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Introduction.:

The purpose of this note is to give the definition of real
principal symbols for microfunction sclutions of a regular holonomi«
system and study their fundamental properties. Arithmetic of real
principal symbols helps explicit calculation of regular holonomic
‘microfunctions especially when we have to determine all the
hyperfunction solutions of a regular holoneomic system supported in
iow-dimensional subvarieties. There are many applications‘of real

principal symbols. ' The detailed theory and applications will be



given in the future paper that the author 1s preparing.

Hyperfﬁnctiqns wére originéliy ihtrbduéeé as boundary valuges of
Iholomorphic fuanions by M.Saio in terms of lecai‘cohcmniagy. It is
often difficult to eﬁpress a Cnncréte‘hyPerfﬁnctidn using a set ef
boundary vaiues of holcmorphic functions excépt for some cases of one
variable funcfion. We have a}réady Known thé method to deal with a
hvperfuncticen using its plane wéve expansicn in order Lo overcome
such difficult?. However, while this method is ﬁawerfufﬁwhen we
treat ihe hyperfunctions in. a smail icrolocal area, it mav be
ﬁe}piess when we analyze them in>a global domain. On the other
hand, the hyperfunctions that #e want to caicuia{e concretely are
often sclutions of systems of linear differential eguations called
regular holonomic sysiems (see §3), for example, grsup—}nvariant
hyperfunctions appearing in the harmonic ahalysis on homogeneoué
spaces. See [Muro2j.

We shall give a new method to calculate nyperfuncitions by
restricting ocur attention to hyperfunction solutions of regular
holonomic systems. This meihod is compuiing “real principatl
symbolis™ of the hypérfuﬁétions i%s{ead of dealing with ihe
hyperfunctions themselvés. The reai principal symbols are defined

based on the fact that microfunction soilutions of reguiar holonomic

systems are obtained by multlipiying microdiifereniial operaiors of
logarithmic order, which is defined in 81, to a dejta function.  In

this note we shall give the definition of microfunction soiutions of

regular holonomic systems, which ave cailed regular hoionomic
microfunctions, and state lheir properties in 89%.

The real principal symbol was originally introduced bv
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{Kashiwarall for microfunction solutions of simple ho]onomié systems;'
Our definition of the real ﬁrincipa} symbaols of regular holonomié
hicrdfunctions is a natural generalizationyﬁf Kashiwara's definftion.
Many properties of réal prinéipal‘symbulé of simple micfofunctions
afé valid for those. of regular holonomic microfunctions. The author
thinks that realyprinoipal symbols are more‘easi]y manipﬁlated fhan
the plane wave expansion. Moreovef, a regular holonomic
hyperfunction is completely determined by the real principél éymbols
- on "generic" points of its support as a microfunction. This follows

immediately from a generai theorem stated in 82.

Notations. Z: the set of inltegers. ZZO: the set of
non-negative integers. %: the set of real numbers. C: the set of

complex numbers.

§i{v Microdifferential @perators’of logarithmic order.

We shall in this section give the‘definition of a
micradifferentiai operator of logarithmic order and state some
fundamental properties of it without detailed expianation. All the
properties are parallel to those of microdifferehtial dperaths of |
fractional order defined in [Sato-Kashiwara-Kimura-Oshimal.

T i

Let X be a complex manifold of dimension n and let T*X be its

. sk .

cotangent bundie. For an arbitrary fixed point (zo,go)ET X, we take
E 2 - y - . ”- .‘ . ‘ * Y ')

a jocai coordinate (-1,...,zn,§l,...,§n) sf T X near (zo,éG;. Let X

be a compliex number and let m be a non-negative integer. We would




like to define the sheaf of microdiffereniicl operators of
fractional order X and logarithmic order m, which i3 denvied by

6X

{x,m). A 10cai section of éX{k,mé near (zﬂ,gﬁ} is given by a
formal infinite sum of holomorphic functions defined near 5LQ
kS

is presented as
(1. ' P(z,D o=p._. P._ . {(z,D ),

where PA-‘<Z’§) is a holomorphic function defined in a conic

seighborhood § of (zd,§05 satisfying the folliowing two conditions:

2 m+1

(1.2) (L Eigg ~-Iin™T B (2,0 =0,
j TR

ii) For any compact set X in § and €>0, there exisis a
-]

) 1 . < : D - | « -1y e {—"r}f*
cons tant CK such that sgp]}l_j(z,b);S( 3>ty fo
i>0.
We denote by &0, m) the set of local sections of é,(x,m) at
X (20,5‘:0} A
(ZO’§O>L‘ It has naturally a structure of C-module. We can define
the produét of two local sections in the following way. Let
£, (A, m) \ (Z TEE, (4, . . j = f i ¥
P(Z,DZ)€5X\/ m ., Lt and Q(/,Dz;tkag ‘)izp,g ) We define the
0’~0 0’70
~ Yo { o 1 £ ’}\-\5-' 1 A}
product R(Z,DZ). P(Z,DZ>Q\a,DZ)€€X U, m+g (7 .e) by
0 Q
—— had { > ™ \» "
(1.8) R(z,D = 2y o Ry, _o(2,D) with
; AN 1 ‘_a” LS S 9 .« \
R)\"‘}J."'.Q, 7,;;. “'i?,=3+k+§0t§ a,(\ag) ‘Pk—j(z’t))((az) Qu_k(z,§,’).
This product is non-commutative. It satigsfies lhe associalive law :
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(PQ)s=P(QS) where P,Q and 8 are microdifferentiai operatofs of

logarithmic order, and the distributive law : P(Q+S)=PQ+PS where-
P,Q,and S are microdifferential operators Ofllogarithmic order and

the fractional orders of Q@ and S are the same.

(A,m)(x & ) depénds on the choice of
0’-0

local coordinate systems. However, we may define the sheaf éX(A,m)

The above definition of éx

free from the coordinate by putting the transition law from the old

coordinate to the new coordinate in the feollowing way. Let

‘2”:=(z;,.

(2~,§~):=(z{,...,z;;gi,...,gg) be the corresponding local coordinate

Jz
system of T 'X,i.e., &7v=3 —"%~§ . Then the microdifferential
i kazj K - ;

=5 ” 7 ) i in t ~d i
operator P(Z,Dz) 4320 Px—j(&’Dz’ written in the old coordinate (z,%)

.,2;) be a new local coordinate system and let

is transformed to the one written in new coordinate EQ:O P;_Q(ZN,DZ~)

with

. ~ 8 % . a8 ®
27> <g ,(az) z272(A7)Y P _j(z,E).

¢ X

Here, the indices of 2 in (1.4) run over

(1.5) j€Z (o v,

g/ 4 n
, VEZ X €L, ()

=0’ 1’

=0ty +*r 4o, With lall,°'~,lav122,

£=j—v+la1l+~--+lavl>0.

and we put <g~ (Q_)Bz”>'= n §~'(§“)32~ for BeZ_ "
' 9z TT4i=1"3 "9z j =0 °
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Thus we define the set éX(A,m) of local sectiocns of

( )

ZO’go
microdifferential operators of fractional order A and jogarithmic
order m independently from the choice of local coordinate systems at
: ok . X . ; :
(zo,g0>. The sheaf 8X(A;m) on T X is obtained as the sheaf whose

stalk at (zo,go)eT*X is éx(l,m}( s which is aiso defined

2q:5¢)
intrinsically. We call éx(x,m) the sheaf of microdiffereniial
operators of fractional order x and of logarithmic order wm. The
product of two global sections of éxik,m) is computed from the

coincides with

formula (1.3). When'§0=0, the stalk éx(k,m) 0)

(20,
the sheaf of differential operators of order X with holomorphic
coefficients if X is a non-negative integer.

Conciuding this section, we shall define the principal symbol of
a section of éx(k,m), which is a section of the éheaf of hoimmﬁrphiq‘

<X N
mcti x_ . ( => . Az, e section of &¢ .
flnctxons GT X Let P Z,DZ) szqu_jaz Dz) bé a be<}10n a éx(k,m)

The "highest" order term PA(Z’DZ) is calied the principal part of
P(Z,Dz) and the symbol function PA(2,§) is called the principal
symbol of P(z,DZ). We dénote by 0¢(P)¥{z,%) the principal symbol of

P(z,DZ). They are {free from the choice ©of local coordinate systems.

o~

When P(Z,Dz) is a section of &,(x,m) and Q(Z,D,)‘is a section of

X
éx(u,ﬂ), the principal symbol of the product PQE&X(A+u,m+£) is
G(PYa(Q). "

Let M be a real analytic'manifazd whose complexification is X.

Then &, (1,m) | is a subsheaf of the sheaf of micro-local operators

*
X T M
on T M and naturally acts un the sheaf of microfunctions on T M. in
83 we will state that any microefunctiion sclution of a reguiar

holonomic system is obtained by multiplying a microdifferentiai

{
o
i
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operators to a delta-function if it is defined near a "generic"”
pointQ i.e., a point which is regular and in regular position. {For
definition, see §3.) \Mdreover we will see that for a fixed
holonomic sysiem, microfunctioﬁ solutions are completely determined
by the principal symbols of microdifferential operators acting to the
delta-functions. This is an important fact when we will deal with a

solution of a regular holonomic system.

§2. Holonomic systems and their hyperfunction solutions.

We put 5X:= UAEZ §X(A,O), which is the sheaf of ordinary
microdifferential ocperators on T*X. Let n be the projection map
ffom T*X to X. The direct image n*(éx) is isohorphiC'to the sheaf

@X of differential operators on X wiih holiomorphic coefficients.

Let M be a holonomic system on X. That is, M is a left
coherent‘@x—module whose characteristic variety

ch(ﬁ):=supp(€x® -1 n_l(m)) is a l.agrangian subvariety. For the
N (@X)

details about holonomic systems see [Kashiwara2l and

" {Kashiwara-Kawail. We denote by UiEIﬁiE the irreducible component
decomposition of ch(M). We put X.:=m(A. ). We denote by X. the
! i - i reg
set of non-singular points of X, . Then we have Ai=T X. Here
i reg

*
TAX means the conormal bundle of A in X and stands for the

closure. We say that (z,é)eAi is in regular position with respect

to A~ if z€X, We denote by Aig the set of points in Mg in
e A, .

3 W

regular position with respect to Ai@’ We say that pech(M) is a

- 7 -
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‘regular point in ch() if it is a non-singular point of chdM). We

denote by Ch(m)reg the set of regular points of ch(®). The sets

ch (M) and UiEIAig are open dense subset in chM) and so is

The complement of the set Ch(ﬂ)regﬂ(U. A.g) in

i€l il

}1(m)legn(UiGIAi€>_

ch(ﬁ) is an analytic sﬁbset of codimension larger than one.

Let M bé a real form of X. We would like to study a
hyperfunction solution on M of M by resclving it to the microfunction
on T*M. The reason why we have considered the set |

ch(?ﬂi)rP n<U1€IA m) is for two hyperfunction solutions which coincide

O . . .
on the set ch(M NnU. ..A. %) as microfunctions actually coincide as
reg i€l il

hyperfunctions on M. We shall e pla'n about it more precisely. Let

1

the sheaf of

le]

%M be the sheaf of hyperfunctions on ¥ and lel ﬁv b

. . ¥ %, . o
microfunctions on T M (BTWX). The spectral map 9;0:.‘38Ml — n*(ﬁ“)
B R f
gives an isomoerphism between them. Here, 7T stands for the

projection map T*M — M. The . sheaf %M is naturally a ?X v -module.

A hyperfunction solution of M is defined to be a section of

#om, (M,B ) in our situation (see [Kashiwara3l). Let F, and F,, be
@X M ‘ ‘ - u 1 2
two sections of %0m9 (%,%V) and let u be a section of H. Then F, (u)
JX i : ' ES

and Fz(u) are sections of hyperfunctions whose singular spectra are

contained invch(W)Q:=ch(H}nT$M;

Theorem 2.1 ([Muroll)

Let A@ be an analylic subset in ch(R) of complexr codimension

13

. »F, be two seclions of

1
1

targer than one. Let A,R nnT v and let

%om@ (W,%M). If sp(Fl(u)>=8p(F?(u)> on chiﬁ}n~éQ for euery seclion

u of M, then F =F,
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We may setl AE:Ch(m)_(Ch(m)regn(uielhiﬁ

9)) in this theorem. Then
a H?éerfuncticn solution ' aof a holonomic system‘is completely j
determined by the data On.Ch(m)fegn(UiGIAig)nT*M' In the next
section we shall suppose‘that M is a "regular”™ holonomic system and
define the real principal symbol of a micfofunction Solutiun afiﬁ.

Two locally-defined microfunction solutions with the same real
principal symbol coincide with.each other. However, note that we
can define the feal prinéipal symbol of a microfunction solution bnly
at regular points in regular position. “Theorem 2.1 guarantees that
it is sufficient to compute the réal principal symbols on regular
points of ¢ch(M) in order to determine the hyperfuﬁction sdlution.

This theorem will be practically used for the probf of Theorem 3.5

and Corocllary 3.6.

83. Regular holonomic microfunctions aﬁd their real principal

symbols.

We have proved that the data of microfunction solutions at
regular points determine the corresponding hyperfunction solﬁtion if
it exists (Theorem 2.1). However, it is not easy to express a
microfunction in a form to easily manipulate. - We shall in this
section introduce real principal symbols of regular holonomic
microfunctions and state their fundamental properties. Real -
principal symbols are helpful to express microfunctions explicitly.

We begin with the review of the definition of regular holonomic
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‘gystem following to [Kashiwara2l and [Kashiwara-Kawail. We set

S TP A
XD' (XDX ?

m
[E (XD =AY HE X+ +E X +E
by (XD =2) T +Eyx, x*8 X
1 2+1 n

a,mt o exX Xt

with a complex number X and an inifeger m. hen EA m is a holonomic
. ] :

éx

supported in A:={(X,£)ET*X; X1="‘=X£=O,ﬁ

: . . - C , . .
-module defined near p=(0,dx,)ET X. This is a holonomic system
_ 1 ~, : :

PRy - T A Y T 4 moor .
Q*‘; --A:,m—{,.-) . Let g? Ge a

2
holonomic 2y-module on X. We say that B is regular holonomic at a

point pech{®) if ch(M) is non-singular near p and wé;:(gyg%) is

isomorphic to a direct sum Qjﬁl m through a gquantized contact

i’ _
transformation. - In particular, we call % a regular holonomic system
if M is. regular holonomic:-:at any point p in ch(@}reg.

"Let M be a regular holonomic system on X. Let UéGIAiC:Ch{%) be
an irreducible component decomposition of ch(WM). Let M be a real
form of X. The real locus AiR;=AéﬂnT$M is nol a}ways real
Lagrangian subvariety in T*M. Henceforth, we suppose that

(3.1) each real locus AiQ is a real Lagrangian subvariety in T M

~or a variety of dimension zero.

vy

We Jjet Aif be the set of points in regular position wilh respeci io

e O .k & )
Aiﬁ and let AinzAiCnT M. The real locus chP)NT ™M (resp.
N if i
s
. 1 MY i 3 1 ~ "“'3?\,', oy . (M ;
;n(%)regﬁT M) is denoted by thf 2 {resp ch{R e

Now we go to the definition of the real principal symbail of a

. o
. - N 1 me . - N
microfunction solution of #. We denote by W the &_-mondule
s o o , T o » X
_1 * } ‘-' . Y ‘ - - r] N S :
5X® 1 oMy on T M. Let p={x,,v,} be a point and el ¥ he a
48 ‘(QX) - h :
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g,@) defined near p. Such a local section F

local section of }L"om(g ¢
X

{

3
i
i

. o . . & . . ;
is interpreted as a microfunction solution of R~ from our view point..

For a local section u of Wg, F(u) is a section of microfunction
defined near p. We can define the real principal symbol of F{u) if f
p is contained in ch(ﬁﬂ)reg R*

First we suppose that p is contained in the set

ch (M n(UiEIAig)’ i.e., p is a regular point in chM) in regular

reg R

position. From the condition (3.1), p is contained in a smooth real
Lagrangian subvariety AiR in T*M. In fact, if Aiﬁ is of dimension |

zero, it is contained in the zero section TzM. Thus it is not

contained in ch{ Since pGAj? is in regular position with -

reg R°
respect to Ai”’ Ai@ is given as the conormal bundle of K*(Ajﬁ)‘ In
the real form T*M, the real locus Aig is given by the real conormal 1

bundle T>i< M near p. The subvariety K(A.Q) is a non-singular
n*(AiR) iR

subvariety near XOGM, it is written as {

=X9=°"=XQ=O},

- O- .. A «
(3.1) K(AiR)-{(Xl’ ,xn)eM, X =X,

by using a suitable local coordinate (x "',xn) near X Then

1’ 0°
O_ FMex z=esezw =0 & = a=E = “e N
AiR {(x,E)eT M,x1 Xy O’*Q+1 £ 0} and (il, ’iQ’XQ+1’ ,xn)

forms a local coordinate system on Ai§ near p.

Proposition 3.1. Let F(u) be a microfunction defined near p in
P (Wé,@) and u a section of Wg. Take a
X

Tax) defined in (3.1)° . Then F(u) is

Aig with F a section of Xon

local coordinate (xl,‘

written as

|
[
—
{
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(3.2) F(W=(®, P, (x",D_-))8(x,)" -8(x,),

- T - ceex ) D .=¢( ce e D 3 nd D .
where x (Xl’ ,XQ), X »(XQ+1, »X. 0, D \DX1, s %y a <

=(D *sD_ )5 each Pk(xf/,DXf) is a microdifferential operator of

7 L |
X9+1 Xn
togarithmic order depending only on x 7 and Dxf; 8¢ty is the

delta-function of one variable t.

We denote by ek

operators P, of logarithmic order. This expression {(3.2) is

the formal finite sum of microdifferential
uniguely determinéd.

Remark. A sum bf séverél microdifferential oéeraturg
ZkPk(X,DX) is only formally defined unless their differences of the
fractional orders are integers. However, the microfunction
ZkPk(x",DXf)éixl) is wéil defihed. Herg, we have us&déthe symbol @
instead of 2 since we want {o stress that the sum is a formal ohe.

Now, we may define the real prinéipai symbol of F{(u) as a

section of lQA }1/2 i—l/z
iR

| and iQM! are the sheaves of volume elemenis on A,

®lQM

1

v ‘ o .
é ‘ (> . re
at each p91n§ AiRnCh SN Here

|

~ and M
A, =, ,
1 ]R K

respectively.

Definition 3.2. (A real principal symbol at regular position)}
Let F(u) be a microfunction given in (3.2). The real principal

symbol of F(u), which is denoted bv OA (F(u)) or simply by o(F(u)),

iR
is defined by
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(F(u))=0 o(Pk><x”;§’>/]dx ~ae T//TaxT.

(3.3) ¢
Aip k

Here G(Pk}'s are principal symbols of Pk defined in §1 and

dx :=de+1A'--Adxn, dg :=d§1A-°'Ad§Q and dX:=dX1A"'Aan. The real
principal symbol OA (F(u)) is a vector-valued real analytic section
iR . ”

;1/2 -1/2

of |Q ®iQM|

A

iR

Remark. In particular, if M is a simple holonomic system, then
M is a regular holonomic system. In such case the definition of the
real principal symbol has already been given in [Kashiwara2l, which

coincides with the definition (3.2).

The real principal symbol in definition 3.2 is only defined on

Aiﬁ' We want to extend the real principal symbol o(F(u)) defined on

o

Ai? to AiR‘ Such extended seciion may not always be continuous but

is unigquely determinéd. It becomes a real analytic section by
multiplying a locally constant section on Aig of "Maslov's index"
bundle. We suppose that AiR is a real Lagrangian’subvariety in M.

T ,.= s - \‘\; ] S Y . P
We let AiR’ AiRnch\W)r and Np be the subset of AiR con51st;ng of

eg
points in regular position with respect to Aip. Then, from the

definition of a real principal symbol,»cA (F(u)) is well defined and
iR )

real analytic vectar—valued section ofleA

iR '

on AiR—NR‘

The section GA (F{u)) can not always be extended to NR real

iR

analytically because of a possible gap between the sections on the
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‘different connectédicompanentsf We héve ta‘introduce the‘"ﬁasinv’s
index’ bundle tovrepaif thé gap. | |
We shall éxpiéin the Maélov’s index; Let p ke a pa?nt in T$M.
we set V:=TP(T*M)’,i.e., the'%angent space of T#M at p. There is
the skew symmetiric Bi}inear form & naturally inirvroduced from the
symplectic structure on T*M., Namely, ietting w be the fundamental

% . . p ;
1-form on T M, E is defined to be E\vl,vo)::<dw,v AV, wilh VI’VoEV‘

1
We say that a vector subspace X in V is a Lagrangilan plane in V if
every vector in A is orthogonal to X .and if the dimension of X is n.

We denote by LGrass(V) the totéliiy of all Lagrangian planes in V.

This is called Lagrangian Grassmannian, which has the natural

structure of smooth real analytic variety. For three.eiements
Al,kg,lgﬁLGrass(V), we set r(Al,A2,13}:=sgn(Q) where @ is the
quadratlc‘form on X19x2®x3611912913 defined by

Q(Xl,Xz,X3)2=E(X1,X9)+E(X2,XQ)+E(X3,X1), and sgn means the signature
L -~ P} k

of the quadratic form Q, i.e., {the number of positive eigenvalues of

Q}-{the number of negative eigeﬁvaiues of Q). We call Tt thus
defined the Masiov’'s indez of AI,AQ,AS.
Let LGrass(T M) be the set U__ % LGrass(T_{(T"M)).  Then
TpET M P

* ) ) o N B ‘

LGrass{(T M) is a fiber bundle whose base space is T*M with the fiber
* %

LGrass(Tp(T M) at p. Then the resiriction LGT&SS(T?M)%A’ is a

; : ‘ iR
fiber bundle on the non-singular Lagrangian subvarijiety A:;. The two

A

sections of LGrass(T*M)§A -t

iR

- o
Ay P _)\M(p}i:i (. {plri,

M’ I
) s b nYy:=T A
/LAlq, _Q N ,kAjQ{I},e ?vp),i:‘}‘,
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with peAié are continuous sections. Let u be another continuous
section of LGrass(T*M)iA - satisfying p(p)Nx,,(p)={0} and
i

M

u(p)ﬁlA (p)={0} for each pEAi&. Then we have the following theoren
iR ' }

w(p>Ax, (p)={0} for each pGAi&. Then we have the following theoren
iR :

Theorem 3.3. Let Ai@ be a Lagrangian subvariety in ch(
defined above and let NQ be a subset of Aié consisting of all points

in regular position with respect to Ai@‘ Then
. - |
(3.4) ¢ (F(u))Xexp(7/-1Tt(x,, X NTOD I I
Air 4 MTAR Air~Np
can be extended to the whole A;§ and it is a real analytic section on
AiR’

This is a fundamental property of the real principal symbol and
has already been pointed out by Kashiwara in the case of simple

microfunctions.

Definition 3.4. (real principal éymbols at poinils in
non-regular position) We define the value of GA -(F{u)) on NIR to
iR

be the one such that (3.4) is real analytic.

Thus F(u) has been defined as a section on Aié on the whole Aié’
which may nct be continuous at the points in NR' Such extension
does not depend on the choice of u.

Lastly we shall give two theorems.

1
faowy
(1]

1
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Theorem 3.5. Let Fi and F2 be two local sections of

Kom . (Mg,ﬁ Yy defined near a point p in ch{M) . If their real
éx M reg

principal symbols G(Fl(u)) and c(Fg(u)) coincide with each other for

any section u of %g, then‘Fl and F2 are the same section.

Corollary 3.6. Let F, and F, be two sections of ¥om, (M,Z.).
1 2 QX M

Let p be a point in ch(ﬂ}i)re and let u be a local section of %é near

g

p. If the real primcipal symbols o(sp(F,(u))) and o(sp(FZ(u))

1

coincide with each other at every point pEch(%)re and for any

g
gection u of ﬁé, then F1 and F; coincide with each other.

These two theorems follows directly from Theorem 2.1.
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