spacial case of Theorem 2
in Grigis—Schapira—Siostrand [9]. See also Sjostrand [29],[30] and

Hasegawa [13] in this connexion.

Example. Let
2 d .
(1.6) P= 28 + 2z.9, +hZe.x. 8_,
* —  — ":1

where o = (Gl""'ed) e ¢¥. 1If
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{(1.7) ) Sup [<o,Imey| < 1 (o e Q}, toly=tayp i+ -+ia 1),
- «f
<0»Ree>—0
l‘ﬂl:l,
. 1+h . " e " - N . . g oy ‘
then P is § microhypoelliptic at every point in 7*(2")\0.
In fact, noticing that hzh—la =15 ,x&@ 1 we get by Theorem
‘ J Ly €, Iy
1' of Rothschild-Stein [25]
Ut 2 ¢ a2 .
(1.8) > ﬁaw ull™ + 2 lle’a, ull”™ < Ci{Pu,ul|
=1y =1 7Ty |

if (1.7) is fulfilled. This iwmplies (H-2) while (H-1) is evident.

2. A study of the Grudin operator

We shall construct a right parametrix K for a self-adjoint.
operator @ = (P*P)k:‘with 2km = d¥1. (Note that the quasi-
homogeneity (1.1), (1.2) and the conditions (H-1), (H-2) are
preserved for (@ Qith the order p replaced by ¥ = 2km.) Then
cleafly K*(P*pYp* 1is a left parametrix of P and the micro—
hypoellipticity of p follows immediatély from that of Q.

In the construction of the parametrix we follow closely Métivier
[21] and Okaji [22]. In this section we shall derive the es{imates

for the inverse of ﬁ = nyﬁgl.

" 2.1. Grufin operator. Let @ = g(t.,D ,Dy) be an operator of the

t
form (1,1) satisfying (H-1), (H-2) for {z.8) € . We may assume

(£,£) = (0,e,) = (0;0,...,0,1) without loss of generality:

N v , ‘
henceforth we let & = (0,p) = (0,0,ﬁ“) = (O;...,O,l) € RN.

By the fourier transform in v, we consider the equation:
(2.1) ’ q(t.Dnivlt.n) = ult.n)
in a conic neighborhbdd ngvg of (O;ﬁ) € Rdx(Rn\O) ziven b?

U = (teR%; |t1<ly,
(2.2) 8 ) ‘



24

_ — - o n 1. , )
V'S = {n=(n">»n )GR \O; In !<8nn, In"—n nnl<snn>‘

q(t,Dt,n) is essentially the same operator that was studied by

- Grufin [12]; so we call'it Grugin operator.

Now we shall start with the following lemma due to Gru¥in (: Lemna

3.4 in [121).

Lemma 2.1. Let Q= q(t,Dt,Dy) be an operator'of order M of the

form (1.1) satisfying (H-1) and (H-2) for £ = (0,0,5"). Then there

1@

ecrist a conic neighbbrhood V' of n and a constant C such that

for all na = (ﬁ‘,n") € Rd xy*

(2.3) S i Pein e e D 08012
[Bi<H © s

< C f!q(t,Dt,n)v(t)iz dt

for vye Q(R%), where p = 1/(1+n),

Let us introduce new variables

= e - : 4 e ~t o= " F s
t tn,» n n /nn. n n"/n_. (n >0)
and set

v t’n’nn) = o t/nn,n'l?nm"/nn)-

Then in view of (1.2) we have

(2.4) q( £, Dz Mo Eon.n ) = n TMaq(t.D nivlt.n),
and the conic neighborhood Uexv8 blows up into R;x?é, where 78 =
R xtn"er® 5 [a-n” I<e).
n
By wultiplying n;"“”"d), (2.3) becomes
(2.5) 5 f1(1+iﬁ'1+;z3”zii"51)”_‘3‘1)%5@,%);2 af
{8 I<H

<C flq(Z.Dz,E)E(z,nn)iz dt.

-6 —



Moreover, we have

Proposition 2.2, Let

/

2

— (o ey el ed”
'C.,

v = {n=(n",n")ec® x s 1Im pi<g(l+iKe n ), In"—n"{<g!.

m

£
(2.5) with another constant C and there erists a left inverse K{n)

If & is chosen sufficiently small then for all n € V we have

of q(f,Dz-ﬁl depending holomorphically on n € V.
2.2 Commutator estimates. We consider the operators

(5= 1,2,--.,d).

iy

jond

Qu
"ﬂ
!

it

o~
ok

For a sequence [ = (Jl"' we denote bv T the

- Fl b4 « v 1 i
’,]k I

operator

. P AN
H Jl J2 Jk
and <> = |1 | + (L/RYI_| = ﬁ{,jt,?()} + (1/h)ﬁ<j1<0}.

We define the space

BX(ny = twer®(2®y: vi. <> < ko Tou € LR

I

for k € N/h equipped with the norm:

tul, - = Max  (L+1a DT ul
Kol ry+isk Pt
o 2

depending on g € Vé. Note that ;uIO’E is the usual 17 norm
'independenf of p; hence denoted by Ll We also define B“k(ﬁ)
the dual space of Bk(ﬁ).

d)

If 1 1is an operator acting from y(Rd) into ¢(R we set

- (ad Tj)(L) = {rj,zl =T L= LF. (j=zl,cv-,2d)

and because the ad Tj’S' commute, we denote for a malti—-index g =

(Ot+,ot__) = (al‘v"'cad;&_l'y"'aa_d? € ,’Ndxﬁd

. >
(ad ™% = 1 (ad T I,
J
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If the operator [ from 9{Rd) into 9‘(Rd) can be extended as

a bounded operator in LZ(Rd) we denote by "L”O the norm of this

~ extension, otherwise we agree with “L“O = 4.

At last, we introduce the norm:

L, - =  Max 1+ DT, LTl

for k € N/h. then “L“k A < +o only means that [ 1is bounded from

B P(7) to B PY(7) for all p = 0,1/h.2/h, "+, k.

t

(2.6) am = 3 by o7,
<I>+igish '

and (2.5) by:

(2.7) luly 7 < ColQuly  for 1 €V,

We obtain as in Okaji [22]

Lemma 2.3. /f Q 1is a self-adjoint operator satisfying (2.7) then

there exists a constant Cl such that

3

n

(2.8) Lty 5 < CoCiQLll + L@lly)  for 4 e V..

Let p be an integer. For real g > 1, 2§(V§) denotes the
space of operators { for which there is a constant ¢ such that

for all g« =(a+,a_) € dewd and p € Vg

I(ad THY®(L) || < Clajtrll,

>ol+p,n

where > >g< = (l/h)ja+| + jo_|. Then gg(ag) becomes a Banach space

in an obvious way.

Lemma 2.4, Let Q be as in Lemma 2.3. Then there are constants RO

and C, depending only on C; and Max th gl such that if R >

, 5 = 0= M ST
Ry and both QL and LQ are in ZR(VS) then L is in ﬂR(Va),

moreover



(2.9) MLl y e, < cptlaLt o e, el 0 _\)).
I ]
“plve zR(;‘ otV
Proof 1is parallel %o +hat of Métivier (2]] Proposition 2. % or
Okaji [22] Lemma 7.2 and canl be found in {271, The folliowing

proposition is just a consequence of this lemma.

Proposition 2.5. Let Q be a self-adjoint operator satisfying (2.7)
and let K be the inverse of Q such that KQ = QR = Jd. Then., if
R is large enough, K is in £g(§%).

2.3. Kernel of the inverse. For an operator K from Q(Rdi to

9’(Rd), we denote by k(f,s) 1its distribution kernel.

Lemma 2.6. [ff K is in ’M(§&) with M =2 d+l  then K{({,8) is in

L (Q xR ), moreover there erist constants . 5 and R such that for
all o = (a+.a_) € N XN
o o o _— _ i
(2.10)  [(E5) (95+8=) TK(E,5) 1 » < CIKl o _ B\, 1 Plo )P,
t "s LZ M =€ + .
ﬂR(VS)

where p = 1/(1+p).

Proof. Note that if K and Kk* are bounded from LZ(Rd) into

A+1

B {n) then K 1is a Hilbert—SChmidt operator with the continuous

kernel such that

K5 < cilKl

(R%xRr%) dfl,n
To prove (2.10) we consider
: e a+.1+h
(2.11) ((t—s) (95402) ) K(1.5)
‘ - B BT B BT o hot o
= S(£) s 0y 0. (E-5) (8;+d7) K(f.5),
2hlo i+l | terms of the coefficients 1

where the sum consists of

or -1 with the multi-indeces 8, §", §’ B such that VB;+B: =

+$

ho_» BI¥BL = o .

217
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Now

B 8" B o ho,
(Sz+8§) K{t,s)

8" -
) - Py Py

“is the distribution kernel of

8: B.u

CL.BZ B2 R o B_ 8
r_ T, (ad 7_) (ad T

ety -+
W T

which is‘bounded from LZ(Rd) into BM(ﬁ) together with its adjoint.

Since M > d+1 we know (2.12) is a continuous function with L2

norm bounded by

CIKN 0 _o RIO=IFRI% o ania e
KR(VE)

Adding up these estimates we have

e 4 14h,, - -
(2.13) It(E-5) (a;+a2) 1 k(g5
ts L2 (%)
< Clkl yy _o B NClo 1+ala, D!
7%

R
provided that R > (ZR)h. Also we have

(2.14) (KT8l - < cliklt ,, _~ -
L2(r%g%) ﬂg(vg)

Then a simple interpolation argument yieids (2.10) in view of the

Stirling formula. o

2.4. Symbol of the inverse. We write the operator K of kernel

K(t,8) with a symbol &k = o(K) 1in the way that
(2.15) k(5.5) = (207 [ T8 (g, 0z,
That is, k 1is the distribution on de given by
(2.16) iz = | eHU T R M W,

Here and below we use the notation gz = (zt,27) =
2
(21,"-,Zd:z_l-"',z__d) € R d‘

Since (2.15), (2.16) have a sence as the partial Fourier transform

- 10 -
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the mapping o is clearly an isomorphism between Lé(ﬁdxﬁf

. 8

yooand

Lz(Rid). Also by the definition of ¢ we have

ol {ad Tj)(K)) = SZ;U(K)‘

Hence Lemma 2.6 is restated as follows:

Lemma 2.7. Let k = k(7)) = olK(5i)): the symbol of K(R) € fﬁ(&é)

with M 2 d+l, Then there erist constants C. R such that for all o

B _ —_r
=(a+,a_) e N and n € Vg

‘o TP = : =~ Slod ' I-p 1y P
(2.17) Jazk(n)n 2, 2d. < C”K””M ¢ R (a+.) ‘(a_.)
LT(RT™) zR(VS)

where p = 1/(1+p).

Now suppose that K(p) € Qg(Eg) (M > d+1) depends holomorphically

on p. Then we have

Proposition 2.8. Let K(n) be as above and let k{z.n) = oiK(ﬁ))(z),

Then there ezists a constant C such that for (z.n) € dexvi,

with 0 < g’ <¢ and for all (a«.8) = (e, a8 ,8") € NhADNE sx®

(2.18) 18%k(z,m) |
n
fof+]8f+l, 1 181 v iTe 3 Pat 14ty 187
<C (5:57) (a+.) {a_.) Bi(1l+in-1) ;
where p = 1/(1+h).
Proof. Recall that
GO oo mmimr el -, -, o, -, .
,V8 = {p=(n",n"1eC” x5 |Im " {<g(l+{Re n 1), In"—n"|<e}.

Then we use the Cauchy inequality to obtain

£ by ‘

8 :
19%0 y g |
‘R &g

n fR(VS,

Applying Lamma 2.7 to aﬁk(ﬁ) we zet (2.18) by means of the Sobolev
n

lemma. o

- 11 —
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AR = q(E.Dg.n) = (P*PK(L.Dgn) (2km 2 d+l) for f eV

3. Parametrix;;proof of Theorem 1

In Section 2 we have showed that there is the inverse K(n) of

such that

m &

t
- q(E,05,mMK(E,5,0)ds = s(i-5)ds
with the kernel |
R(2.5.0) = (207 [T Pkt 2. hax,
where k satisfies (2.18) in R%XR%X(?C,QR%’) for 0 < g” < g.

t T n

Now we return to the original variables:

t = Z/nZ, T = En;, n = E'ng, n” =n"n_, {n,>0)
and set
R(t,s.p) = (2rn) @ I ei<t-9't>?(t.t.n)dt,
where
(3.1) ;?ft,r.kn) = ngzkp’“”?(z,%.ﬁ)
= n;2pkm k(tnp,t/npon /nt.n"/n ).

Then in view of (2.4)

q‘t';Dt’n}R(t,Svn)dS = §¢ t-S)dS
- , 13 X’nr . » | e Fae .
for n € Ve f(n 0" YER™N\O: In”l<en . [n"-n"n_|<en, }.
Let us introduce a cut off function given by Metivier:

Lemma 3.1. For given two cones Vi cc V5 c RN\O and O < p <1

there ezist g € CO(RY) and ¢ such that

g() =0  for E ¢ Vo, or iil <1
(3.2)



gle)y =1 - for & € Vy and (5] 2 2
and
- . | ‘ e lal
(3.3 . 18%(2)) < Clai+1(zg§s
’ s : tgl)

for all «, & such that lo| < {&|. (Lemma 3.1 in [21].)

With p = 1/(1+p) and £ € Vi ca vy = {§=(r,n)eRden; fti<g”,
nevs,}, we take g(g) = g(t,£) as above and set kw(t’t'n) =

R(t.t.ndglt,n). Then

Proposition 3.2. There erists a constant Co cuch that

o lee, |

t

c(§+{3}+1

(3.4) ;anat ) kg(t,c,n)s < C§ (I+1e) 7 e b THElD)

le_1yola_| . . B | - 18”1

for la_l+I8] < |&l, where & = (t.n) = (t.n”.n") € RY, (a,6) =

(ot »0_,8",8") € Ndxmdxwd'xﬁd", p = 1/(1+h) and X is the

characteristic function of the support of vn,g.

Now let Axg = kg(t’Dt’Dy)'z Op(kg){ that is, Kg is the operatéf

defined by the kernel:
- ) -q >4 4§ y—
(3.5) Kg(t.y.s.u) = (2m) N f eL(t S Tty w'n>kg(t,t.n)drdn-

Then we have

(3.6) : QK = K*Q = g(D

WD)y =0
g g9 = 9Dy Ly (g)

and the following

Proposition 3.3.

(3.7) WFA(KQ) c {(t,y,t,w;r,n,—t;~nﬁef*(R2g3\0: Y =Ew, (t.n)e§2}.

- 13 -~
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(3.8) WF1+h(K9) c {(t,‘y,t,y;t:n,‘"tr‘n)ET*(RZN)\O; (Tvn)€V2}.

Proof. By Lemma 3.3 and Remark 3.4 in Métivier [21] we obtain (3.?)‘
Hence to prove (3.8) it suffices to show that g is in- Gl+h for
y' # 0. Using the vector field (1/§y'|2)<y’,9n,> for integrating

by parts we can prove this as in Case 2 in the proof of Lemma 3.3 in

[21]. o

For any set v we write diag(V) = {(p,p)eVxV). We have
therefore proved the following theorem; from which Theorem I follows

imnediately.

Theorem 3.4. Let P be an operataf of the form (1.1) satisfying
(H-1), (H=2) for (z.£) € ¥ and let Q = (P*p)X  with 2km = da+l.
Then there are a coniec neighborhood V c RN\O of £ and an operator

K: &’(RN) —> 2 (") such that for every u e & (&Y

(3.9) - WF (ke = ) n (RYxv) = g,
(3.10) | WF (K*Qu = u) n 2Yxy) = ¢
and that

(3.11) WFi,p(K) € diag(f*(é”)\o).

where WFi+h(K) = {(xfﬁ;i,é); {m,i;i.—E)GWFl+h(K)).

4. Proof of Theorem 11

2

Let £ = (0,0,p") with p* = 0., We consider the operator
p'(t’Dt'ﬁ"); which is precisely the same one that was studied by
Grudin [10].

From the result of Gru¥in [10] we can take ¢ € ¢ and O % p €

[ RN) such that

(4.1) | p(t,D, a7 )v(t) = —c"qln),

- 14 -
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d°

where 7 € R ig fixed with |57 = 1. Then

uA(t,y) = exp( iAPe<y  n i<y T (AP Y, o = 1/01+R)

o is a solution of py = 0 for everyv i > (. Hence

+w fol

. A \
ult.y) = f u>(t,y)e YdA

0

Rk:

is a ¢ solution in U = {(t,y ,y")e tTwe |y j<lt.

By Lemma’3.7 in Okaiji [22], vy satisfies the estimate_
aégu(t)i,s clel*gnt=e,
Hence we have
(4f2) | WF (1) c ((£.550.0 34 er*(RV 1305 4 > O

in the same way as (3.7).

On the other hand, since 'is'analytic, aiv(O) + O for some o

d. Therefore,

€ N

pte o
[ i

const. F((k+1)/p + ja|).

2kyplaltk

ﬂ _p
(4.3) t<n“,Dy">ka§u(0.0)| 18%0(0) [ M dn

H

This combined with (4.2) implies (0:;0,0.7") € WF (u)  for every

v < 1+}, and proof is now complete. p

5. Second microlocalization in Gevrey class

Following Sjostrand [29] we introduce the_Fourier—Bros-Iagolnitzer

transform (F.B.I. tr.):
- ‘ 0 Mz-z)2/2 N
(5.1) T o flz,0) = J e 7 faedde, (F € 97(R" D)

associated to K: T*(QN)\O 5 (z.8)—> g—if € @g.
CTLLNF is defined orn ﬁng:, holomorphic with respect to g and

A Imz|?

bounded by  Ce /2(A+§yi)k for some ¢, k real.

In terms of the F.B.I. tr. we can characterize the Gevrey wave
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front set as follows: For £ € g (&), (z.8) ¢ WFv(f) if and only if
there are constants ¢, ¢ > 0O such that '

. : %!Imzﬁ__a)\l/v : i .
(5.2) [IT€D flz, M) < Ce for |z-(z-i&)| < c.

Let A be the involutive submanifold of T“(RN):

A= (eederr (RN g == =0) (1<d <),

id,
and ro be the bicharacteristic leaf pathing through (z,£) € A. /
Then A and rO can be identified with g(A) = {zeﬁN; Twg =0} and

x(ro) = {zeﬁN; Imz =0, z"=g"-if"} respectively, where z = (2°,2") €
Cd XEN_d .

We set wA(z) = lImz"|2/2; which is the pluri-subharmonic function

canonically associated to A. If Q is a neighborhood of 2z € k(A),
we denote by HX’LOO(Q) the space of holomorphic functions y{z.,x)
in § with a parameter ) > 0O such that for all K ecc @ and g >

0 there exists CK e with the estimate:

s

AwA+8A1/V

(5.3) Autz. x| < Ck £ tfor z e K. » 2 1.

For 2z € A we also use the notation: y € HX 5 if there is a
»
neighborhood 0 of 2 such that y € HX(m%).

v,loc,

If u € HA Q) we denote by SX(u) the subset in @ defined

by :

(5.4) z ¢ 5X(u) if and only if there exist a neighborhood G
of 2 and constants (¢, e¢ > 0 such that

A¢A~0A1/V

lu(z, A} < Ce tfor gz € 055 A= 1.

By applying the maximum‘principle to  z7r—>
X—l/v(logln(z,x){—A[Imz"]z/Q) it can be seen easily the following

two lemmas,

Lemma §5.1. [let ‘FO be a bicharacteristic leaf in A and' o be a

connected open set in Ty containing (z,8). If ued”

A2 for all

- 16 —



7z € klw) and k(z,8) = g-if ¢ SX(u) then xlw) N S;(u? = 4.

Lemma 5.2. Let (3.8) e A, f e ¢ (R, 1F (2.8) ¢ WE (F) and

1 v o i g v i g
TCLYf € HA,%~i§ then ©—i% ¢ SA(T‘ F).

Let us introduce the F.B.I. fr. of second kind along A following

Lebeau [19]:

IQ—A(M“—x")Q/Q —Au(w'*x’)z/Q

(5.5) T2 fluwue)) = Faodde (ree(z¥y).

Then TAQFf(w,u,A) is a holomorphic function with respect to u € Q”

with the bound:

A 2

2

2

| Tmga | < + %Q}Imm !

1742 Flwaua M) | < Ce O+ X,

H\msshmnin[ZQ]mﬂ[Z]tMﬁiherﬂaﬁbhbﬁwmm T i f

and TAz}f is

o

: ‘ 5 Py 2 :

- (23 - )y 2 -1 M A R B T P
(5.6) TA flu,us)) (fﬁTT:ZTJ fd% 7 fle w" s )de”
where p = y /{(1=y ) with an inversion formula:

(5.7) TCL2 iz X))
. Q-’ .
= 1{ 1132 —ARI&’!/?( _,<5’,v’>) 5, .. RET Rd&”
2(5%7) [ e L= 2T T4 2 Pz i 27 e M T
g

where 4 = |7 |/(R+IE"]).

Now we define second wave tront sets adapted to the Gevrev class.

(See also Esser [7].)

Definition 5.3. If 1 < v < +8 and § ¢ 9’(RN}, the second wave
front set along A of f;rdenoted by WFRQ;(f), is the subset in

TA(T*(RN)\O) defined by the following condition:

(5.8) (£.0,€"507) ¢ WEL2UR)

'_17_
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if and only if there exist ¢, ¢ > 0, 0 < uo < 1 and a decreasing

-0- such that

H

function o()\) with %ime(X)

S Tmo (4u Tow” | 2-can

(5.9) IT2 flu,psA) | < Ce
for
(5.10) 0 < u < pg» A > 0OV, ur=(Rr=id") [+ =tk =if") | < c.

Using (5.6) and (5.7) we can show the following:

Lemma 5.4. Let (%.8) € A and 7€ 9 (RV). Then 1<’ € 4 ik
if and only if nzl(é,é) N WFAfs(f) = ¢, where nA:TA(T*(RN)\O)———> A

i8 the canonical projection.

At last, we introduce the space of partially holomerphic Gevrey
functions Cvgx, as follows: flx) € Gvﬁm,(Q) if and only if for

every comapct set K cc § there is a constant (¢ such that

(5.11) %% Ao | < clt (g )Y for g e K.
We have

Lemma 5.5. I[f f € 9’(RN)nGvdy,(Q) and 1 < v’ < v then TI'f €

HX:Z for every 2z € cOr Larnn) .

6. Proof of Theorem II1

As in Section 2 we suppose that g = 0, £ ='(0.0,ﬁ") = (0,.-.,0,1)
€ RN\O and set (g = (P*P)k with 2km > d+1. Here we also introduce
the pseudo—differential oprator:

2L(I+h)/n2l

(6.1) Op(r) =Op(n3lkm/(l+h)e—ln’i n )’

where | is a positive integer to be determined. Then Op(r) has
the same quasi-homogeneity in its symbol as ’Q ‘has.
Consider the operator Q + Op(r). Then it satisfies (H-2) since

Q is non negative self-adjoint operator at &. We also note that

- 18 —



though not being polynomial, r is holomorphic with the uniform bound
, o :
2km.(i+h)) in

a swall quasi-homogeneous neighborhood of & of

ot1gl

the form:

P L70HR) LiRen - 1), [n"/n -n"l<g).

m

vE = (o rec® xed | T * |<e In_

Now all the results in Section 2 are remain valid for ¢ + Op(y)

and we get a svmbol kg(t,t,n) satisfying (3.4) such that
(6.2) » Op(kg)*(Q+Op(r)) = Opl{g).

Here g is an arbitrary cut off function satistfying (3.3) for p =

1/(1+h) with 1its support in

(6.3) VSO = {(r.n)eT*(RN)\O; }tl<80nn, 1n‘!<80nn, ln"/nn—5"§<80}.

If (z,€) = (0;0,0,p") € ¥ then the bicharacteristic leaf is Ty

= {(O,y’,O;0,0,ﬁ"); y’ eRd’}‘ For any compact set F c “(ronw)
there exist a neighborhood U'cc OR = {meRN: lei<R} of F and a

conic neighborhood v of £ such that
(6.4) WF (Pu) 0 UX(V\O) = ¢,

where U, V denote the closures of 1y, v raspectivelyv.
After replacing y by ¢u with a suitable ¢ € CS(OR) we can

suppose Yy € g‘(oR) with no influence on (6.4).

0

' choose another conic neighborhood V} of £ sufficiently small then

We fix a conic neighborhood Vo of & with V, cc ang . If we

the cut off function g in Lemma 3.1 can be taken in the form: g(g)
=g {n"»n dg"(x.n") so that supp v,9 ¢ {{ton’wn"): In’ =881} for
some  § > 0.

As in Proposition 3.3 one can see the following:
Proposition 6.1. [f .k, satisfies (3.4) with x (&) =0 Jor
tn"| < 81&l (& > 0), then

i ‘ ‘ 1+h NN N
6.7 Yy 8 3 ; SRR N\diag(§ .
(6.5) Kg(t y.8w) € G ﬂy’,w ({R7xR7TI\diag(R")}

=19 -
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where K, denotes the distribution kernel of Op(kg).

Now we let g be taken as above and write for ¢ € é‘(OR)

(6.6) Op(g)u OP(k,)*Qu + OP(k,)*OP(T)u

Op(kg)*Qu + Opfr)Op(kg)*u.

VWe shéli apbly the thedry of second microlocalization along the
involutive submanifold:

A= {(tyston e TX(RY)INO; =0},
Hereatter, we also denote the cordinate in T*(RN) by
" =y, = (t,y") and &° = p°, £° = (t.n")

and use the>notatian in Section 5 without mentioning it.

First we study Op(r)Op(kg)*u, where

okm/( 1+h) ;’n,l2£(1+h)/n21
n e n

r(&) = n

was given in (6.1). Now we choose 1 so that {(1+x)—(1/21) > v.

Then

L 210 1+h) , 21 . . . -£_1/v (
(6.7) ~Ind /ny" 2 a7 for “Int 2z n "n " n, >0,

where g = (1/v) — (21/(21(1+)-1)) > 0. We can see easily the
following:

Lemma 6.2, If r = O(e—e‘n’l), ¢ >0 for In’| 2 nﬁsni/v, Mp > 0

then for every U € 9’(&”)
) -1 :
29 4 =
(6.8) WFA'V(OP(r)u) n m, (Ty) = ¢.
Since Op(kg)(y) c ¥: equivalently Op(kg)*(y’)tc ¢, (6.8) holds
for Op(r)Op(kg)*u. Therefore we have

i v
(6.9) T )(Op(r)Op(k‘g)*u) € H, , for a‘ll z € x(Iy)



in view of Lemma 5.4.

Next we study Op(kg)*@u. Let g be another cut off function

given by Lemma 3.1 with two cones Vl' 32 such that
VZ,CC‘Vl cc 72 =V .

Noticing that WFV(Qu) c WFV(PU). we then get by (6.4)

(6.10) W (OP(§)Qu) e WF (PuIn(R!T) c n—i(OR\U),

(6.11) wF (Op(1-3)Qu) < wF (Pn(R¥x(R"\P})) < 0,x(8N\7,).
Hence we can write

(1=x; JOP(FIQu + x,, OP(1-5)Qu
£

R R

(6.12) Qu = xFSOp(g)Qu + Xq

(5 vy + vy + v3),
where Xpg denotes the characteristic function of each set B ‘and

Fe = {(m‘.x")eRN: (", 0)eF, lz"|<g}

with g > 0 so small that FS c U.

In the following we assume further that

(6.13) F is convex with an analvtic boundary in n(ro),

By (6.10) we see that
. . -1
WFV(UI) c {(x,i);(w’.5’)ET5F(R(FO)),!x“§<8,5”=0> un ({z:ilz"|ze}).
Hence by (3.7)
Tan Vo
(6.14) Op(kg)*vl €6 ([pt(Fs)).

where Int(Fg). denotes the interior of FS.

Since supp(vz) c 5R\F8, it follows by Proposition 6.1

1+h

=4 ] * +
(6.15) Oplkg) v, € G dm,(ln_(Fg)}.

Thus by Lemma 5.5,
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: ‘ v -1
(6.16) T‘l)(OP(kg)*vz) € ”A,z for all 2z € «k{n (Int(FS)nA)).
In view of (6.11),
WF (u2) c 0x(RM\T. ) u 1% (’Y)
v' Y3 R 1 SOR ’

Again by (3.7) this yields

\ v
{6.17) Op(kg)*vB € G (Int(Fs)l-

Consequently, by (6.9) and (6.14)—(6.17), we have

(6.18) Op(glu = Uyt Uy
where

. - X v ‘
and

u = OP(kg)"vy + OP(rIOP(ky) "
with ‘ ’

Tty e By for all z e k(x (Int(F_))nry).

Now we apply Lemma 5.1, 5.2 and obtain

(6.19) If (i) e n (INt(F ) 0Ty and (.8) ¢ WF (up)

then n ' (Int(F ) n Ty 0 WF (uy) = 4.
Because g = 1 in the neighborhood vy of £,

-1 _ -1
WFV(UZ) n (Int(FS)) nry= WFV(u) nn (Int(FS)) nTy-

Therefore (6.19) implies Theorem III for W = n_l(Int(Fe));
Since any compact set in rO N W can be covered by a finite

number of such W's we have actually proved Theorem III. o

7. Remarks

The problem to determine the Gevrey class in which certain ¢

hypoelliptic operators still remain hypoelliptic, has its origin in a

- 22 -



celebrated examle given by Baouendi-Goulaouic [11:

-

P4
v
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Py = 8% + 3.+ tza

.
v

i

3]

which has a solution y 4of Plu =0 in a neighborhaod of the origin
only belongiﬁg to 82.

Deridj—Zuily [5] and Durand [6] have studied Gevrey hypofr
ellipticity for second order operators and proved, for example,
Gl+h+o and Gl+h hyvpoellipticity of the operator (1.6) in Section 1
respectively.

However, as was shown by Parenti-Rodino {247, hypoellipticity does
not always imply microlocal one. In this respect, Iwasaki [17]
proved amorig others 02 microhyvpoellipticity for doublekeharacteristic
operators. Our Theorem I is an extention of this in some sence,
though the operators are much restricted.

Recently. Kajitanif akabayvashi also studied Gevrey micro-
hyvpoellipticity in'[18} but for more general classes of operétors and
0btained»the results including our Theorem I as a spacial case.

However our poof by Cénstructing parametrices reviels how the
quasi-homogeneity of operators relate to the lowest order of Gevrey
class in which the operators remain hypoelliptic and gives a more
precise information on the singularities of solutions (} Proposition
6.1 and Theorem 1IT1}.

At last, we remark the following: Since Op(kg)k act on the space

1+h).

 of ultra—distributions (G I+h

preserving local ¢ 4 regulalities

Theorem I and III are valid for u € (Glfh)’ Qithout any change.
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