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1. Abstract

Three dimensional incompressible Navier-Stokes equations are solved nu-
merically for Taylor-Couette flow with the outer cylinder at rest. The wave-
length of supercritical Taylor vortices created through an impulsive start
of the inner cylinder is studied. The evolution of Taylor-vortex structure is
visualized and can be investigated precisely. The results are compared with
experimental results. Both results agree well qualitatively.
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2. Introduction

Experiments for flows between concentric cylinders were performed by Bur-
khalter & Koschmieder (1974). They measured the wavelengths of steady-
state vortices that resulted from impulsively starting the inner cylinder from
a state of rest with the outer cylinder held fixed. According to these exper-
iments, the wavelength initially decreased up to R/R; =~ 4 (R, : Critical
Reynolds number from linear theory). Beyond R/R. = 4, the wavelength
increased with increasing R. The objective of the present work is to examine
this problem. The visualization and the measurements of the 3-dimensional
flow are very difficult, and there seems to be no current theory available for
such strongly nonlinear flows. Therefore it appears that numerical simula-
tion is the only useful tool for our purpose. Neitzel (1984) performed the
axisymmetric computation of the incompressible Navier-Stokes equations
in finite-length concentric cylinder geometry. But the wavelength did not
increase for R/R. > 4. So we have performed 3-dimensional computation
and compared the results with the experiments.

3. Numerical Method

Consider a pair of concentric cylinders of radii a and b and height h. We
assume the gap between the cylinders to be filled with a viscous incom-
pressible fluid of kinematic viscosity . The entire system is assumed to
be in an initial state of rest. At time ¢ = 0, the inner cylinder at radius
r = a is impulsively set into rotation with angilar velocity {2 while the outer
cylinder at r = b is held fixed. The rigid endwalls at z = 0, h are assumed
to be attached to the inner cylinder and therefore begin to rotate with it at
t = 0.The variables are made dimensionless using the scales d = b — a,}d
and Q! for length, speed and time respectively.

Numerical method is based on the MAC method except treating pres-
sure. The incompressible Navier-Stokes equations are expressed as follows:

1

ov
— +(v-V)v=—gradp+ 7

5 Av (1)
divv =0 (2)

These equations are written in a generalized coordinates system and solved
by finite-difference method. Applying the operator grad-div to the both
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sides of equation (1),we obtain the poisson equations for gradient of pres-
sure:

AP = —grad - div(v - V)v + gradR + rot - rotP (3a)
where oD 1 | |
R= — T R_eD’ P = gradp, D =divv (3b)

and the formula of vector analysis grad - divX = AX + rot - rotX is used.
The time derivative,0D/dt, is evaluated by forcing D*t! = 0, i.e,,

The boundary conditions for (1), (3) are as follows(dimensional variables):

vu=V, v=0, w=0

bl VL 1idh 16w
"TR.Orr " @’ °T R.a2062° "* R, 022
at r=a
u=0, v=0, w=0
1 0%u 1 1 0% 1 8w
Br=rar VT rwae TR
at r=b
u=r), v=0, w=0
1 8%u  u? 1 10% 1 8w
P R68r2+r’ T R.r2002° " * T R, 022
at z=0,h

(u,v,w) are the velocity components in the directions given by the
cylindrical coordinates (r,8,z), and (P,,Ps,P,) are the components of P
in each direction. The Poisson equations for gradient of pressure are solved
by successive over relaxation. Dealing with gradient of pressure instead
of pressure,the Neumann problem is transformed to the Dirichlet problem
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and the convergence becomes good. The Euler semi-implicit scheme is used
for the time integration of velocity. (All but the convective velocity are
computed implicitly.) All spatial derivatives except the nonlinear terms are
approximated by central differences. The nonlinear terms are approximated
by the third-order upwind scheme: ’

(ua_u _ g M + 8(uip1 — vic1) + uizz
oz’i 12h
Uipo — AU + 6u; — du;_q + u;_s
+ Iugl +2 +1 i 1 2

We assume the flow to be symmetric about the midplane to reduce the
size of the computational domain. This restricts the flow to have an even
number of vortices, which is the case normally observed in the laboratory.
A grid system is shown in fig.1. Constant grid spacing is used in each
direction. The computations were done on Japanese supercomputer NEC
SX2.

4. Results

There are three nondimensional parameters:

n=>a/ a (Radius ratio)

v=h/d (Ratio of height and gap)
R.=Qd*/v (Reynolds number)
(R, = 31.03)

) 2
cf) Ta= -1_L772R§ (Taylor number)

n is fixed at 0.727, and + is fixed at 23.35 to correspond with the experiment

of Burkhalter & Koschmieder. The computations are performed for four

cases R/R. = 2,3,4,6 (R.:Critical Reynolds number from linear theory).
Stea,dy-state

Figure.2 shows instantaneous streamlines in the vertical surface for R/R, =
2,3,4,6. Wavelengths of steady state results are plotted in fig.3 with the
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comparison of the experimental and other numerical results. The wave-
length X is defined as follows:

where € is the length of the endcell,and N is the number of vortex-rings(=1/
2 number of cells) excluding endcells. The agreement is not good quanti-
tatively. Probably the main reason is that the experiment is not a perfect
impulsive start. According to other experiments of them, the wavelength
depends on the history of the acceleration.(Table 1) And another reason is
from the numerical error due to the discontinuity in the boundary condi-
tions at the axial end plates. However wavelengths of computational results
are within the theoretical limit (Fig.4). The quantitative agreement is not
good, but the agreement is good qualitatively. Both wavelengths of the
computational results and the experiments increase for R/R, > 4.

Evolution of Taylor-vortices

Why does the wavelength increase for R/R. > 4 7 We have investigated
the time-evolution of vortices.

(1) R/R. =3
At first, a vortex develops from the end-boundary by Ekman pumping,
induces next vortex, and propagates up. Finally vortices fill the gap
between the cylinders and go to the steady-state. Flow is axisymmetric
during this procedure. Fig.5a shows the instantaneous streamlines in
the vertical surface. Fig.5b shows the contour of the vorticity normal -
to the surface. It is found that the vorticity is supplied from the inner
boundary.

(2) R/R.=6
Vortices fill the gap between the cylinders by the same process with
case(1). However, this is not the steady-state. This state makes a
transition to the state in which there are large Taylor vortices. Fig.6a
shows the instantaneous streamlines in the vertical surface. During the
transition we found that wavelengths of vortices gradually increase by
vortex-connection. This feature is not found in the axisymmetric com-
putation of incompressible Navier-Stokes equations by Neitzel(1984).
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So the transition are probably due to the non-axisymmetric effects.
Fig.6b shows the contour of the vorticity normal to the surface. It is
found that the vortices which have the same sign are connecting.

5. Conclusion

The wavelength of Taylor vortices through an impulsive start increases for
R/R. > 4 by vortex-connection, and this feature was not found by ax-
isymmetric computation by Neitzel (1984). So this is the non-axisymmetric
effect.
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Fig.2 Instantaneous streamlines in the vertical surface for R/R. = 2,3, 4,6
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At (sec) 0.5 3.16 11.8 | 20.3 36.4 3600
N 30.940.7 29.34+0.9 27.840.6 27.8+0.5 27.3+0.6 25
A - 1.65 4= 0.04 1.74 £0.05 1.8440.04 °~ 1.844-0.03 1.87 +0.04 2 .04

Table 1  Wavelengths after different acceleration periods at T'/T, = 5.44,resting end plates
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Fig.4 Stability diagram for supercritical Taylor vortex flow with
the experimental results and numerical results
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Fig.6b Contour of vorticity normal to the surface for R/R. = 6



