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A Note on the Calculation of Monodromy Groups

of Hypergeometric Systems

AXE MHMBRE (Mitsuhiko Kohno)

1. Introduction

Consider monodromy groups of the hypergeometric system of

differential equations

(1.1) (t—B)ﬁ% = AX (teC),

where B is a diagonal matrix of the form

n, n, : np
(1.2) B = diag(ll,ncogll, Az”"flz' LI » lp,on_"lp)
( Ai#xj (i#j), nikl, n1+n2+'-°+np=n )

and AEMD(C). This system has only regular singularities at t=).j
(j=1,2,...,p) and t== in the whole complex t-plane, and hence is
Fuchsian. Since the form of (1.1) is invariant under the linear

transformation X=DY, where D is a block-diagonal constant matrix

of the form
_(1.3) D‘=<Viiag (DI@D2@°'°©DP),

the DJ

denoting A=(Aij;.f,j= 1,2,...,p), where the Aij are n, by n,

being "j by nj matrices, it may be assumed in (1.1) that ,

matrices, we take the diagonal blocks Aii (i=1,2,...,p) as Jordan

canonical forms.
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In the paper [1; see also 2], K.Okubo established an
ingenious method of calculating monodromy groups of (1.1) in a

generic case, i.e., in a case when there appear no logarithmic

solutions.

We shall here give an outline of the method. Assume that A is

similar to a diagonal matrix, i.e.,

(1.4) ' A ~ diag (vl,vz,...,vn)
together with the condition:

20, v & Vj (mod Z) (i#j; i,j=1,2,...,n),

i i

and all Aii(i=1’2""’p) are diagsonal matrices whose diagonal

elements pij(j=l'2""’"i) are not negative integers and not

Jcongruent to each other modulo Z. Then we can choose an appropriate

n by ni matrix solution Xi(t) near each singularity t=li, which is
constructed of nl non-holomorphic (column vectorial) solutions,

and can verify the so-called extended GauB' formula

(), X

(1.5) det(xl 2(t), oo s Xp(t))
=T n (t-li) r(pij+1) / r(vk+1),
i=1 j=1 ‘ k=1

which implies that the matrix X(t)=(Xl(t), Xz(t),..., Xp(t)) forms
a fundamental matrix solution of (1.1). By means of the fundamental

matrix solution X(t), one can derive generators Mi(i=i.2,....p) of

the monodromy. group:
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M. € GL(n,()

(1.6) X(t) (<iQ > X(t)Mi. i

and analyze their properties in detail. Theh, taking account of the

relation
(1.7) v M1 M, - M=M,

where M_ is a repreéentation of the monodromy group corresponding to
a negative circuit around t=«, K.Okubo concludes that if the
hypergeometric system (1.1) has no accessory parameters, then one can
always calculate‘éxplicit values of the generators Mi(i=1,2,...,p)

only by the relation (1.7).

In this note we shall explain the calculation of the monodromy

group of (1.1) in a non—generic case. For simplicity, we here assume
that
1
| 5. O
(1.8) A,. = Pi + J, , Ji = LT (i=1,2,...,p),
() 01
0
where the asterisk denotes the transposition of a matrix, and the pi
are not negative integers and not congruent to each other modulo Z.

Other excluded cases can be dealt with by a slight modification of

the consideration stated below.
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2. GauB equation

As an example, we first treat of the GauB equation
t(t-D)y"+{(a+8+1)t-y}y'+By = 0

in a case where y=p+1l, p being a positive integer. This single

differential equation can be reduced to the hypergeometric system

(o o dX  _ -p 1
e [e-(eo) - (1)

where p=p-o-8 and a=-(p-ot)(p-B). Here it is assumed that p#0

(mod Z) and o#8 (mod Z), a#0, B#0 (mod Z).

Now it is easy to see that a non-holomorphic solution near t=0
corresponding to the characteristic exponent -p involves a

logarithmic term. In fact, let yo(t) be a holomorphic solution of

the form

g(m)t™ (Jtl<y.

nMs

(2.2) yo(t) =

m=0

Then, according to the Frobenius method, one can obtain a logarithmic
solution xo(t) associated with yo(t) as follows:

Xo(t) = y (t)log t + X (1) (Jtl<)y,

where the cohvergent power series ﬁo(t) is expressed as

._1 ©
S gmt™+ 3 atgmit™.
m=0 m=0

_n P
Xy(t) =t p

In the above, the coefficient g(m) can be determined by the

‘recurrence equation
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B(m-p)g(m) = (m-1-p-A)E(m-1) (0<m<p-1)
subject to the condition
-(1+A)g(p-1) = Bg(0),
-and 9 denotes the diffefentiation with respect tom, i.e.,
9lg(m)1 = dg(m)/dm.

By such a construction, we obtain a fundamental matrix solution of
the form

= (v _ o J |
(2.3) Xo(t) = (yy(), x5(1)) = (v (), X5(tNt (tl<ny,

where J is a shifting matrix, i.e.,

As for other solutions, one can easily see that near t=1 there
exist a non-holomorphic solution of the form

(2.4) X, (t) = (t-1° 3 gl(m)(t-l)m (lt-1]1<1)
: m=0

and a holomorphic solution yl(t). which corresponds to the
characteristic exponent p=0. Near t=«, there exist two

non-holomorphic solutions of the form

k Yk < -s
(2.5) : X () =t 7 3 h (st T (k=1,2),
» s=0

where the characteristic exponents vk (k=1,2) are eigenvalues of A,
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i.e., v,=-a and v2=—B.

We here remark that X(t)=(y0(t), xl(t)) forms a fundamental

set of solutions of (2.1). In fact, by taking
g0 = (1,%, g,(0) = (0,1)%,
one can prove that there holds

(2.6) det X(t) = (t-1DP Fp+1)/C T (1-0)T(1-8))1

in a simply connected domain including the intersection

(Jtl<1)N(Jt-1]<1). 1In the above and hereafter, we denote analytic

continuations of solutions by the same notation.

We always have linear combinations between solutions. We put
(2.7) xl(t) = ByO(t) + coxo(t)

and then we immediately see from (2.6) that the constant c0 is_not

equal to zero. As a holomorphic solution near t=1, we define yl(t)

by the relation
(2.8) yo(t) = yl(t) + clxl(t),

and then. we can see that Xl(t)=(y1(t),xl(t)) forms a fundamental

matrix solution near t=1, because of

det Xl(t) = det X(t).

All preparations having done, we are now in a position to
calculate generators of the monodromy group of (2.1). Since the

circuit matrices are given as follows:



89

— Xo(t)exp(2niJ).

Xo(t) (:1)
X, (t) » X, (t)
1 1 1 !
' (\J) 0 e

=exp(2nip), from (2.7) and (2.8) we immediately obtain

1
generators Mi(i=0.1) of the monodromy group with respect to X(t)

[ 1 & Y-1 [ 1 2mi ][ 1 & ) [ 1 2nic, ]
M, = ' ’
0 0 ¢y | | o‘ 1 0 o 0 1

[ 1 0 )-1 [ 1 0 ][ 1 0 ) { 1 0 ]
M = ) =
1 c1 1 ) 0 c1 c1 1 ) cl(e1 1) e1

However, by a diagbnal transformation X diag(do,dl). wvhere dodl#o,

where e

(2.9)

that is, by changing a fundamenfal matrix solution only up to
constant factors, we can assign any value to one of constants

¢, not yet determined in (2.9) without the change of the form

o' ©1
of generators.

We here put 2nico=1 and leave c, as a constant undetermined in

(2.9). Then we have

M M, = . (d=cl(e1-1)),

which is equal to the circuit matrix with respect to X(t) along
a negative circuit around t=«, and is therefore similar to
diag(fl,fz) (f1=exp(?2ﬁia), f2=exp(~2ni3)) which is the circuit

matrix with respect to a fundamental set of solutions (2.5).
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Hence we have

det (M M

2
o™i f) f -(d+l+e1)f+e

1

(f-f

1)(f-f2)

(e1= f1f2: Fuchs' reLation).

From this, we obtain

d = f1+f2-e1-1 = —(fl-l)(fz-l).

We have thus determined the required generators of the monodromy
group of (2.1):

1 1 ' 1 0
(2.10) My = , M, = ,
, 7 -(f,-1) (£,-1) e,

where f1=exp(-2nia), f2=exp(-2ni8) and e1=exp(2nip).

3. Monodromy group im a non-generic case

We shall now explain a general treatment of obtaining the
monodromy group of (1.1) under the assumption (1.8). In this case,
following the Frobenius method, we can again derive the logarithmic

matrix solutions Xi(t) near t=ki of n by'ni matrix form:
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Iy
X, (t) = Xi(t)(t—xi) ,
(3.1) o =
2,6 = (t-a.) s G m =A™ (1=1,2,...,0 )
: m=0
J

where the factor (t—xi) i denotes n, by ni,matrix of logarithmic

polynominals. The coefficient matrix

Gi(m)=(gi(m),g§1](m)..;.,g["i_l](m)),

each element g(m) of which is an n-dimensional column vector, is
determined as follows: The first element_gl(m) is given as a

particular solution of the system of linear difference equations
AB=2, ) (m+p g, (m) = (m-1+p. -A)g, (m-1)

subject to the initial condition

oM i Nv1 M

A A — " A A
gi(0)= (O’-OO,O’A(O’.OO'OQI), O.....O) 9

n

and then other elements are defined as

o ) . o
g m = o¥tg. m1 = L 94— (g . m)) (k=1,2,...,n,-1).
i i kt , k ‘& i

In the paper (3], we showed that the matrix

X(t) = X (t).Xz(t),...pr(t)):

1

forms a fundamental matrix solution of (1.1), verifying the
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extended GauB—Kummerfs formula

n,p; ni(ni—l)/z n, n '
(t-x.) (-1) » (F(pi+1)) / n F(vk+1).

det X(t) = i
1 k=1

i

n =g

Using this fact, we shall calculate generators of the monodromy

group. One can express each Xi(t) near other singularities t=1k

(k#i) as follows:

Xi(t) = Xk(t)Cki + Yki(t) (k#i ; ?,k=l,2....,p),

where the Y i(t) are n by n, matrices of holomorphic solutions at

k i

and the C are nk by ni constant matrices. Then it is easy

t=a ki

k’
to see that
) = (Y 2(t)....,xk(t).....Ykp(t))

X(t3a (), Y

k k1 k

forms a fundamental matrix solution near t=Ak,‘because of the

relation

det X(t) = det X(t;lk).

In fact, we have the connection formulas

(3.2) X(t) = X(t;Ak)Lk  (k=1,2,...,P),
where

¢ ‘ 3\

]nl In 0
» 2
(3.3) Lk = Ckl Ck2 L Ink,: . . Ckp
0 In
\ P J
- 10 -

[
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Since the circuit matrix with respect to Xk(t) around t=1k is

given as

X, (t) » X. ()exp(2ri(p, +J. ))
k (:3) k k k77

we immediately obtain the circuit matrix with respect to X(t;xk)

in the form

,X(t;kk) (:!J » X(t;xk)Ek .
where

(3.4) Ek = dlag(lnl@ Inz@ e ® exp(27ti(pk+Jk))@ e @ Inp)

(k=1,2,...,p).

Therefore the generators Mk (k=1,2,...,p) of the monodromy

group of (1.1) with respect to X(t) are expressed as

= -1 =
(3.5) M, = L, E.L (k=1,2,...,p).

In the above, the number of constants to be determined is

equal to

However, we see:

(i) By a non-singular diagonal transformation, i.e., by the
change of a fundamental matrix solution up to constant factors, one

can assign any values to (n-1) constants among them.

- 11 -
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(ii) By means of the relation (1.7), one can determine some

number of constants in (3.5). For example, suppose that A is similar
to a diagonal matrix of the form

0 0 0
v,...,vq)

(306) A~diag( vl"..’vl’ v2,oon|v2’ LI [ q

9.+ 0

1 g v ottt Gq = n (1<q<n).

Then the eigenvalues of MIMZU'Mp are fj=exp(2nivj)(j=1.2,...,q),

and

rank(M1M2°~'Mp-fj) = n—9j (j=1,2,...,q9).

q
In this case, one can easily see that X 9? constants in (3.5) are

i=1
determined by the remaining. Here we have only to pay attention
to the identity of the Fuchs relgtion

1det[exp(2n1(0k+Jk))]

det (M

" 39

My oM = )

P
= exp(2ni X n,.p,)
k=1 k" k

Oj q
fj = exp(2ni 2 ojvj).
1 j=1

It .9

J

From (i) and (ii), if (3.6) is assumed, the number of undetermined

constants in (3.5) becomes

- 12 -
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q
(3.7) N (n-non, - (-D-C 3 02 - 1)
1 . ; j=1 1

"
it Mo

k

p q
n2-n+2- 2 ni - S e?,
. k=1 j.__lj
which is exactly equal to the number of accessory parameters in A

of (1.1). (See [21).

Moreover, if for some k and i, V=Y, (mod Z) in (3.6), then fk=fi'

and
rank(M1M2~--Mp-fk) = n—Ok-Oi.

Hence in this case the number of undetermined constants is more

diminished.

Anyhow, if N<0, then we can determine explicitly all generators

(3.5) only by algebraic calculations.

As an example of illustrating the above fact, consider a case
when,nl=n2=°°'=np_1=1 and hence np=nﬁ(p—1). Assume that eigenvalues
of A are mutually distinct modulo Z. Then the number of accessory

parameters is equal to

nZ-n+2-(p-1+(n+l-p)2

=
1]

) - (n)

(p-2)(2n-1-p),

whence the accessory parameter free case occurs only for p=2. Such a

differential equation is just the generalized hypergeometric equétion

of Fuchsian type.



4. Generalized hypergeometric equation

Following the method described in the preceding section, we:

shall now calculate the monodromy group of the generalized
hypergeometric equation

daX _
(4.1) t B)dt = AX,

where B=diag(0,...,0,1), and A is of the form

(p () By )
1 p
e 1 : ., p£0 (mod 2),
o p Bn-l
\ al a2 e e an—l pl )
which is assumed to be similar to a diagonal matrix, i.e.,
A~ diag (vl, v2, oo vn)
viso, viavj (mod Z) (i#j; 1,j=1,2,...,n).

This hypergeometric system, of course, corresponds to the well-known

single generalized hypergeometric equation of Fuchsian type

n-1
" -y ™M 2 s (ak+bkt)tk 1,0 (a,=0).

k=0

with (n-1) multiple (modulo Z) characteristic exponents at the origin.

In this case, one can find the logarithmic solutions of n by

(n-1) matrix form
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t)

J
XO Xo(t)t R

t? S gamt™,
m=0

Xo(t)

J again beihg an (n-1) by (n-1) shifting matrix, neér t=0, and a
non—holdmorphic solution of a column vectorial form

xl(t) = (t-1) > g, (m)(t-1)",
m=0 1

near t=1. Then we have
(4.2) 'det(xo(t), X, (4))

g (M=DP 1y Ly (=1 (n=2)/2 44,0 lr(p1+1)/ mrw,.,),

' k=1 k+1

and hence, we can take X(t)=(xo(t), Xl(t)) as a fundamental matrix
solution of (4.1) to calculate generators‘of the monodromy group.
We next define holomorphic solutions Yo(t) and Yl(t) by the

following connectidn formulas

Xo(t) Xl

(t)(cl.cz, cee

(4.3)

X, (t) XO(t)(c , 02' ces 5, C

where Yo(t) and Yl(t) are a column vector ahd an n by (n-1) matrizx,

respectively. Then we see’  immediately from (4.2) that
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X(t;,O) (Xo(t), Yo(t)),

Y, (t), X,(t)),

X(t; 1)

1 1

form fundamental sets of solutions near t=0 and t=1, respectively,

and obtain circuit matrices with respect to them as follows:

X(t;0) (:1) » X(t:O)EO

-oo

exp(2ni (p+J))

X(t;1) —————(\i)———f* X(t;l)El

E, = ln-l

1 , €, = exp(2nipl).

1

(¢ Qe O

0 *++++ 0

Combining these with the connection formulas (4.3), i.e.,

X(H) = X(t;0L, ,
X(H) = Xt DLy,
7 where
( ' ) )
¢y ( 0
In-l 02 [n-'l .
L. = . , L, = : ,
0 : 1 0
n-1
L0 -+ 0 ) [ €1 % -+ Cpy 1)

_16_
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we consequently obtain the following generators of the monodromy

group with respect to X(t):

( X 3
RS
YO
- 2
( My = LOIEOLO = exp(2ri (p+J)) : ,
Yn-1
(4.4) < ‘ . Q e 0 1 )
(- 0
R S - | .
\ M1 = L1 ElLl n-1 6 ’
\ Yl Yz ..7". Yn—-l el
where Yj=(e1-1)cj (j=1,2,...,n-1), and denoting e0=exp(2nip),
- - . 2 _ n-2 _
61-e0(2ni)/1!, 62-e0(2n1) /2!....,6n_2—e0(2ni) /(n-2)1,
we have
( Y] = (eg=Ideg+d o+ co0 + 3 ,C0
< Yy = (egmllcy#dycgs »ov + 8, 3Cny o
X Yn-l = (eO-l)cn_1 .

Since we can give any values to (n-1) elements in (4.4), we put

? - = n-l — L] - ' -
Yl'an-l” eO(Zni) /(n-1)1, v, ‘5n-2’ cee » Y 1-81.

So we have only to calculate v,, vy,...,7,_, by the relation 1.7,

i.e;,

(4.56) det (M M

' n
0 l-f) = : f



100

where f

k=exp(2niv

-1
det(MO Ml

e —-f

-X 61
-X

Ylf Yzf

8y

= (—1)“+1y1f X

where

’ n-1 :
-nHMls ijxj 1,

i=1

k) (k=1,2,...,n).

f)detM1
81 62
e.~-f 61 *

e.—f
Yzf ..... Yn—lf
have
82 R EEE 6n
.o %2
-X 1
..... Yn_lf -
2 o 6n—l
| . +(-X)
-X . ,
* . 62
-X
)+ DMy
n-j i

- 18 -

Since the determinant in the
left hand side of (4.5) is written as

6n--l
82
61
,el-f
-1
-X 61
-Xx &
Yzf ooooo
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5, &, - 5
-X 81 : . 6j—l
(4.6) Ajx) = X T X (j=1,2,...,n-1).
O 2
S

Consequently, we can rewrite‘(4.5) in the form

n-1 k-1 1 -1 n
(4.7) 2 Y., x A (x) = +{(f-e )" (f-e,)- W (£-£,))
“. "k n-k f 0 1 - k
k=1 k=1
1 n-1 n
= {(x (xte -e,)- M (xte ~-f )}
x+e0 0 1 k=1 0 'k
= ¥(x),

where the member in the right hand side is easily seen to be a

polynomial of degree (n-1) in f, i.e., in X, because of the Fuchs

relation

nas

f.= e el.

We here make a remark on the properties of the determinant

;Aj(x) (j=1,2,...,n-1):
(i) Aj(x) is a polynomial of degree (j-1) in x,
(ii) A (0) = 83
J 1°
d k-1
(iii) A (X)) = 2 8, x° A, . (X) (A, (X)=1),
j k=l k j"k 0

Ll : —3 = - 2
e. ., Al(x)-sl, Az(x)- slAl(x)+62x = 61+62x,.r. .

Taking account of‘the above relations (i)(ii)(iii).vwe can calculate
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the explicit values of Yl’ 72,..., 14 by means of (4.7). To see

n-1
this, we use the following notation

: p
WPl = oPrud = l7‘4——(u(x)),
P! 4P
(pl P o [p-k]
(u(x)v(x)) = > u (X)v P (x) (Leibniz rule),
k=0
and then obtain
AlP=91 65y (p2q),
q [pl _
[(x A(x)) ]x=0 =

0 (p(q).

Now, differentiating both sides of the above relation (iii) in p
times, and then putting x=0, we have for 0<p<j-1

1

k- [pl
8 Lex APl o

|
" M.

(4.8) AtP1 (o)

i k=1

P+l -
3 skAgfkk+1](0) (j=1,2,...,n-1)

k=1

and obviously, from (i), Agp](O)EO for p2j.

Again, differentiating both sides of (4.7) in (jfl) times and then

putting x=0, we have

j-
(4.9) >
k=

1
[i-k1]
lykAn-k

) = yli 1o (j=1,2,....n-1).

+
0347 A,

Combining (4.9) with (4.8), we can effectively evaluate Yl’ 72,...,

Y . For instance, from the relation (ii) we immediately obtain

n-1

_‘ 20 -
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¥ n
Y1 =2 ?0) = nll M (ep=f)).
n-1 61 €o k=1
From (4.8) for p=1, i.e.,
A{IJ(O) =0,
[11 _ [11] = -
Aj, (0) = BlAj_1(0)+62Aj_2(0) (j=2,3,...,n-1),
we easily derive
[11 I ji-2 _ _
Aj (0) = (j 1)81 82 (j=1,2,...,n-1).

Then, from (4.9) for j=2, we obtain

. ogl1Y oy ., A[11
Yo = (4T (0)-y A1 (0))/A_,(0)

n (n-2)3 n _
= -3 A s2 ) W (e -5,0/8]72
e 0 k=1 "0 "k e.d k=1
0 0%1
n n
vl vl Wiy u B OISR
817 2e, 0 k=1 %0 fx k=1

and so on ...

We thus obtain the generators of the required monodromy group

of (4.1) of the following form

- 21 -
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f 3
e 61 2 o o e e 5n-1
eO 6n-2
Mo = - : :
0 0
\ 1 y

=
[—y
H]
~
[y
o
@)
— .
Q cee O

-~
[
~
N
-~
=
]
[
o
[y
“~

The above example is a typical one among calculations of
monodromy groups in more general cases. And, in practical
calculations, we think that the computer works effectively by

the algebraic manipulation based on the above algorithm.
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